Index

acetylcholinesterase inhibitors (AchEI) 185
acute exposure
 airborne particles 274
 essential trace elements 57
 industrial chemicals 153, 165–7
 radioactivity and radioelements 115, 137
 toxic trace elements 104–7
 toxicology 6, 7
acute radiation syndrome (ARS) 115
AD see Alzheimer’s disease
additivity 10–11
Agent Orange 183
agriculture
 airborne particles 257, 261, 264, 279–80
 biosolids 38–43
 pesticides and fertilisers 181–206
 pharmaceuticals and personal-care products 212, 216, 218
air contamination
 essential trace elements 65–8
 industrial chemicals 148, 162–3
 nanomaterials 302–3
 pesticides 190
 radioactivity and radioelements 135–6
 regulatory systems 42–6
 toxic trace elements 96–101
airborne particles 255–86
 anthropogenic sources 264–6, 279–80
 asbestos 256, 259–60, 263, 270–3, 276–7
 bioaccessibility and bioavailability 275–7
 biomass and wild fires 257, 261
 coal dust 257, 261, 265, 274–5, 277
 crystalline silica 255–6, 258–9, 264
 dust particles 255–6, 261–3, 266–70, 277–80
 future directions 280–1
 global pathways 266–70, 279
 hazardous properties 257–61, 270–7
 historical context 255–7
 human health impacts 270–7
 lung-lining fluid interactions 276
 micro-organisms 261
natural sources 255–6, 261–4, 266–70, 277–9
particle deposition and retention 275–6
risk reduction 277–80
silica-rich dusts 255–6, 258–9, 264, 273–4, 277
 toxic trace elements 257, 260–1, 265
volcanic ash 256, 261, 263–4, 270, 279
alpha particles 116
Alzheimer’s disease (AD) 194
americium 125
ammonium nitrate 195
androgenicity 240
antagonism 10–11
antibiotics 209, 210–12, 215–16, 218
anticancer activity 293–6
antidepressants 209, 212–13, 216–17, 218
antimicrobial activity 293–6
antioxidant activity 295–6, 312
ARS see acute radiation syndrome
arsenic
 anthropogenic sources 92–3
 bioaccessibility 103
 environmental pathways 94–6
 hazardous properties and toxicology 89, 104–5
 natural sources 90, 91–2
 properties 94
 toxic trace elements 88
artificial nanomaterials see nanomaterials
artificial radioelements 115, 125, 133
aryl hydrocarbon receptors 187
asbestos 256, 259–60, 263, 270–3, 276–7
 association 14, 19
 attributable proportion 14
 attributable risk 14
 Australia regulations 36, 38–40, 46
background radiation doses 118
Becquerel, Henri 115–16
benchmark dose (BMD) 9
benchmark response (BMR) 9
beneficial trace elements see essential trace elements
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>benzene</td>
<td>environmental pathways 162–3</td>
</tr>
<tr>
<td></td>
<td>hazardous properties 148, 153–5, 157, 164, 166, 169</td>
</tr>
<tr>
<td></td>
<td>risk reduction and future trends 170–2</td>
</tr>
<tr>
<td></td>
<td>sources and applications 156–8</td>
</tr>
<tr>
<td>beryllium</td>
<td>88</td>
</tr>
<tr>
<td>beta-blockers</td>
<td>209–10</td>
</tr>
<tr>
<td>beta particles</td>
<td>116</td>
</tr>
<tr>
<td>BFR</td>
<td>see brominated flame retardants</td>
</tr>
<tr>
<td>Bhopal</td>
<td>183</td>
</tr>
<tr>
<td>bias</td>
<td>14–15, 18</td>
</tr>
<tr>
<td>bioaccessibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>airborne particles 275–7</td>
</tr>
<tr>
<td></td>
<td>essential trace elements 71–2</td>
</tr>
<tr>
<td></td>
<td>nanomaterials 301–4</td>
</tr>
<tr>
<td></td>
<td>radioactivity and radioelements 136–9</td>
</tr>
<tr>
<td></td>
<td>toxic trace elements 101–3</td>
</tr>
<tr>
<td>bioaccumulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>definition 12</td>
</tr>
<tr>
<td></td>
<td>essential trace elements 76–7</td>
</tr>
<tr>
<td></td>
<td>industrial chemicals 148, 168–70</td>
</tr>
<tr>
<td></td>
<td>nanomaterials 312</td>
</tr>
<tr>
<td>bioavailability</td>
<td>136–9, 275–7</td>
</tr>
<tr>
<td>biochanin A</td>
<td>232</td>
</tr>
<tr>
<td>biochemical signalling disruption</td>
<td>185–6</td>
</tr>
<tr>
<td>bioconcentration</td>
<td>12, 155</td>
</tr>
<tr>
<td>biomagnification</td>
<td>12</td>
</tr>
<tr>
<td>biomass burning</td>
<td>257, 261, 279–80</td>
</tr>
<tr>
<td>biopersistence</td>
<td>301</td>
</tr>
<tr>
<td>biosolids</td>
<td>38–43, 216</td>
</tr>
<tr>
<td>BMD</td>
<td>see benchmark dose</td>
</tr>
<tr>
<td>BMR</td>
<td>see benchmark response</td>
</tr>
<tr>
<td>Bradford-Hill criteria</td>
<td>19</td>
</tr>
<tr>
<td>breast cancer</td>
<td>244, 247–8</td>
</tr>
<tr>
<td>brominated flame retardants (BFR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>environmental pathways 161–2</td>
</tr>
<tr>
<td></td>
<td>hazardous properties 148, 153, 157, 164–6, 168–9</td>
</tr>
<tr>
<td></td>
<td>risk reduction and future trends 170–2</td>
</tr>
<tr>
<td></td>
<td>sources and applications 156, 159</td>
</tr>
<tr>
<td>2-bromopropane</td>
<td>149</td>
</tr>
<tr>
<td>cadmium</td>
<td>87–8</td>
</tr>
<tr>
<td></td>
<td>anthropogenic sources 92–3</td>
</tr>
<tr>
<td></td>
<td>bioaccessibility 103</td>
</tr>
<tr>
<td></td>
<td>environmental pathways 96–7</td>
</tr>
<tr>
<td></td>
<td>hazardous properties and toxicology 89, 105</td>
</tr>
<tr>
<td></td>
<td>natural sources 90, 92</td>
</tr>
<tr>
<td></td>
<td>properties 94</td>
</tr>
<tr>
<td>caesium</td>
<td>129–30, 131</td>
</tr>
<tr>
<td>CAFO</td>
<td>see concentrated animal feeding operations</td>
</tr>
<tr>
<td>calcium-channel blockers</td>
<td>209–10</td>
</tr>
<tr>
<td>calcium oxide</td>
<td>195</td>
</tr>
<tr>
<td>carbon-coated iron carbide</td>
<td>307</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>46</td>
</tr>
<tr>
<td>carbon nanotubes (CNT)</td>
<td>296–9</td>
</tr>
<tr>
<td>biological responses</td>
<td>297–8</td>
</tr>
<tr>
<td>environmental pathways</td>
<td>300–3</td>
</tr>
<tr>
<td>exposed versus unexposed</td>
<td>296, 299</td>
</tr>
<tr>
<td>functionalisation</td>
<td>296</td>
</tr>
<tr>
<td>human health receptor impacts</td>
<td>306</td>
</tr>
<tr>
<td>impurities</td>
<td>296</td>
</tr>
<tr>
<td>interference with assays</td>
<td>299</td>
</tr>
<tr>
<td>sources</td>
<td>300</td>
</tr>
<tr>
<td>carboxyfullerenes</td>
<td>295–6</td>
</tr>
<tr>
<td>carcinogenic, mutagenic or reprotoxic (CMR) designation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>essential trace elements 58</td>
</tr>
<tr>
<td></td>
<td>industrial chemicals 148</td>
</tr>
<tr>
<td></td>
<td>pesticides 186, 188</td>
</tr>
<tr>
<td></td>
<td>radioactivity and radioelements 122</td>
</tr>
<tr>
<td></td>
<td>regulatory systems 31</td>
</tr>
<tr>
<td></td>
<td>toxicology 11–12</td>
</tr>
<tr>
<td>carcinogenicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>airborne particles 272–3, 274</td>
</tr>
<tr>
<td></td>
<td>industrial chemicals 153–4</td>
</tr>
<tr>
<td></td>
<td>naturally occurring oestrogens 238–9, 244–5, 247–8</td>
</tr>
<tr>
<td>cardiovascular drugs</td>
<td>209–10, 212–13, 217, 218–19</td>
</tr>
<tr>
<td>case-control studies</td>
<td>17</td>
</tr>
<tr>
<td>cases, definition</td>
<td>13</td>
</tr>
<tr>
<td>causality</td>
<td>18</td>
</tr>
<tr>
<td>cellular uptake</td>
<td>305, 308</td>
</tr>
<tr>
<td>cerium oxide nanoparticles</td>
<td>300, 307, 312</td>
</tr>
<tr>
<td>CFC</td>
<td>see chlorofluoro carbons</td>
</tr>
<tr>
<td>chemical safety assessments (CSA)</td>
<td>30–1</td>
</tr>
<tr>
<td>chemical warfare agents</td>
<td>182–3</td>
</tr>
<tr>
<td>Chemicals Hazard Information and Packaging for Supply (CHIPS) regulations</td>
<td>32–3</td>
</tr>
<tr>
<td>Chemicals Stakeholder Forums (CSF)</td>
<td>32</td>
</tr>
<tr>
<td>Chernobyl nuclear power plant</td>
<td>133</td>
</tr>
<tr>
<td>CHIPS</td>
<td>see Chemicals Hazard Information and Packaging for Supply</td>
</tr>
<tr>
<td>chlorofluoro carbons (CFC)</td>
<td>46, 161</td>
</tr>
<tr>
<td>chromium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anthropogenic sources 61–2</td>
</tr>
<tr>
<td></td>
<td>deficiencies 53–4, 72–3</td>
</tr>
<tr>
<td></td>
<td>environmental pathways 63–5, 68</td>
</tr>
<tr>
<td></td>
<td>hazardous properties and toxicology 56–8, 72–3</td>
</tr>
<tr>
<td></td>
<td>natural sources 59</td>
</tr>
<tr>
<td>chronic exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>airborne particles 273–4</td>
</tr>
<tr>
<td></td>
<td>fertilisers 197</td>
</tr>
<tr>
<td></td>
<td>industrial chemicals 153, 166–8</td>
</tr>
<tr>
<td></td>
<td>pesticides 194–5</td>
</tr>
<tr>
<td></td>
<td>radioactivity and radioelements 137–8</td>
</tr>
<tr>
<td></td>
<td>toxic trace elements 104–7</td>
</tr>
<tr>
<td></td>
<td>toxicology 6</td>
</tr>
<tr>
<td>circulatory system</td>
<td>310</td>
</tr>
<tr>
<td>Classification, Labelling and Packaging of Substances and Mixtures (CLP regulation)</td>
<td>30</td>
</tr>
<tr>
<td>Clean Air Acts</td>
<td>45, 46, 257</td>
</tr>
<tr>
<td>clinical cases, definition</td>
<td>13</td>
</tr>
<tr>
<td>clover disease</td>
<td>229</td>
</tr>
</tbody>
</table>
essential trace elements (Continued)
- hazardous properties and toxicology 56–8, 72–6
- human health effects 72–6
- human health exposure pathways 68–72
- morphoclimatic zonal distribution 61–2
- natural sources 59–61
- organs of accumulation 76–7
- risk reduction 77–9

European Medicines Agency (EMEA) 208, 220
European Union (EU) regulations 29–32, 35–6, 38–40, 43–5, 47, 208, 220

eutrophication 196–7
exposure assessment 15–16

fertilisers 195–9
- airborne particles 264
- environmental pathways and fate 195–6
- hazardous properties 195
- human health and environmental impacts 196–7
- risk reduction 197–9
fertility 246–7
ferutinine 237
fission products 115, 120–2
fluoride
- anthropogenic sources 63
- deficiencies 55–6, 76
- environmental pathways 63–5, 67–8
- hazardous properties and toxicology 56, 76
- natural sources 59–61
fly ash 265
foodstuffs
- essential trace elements 64, 68
- industrial chemicals 163–5, 172
- naturally occurring oestrogens 242–8
- pesticides 190–2
- radioactivity and radioelements 135
formononetin 233
fossil fuels 257, 261, 265, 274–5, 277, 280
free-radical cascades 186
Fukushima Saiichi nuclear power plant 129–30, 140
fullerenes 291, 293–6, 302
functional interactions 11

GABA receptors 185, 194
gamma hexachlorocyclohexane (HCH) 182, 192–3
gamma rays 116
genetically modified (GM) crops 183
genistein 232, 240
genpheny 71
GM see genetically modified
gold nanoparticles 300
hazard characterization criteria 11–12
hazardous wastes 31–2, 33, 34
HCH see gamma hexachlorocyclohexane

heavy actinides 120–2
n-hexane 149
High Production Volume (HPV) Chemicals Programme 28–9
HIV/AIDS 75–6, 295
von Hohenheim, Theophrastus Phillipus Aureolus Bombastus 5–6
hormesis 9–10
hormone disruption 187–8
hormone–receptor agonism/antagonism 23
hormone replacement therapy (HRT) 248
HPV see High Production Volume
HRT see hormone replacement therapy

ICC see Indian childhood cirrhosis
ICCA see International Council of Chemical Associations
incidence, definition 13–14
Indian childhood cirrhosis (ICC) 77

industrial chemicals 147–79
benzene 148, 153–8, 162–4, 166, 169–72
brominated flame retardants 148, 153, 156–7, 159, 161–2, 164–6, 168–72
environmental pathways 161–4
future trends 172
hazardous properties 148–56, 164–70
historical context 147–8, 151
human health exposure pathways 164–5
organs of accumulation 168–70
physiological effects 165–8
polycyclic aromatic hydrocarbons 148, 155–8, 160, 163, 165–7, 169–72
risk reduction 170–2
sources and applications 156–61
trichloroethylene 148, 153, 157–8, 161, 163–5, 167–72

ingestion
essential trace elements 68–70, 77
industrial chemicals 164–5, 169
nanomaterials 303–4, 310–12
naturally occurring oestrogens 242–8
radioactivity and radioelements 137, 138
toxicology 6

inhalation
airborne particles 256, 270–7
essential trace elements 70–1
industrial chemicals 164–5, 169
nanomaterials 303–4, 308–9
radioactivity and radioelements 136–7, 138–9
toxicology 6

injection 71, 139

insecticides 182
International Council of Chemical Associations (ICCA) 28–9
iodine 129–30
isoflavones 231, 239
isoxanthohumol 237

Kashin-beck disease (KBD) 74
Keshan disease (KD) 74–5
INDEX

municipal solid waste (MSW) 40–3, 216, 242
municipal waste water 107
MWCNT see multi-walled carbon nanotubes
myco-oestrogens 229–31
environmental pathways 241–3
hazardous properties 231–8
risk reduction 248–9
sources 241
structures 230
n-hexane 149
nanomaterials 287–318
anthropogenic sources 299–300
beneficial properties 293–6
bioaccessibility 301–4
carbon nanotubes 296–9, 300–3
classification and nomenclature 287–9, 299
environmental pathways 300–3
fullerenes 291, 293–6, 302
hazardous properties 289–99, 301–12
human health receptor impacts 301–12
natural sources 299
physicochemical properties 289–91
regulation 301
risk reduction and future directions 312–13
silver nanoparticles 289, 292–4, 295, 300–3
synthesis 287–9
zinc oxide nanoparticles 291–2, 300, 302
naringenin 236, 240
natural airborne particles 255–6, 261–4, 266–70, 277–9
natural radioactivity 115, 119–20, 122–7
naturally occurring oestrogens 229–54
anthropogenic sources 240–1
beneficial effects 248
carcinogenicity 238–9, 244–5, 247–8
dietary contribution 242–8
endocrine disruption hypothesis 21
endogenous production 243
environmental pathways 241–3
hazardous properties 231–40
historical context 229
human health exposure pathways 243
human health impacts 238–9, 243–8
myco-oestrogens 229–41, 248–9
natural sources 240
oestrogen signalling 238
physiological functions 231, 238
phyto-oestrogens 229–41, 245–9
risk reduction 248–9
steroid oestrogens 229–30, 238–9, 240–1, 243–5, 248–9
neodymium-lead-strontium isotope ratios 268, 270
nervous system 312
neuroendocrine disruption 188
neurotoxins 182–3
nitrogen-containing fertilisers 195–6

landfill sites 212
LD50 see lethal dose
lead 87–8
anthropogenic sources 93–4
bioaccessibility 103
environmental pathways 98–100
hazardous properties and toxicology 90, 106
natural sources 90–1, 92
properties 94
lead-strontium-neodymium isotope ratios 268, 270
lethal dose (LD50) 8, 57
lignans 231
lipophilic membranes 186
LOAEL see lowest observed adverse effect level
loess 263
longitudinal studies 16–17
lowest observed adverse effect level (LOAEL) 8–9
lymphatic system 310
malignant mesotheliomas 272–3
manganese 261
MAOI see monoamine oxidase inhibitors
maximum residue levels (MRL) 183
measurement error 15
medical diagnostics 140, 141
membrane pH gradients 186
mercury 87–8
anthropogenic sources 92–4
bioaccessibility 103
environmental pathways 97–9
hazardous properties and toxicology 89–90, 105–6
natural sources 90, 92
properties 94
metal-fume fever (MFF) 72–3
metals
biosolids for agricultural use 42
water-quality guideline values 36, 38–40
see also essential trace elements; toxic trace elements
methyl isocyanate (MIC) 151, 183
methylmercury 183
MFF see metal-fume fever
MIC see methyl isocyanate
microbial agents 95–6
micro-organisms 261
migrants studies 17
mineral sources
airborne particles 264–5, 280
radioactivity and radionuclides 125–7, 128–9
toxic trace elements 90–1
mineral waters 135
monoamine oxidase inhibitors (MAOI) 209
morphoclimatic zonal distribution 61–2
mortality, definition 13–14
MRL see maximum residue levels
MSW see municipal solid waste
multi-walled carbon nanotubes (MWCNT) 296–9
nitrates (NOx) 43–6
no observed adverse effect level (NOAEL) 8–9, 192
non-small-cell carcinomas 272
non-steroidal anti-inflammatory drugs (NSAID) 209, 212–15, 217, 219
nuclear power and weaponry 127–8, 129–30, 140–1

O-desmethylangolensin 234
OC see organic contaminants
occupational exposure
 airborne particles 257, 259–60, 270–5
 essential trace elements 74, 76, 79
 industrial chemicals 165, 171
 pesticides 194
 radioactivity and radioelements 119, 136
Occupational Safety and Health Administration (OSHA) 171
odds ratios 14
OECD see Organisation for Economic Co-operation and Development
OEL see operational observed limits
oestrogenicity 239–40
oestrogens see naturally occurring oestrogens
operational observed limits (OEL) 301, 303
opsonisation 305, 308
oral toxicity see ingestion
organic contaminants (OC) 40
Organisation for Economic Co-operation and Development (OECD) 28–9
organochlorine pesticides 182, 192–3
organophosphate pesticides 193–4
OSHA see Occupational Safety and Health Administration
Oslo and Paris Convention (OSPAR) 29, 152, 171
osmotic balance disruption 186
OSPAR see Oslo and Paris Convention
Our Stolen Future (Colborn) 20–1
ozone 43–5, 262

PAH see polycyclic aromatic hydrocarbons
Paracelsus 5–6
Parkinsonism 261
Parkinson’s disease (PD) 194
particulate aerosols see airborne particles
particulate matter 43–6
pathogens
 airborne particles 257, 261
 fertilisers 195
 regulatory systems 40
PBDE see polybrominated diphenyl ethers
PBT see persistent, bioaccumulative and toxic substances
PCB see polychlorinated biphenyls
PD see Parkinson’s disease
PEC see predicted environmental concentration
pentachlorophenol 183
persistence, definition 12
persistent, bioaccumulative and toxic substances (PBT) 12, 148, 152
persistent organic pollutants (POP) 27–8, 37, 148, 152
personal-care products (PCP) see pharmaceuticals and personal-care products
pesticides 181–95
airborne particles 264
classification and modes of action 183–8
environmental pathways 189–92
hazardous properties 183–8, 192–5
historical context 181–3
human health receptors 192–5
risk reduction 197–9
sources and usage 188–9
pharmaceuticals and personal-care products (PPCP) 207–27
anthropogenic sources 210–15
environmental pathways and fate 215–17
future directions 220–1
hazardous properties 208–10, 220
historical context 207–8
physiological effects 218–19
regulation 208, 220
risk assessment, communication and reduction 219–20
phosphate fertilisers 195–6
phthalates 210, 215, 217, 219
phyto-oestrogens 229–31
dietary contribution 245–8
environmental pathways 241–3
hazardous properties 231–8
human health impacts 245–8
metabolism 245
risk reduction 248–9
sources 241
structures 230
plant contamination 103
PMF see progressive massive silicosis
PNEC see predicted no-effect concentration
polybrominated diphenyl ethers (PBDE) 7, 148, 153, 159, 164–6, 168–9
polychlorinated biphenyls (PCB) 7, 147–8
polycyclic aromatic hydrocarbons (PAH)
 environmental pathways 163
 hazardous properties 148, 155–8, 165–7, 169
 risk reduction and future trends 170–2
 sources and applications 158, 160
POP see persistent organic pollutants
population attributable risk 14
potassium 118, 119, 122, 125–6
potassium fertilisers 195–6
potentially toxic elements (PTE) 40, 42–3
potentiation 10–11
PP see precautionary principle
PPCP see pharmaceuticals and personal-care products
precautionary principle (PP) 19–20, 28
predicted environmental concentration (PEC) 208, 220
predicted no-effect concentration (PNEC) 208, 220
pregnancy
 essential trace elements 76
INDEX

industrial chemicals 169
naturally occurring oestrogens 244
8-prenylnaringenin 237
prevalence, definition 13–14
progressive massive silicosis (PMF) 273–4, 275
prostate cancer 244–5
PTE see potentially toxic elements
quantum dots (QD) 288–9, 307–8
RA see risk assessments
radioactive waste 131, 140
radioactivity and radioelements 115–46
airborne particles 257
anthropogenic sources 127–32
bioaccessibility and bioavailability 136–9
definitions 115, 116
environmental pathways 132–6
fission products and heavy actinides 120–2
hazardous properties 122–5
historical context 115–17
human health receptors 137–8
measurement of radioactivity 117–18
natural radioactivity 115, 119–20, 122–7
nuclear power and weaponry 127–8, 129–30, 140–1
particle and decay types 116–17, 123–5
radioactive waste 131, 140
recommended dose limits 119
refined/artificial radioelements 115, 125, 133
risk reduction 139–41
radium 116, 122, 124, 126, 138–9
radon 118, 122, 124–5, 126, 128, 135–6, 138–41
RCEP see Royal Commission on Environmental Pollution
RCR see risk-characterisation ratios
RDI see recommended dietary intake
REACH see Registration, Evaluation and Authorisation of Chemicals
reactive nitrogen species (RNS) 291
reactive oxygen species (ROS) 291, 295–6, 309–10
receptor-mediated interactions 11
recommended dietary intake (RDI) 77
recommended dose limits 119
refined radioelements 115, 125, 127
Registration, Evaluation and Authorisation of Chemicals (REACH) 12, 20, 30–1, 170–2, 208, 220
regulatory systems 27–51
air quality 42–6
background context 27–8
biosolids for agricultural use 38–43
current regulations on chemicals 28–34
guideline values 34–46
soil-guideline values 38
water-quality guideline values 35–8
relative risk 14
repeatability 15
residual oil fly ash (ROFA) 265
Restriction of the Use of Certain Hazardous Substances (RoHS) 29–30
resveratrol 237
risk assessments (RA) 28
risk-characterisation ratios (RCR) 219–20
RNS see reactive nitrogen species
ROFA see residual oil fly ash
RoHS see Restriction of the Use of Certain Hazardous Substances
ROS see reactive oxygen species
Royal Commission on Environmental Pollution (RCEP) 32, 183, 198
sample size 17–18
SBF see soya based formula
scientific evidence 19–20
sediment contamination
essential trace elements 65–7
fertilisers 196–7
industrial chemicals 148
radioactivity and radioelements 126–7
toxic trace elements 96–100
selective serotonin reuptake inhibitors (SSRI) 209, 216
selenium
anthropogenic sources 62–3
deficiencies 55, 74–6
environmental pathways 63–5, 66–7, 68
hazardous properties and toxicology 56–8, 74–6
natural sources 59–60
serotonin-noradrenalin reuptake inhibitors (SNRI) 209
sewage sludge see municipal solid waste
SGV see soil guideline values
Silent Spring (Carson) 21, 27, 182
soil contamination
essential trace elements 64–7, 78–9
fertilisers 196
industrial chemicals 148, 162–4
nanomaterials 302–3
naturally occurring oestrogens 242
pesticides 189–90
radioactivity and radioelements 126, 132–3
toxic trace elements 91–2, 94–100, 103–4
soil guideline values (SGV) 38, 78–9
source–pathway–receptor model 69, 107–8
soya based formula (SBF) 246
specific incidence 14
socio-economic data 17
source-pathway-receptor model 69
socio-economic impact 21
soil contamination
essential trace elements 64–7, 78–9
fertilisers 196
industrial chemicals 148, 162–4
nanomaterials 302–3
naturally occurring oestrogens 242
pesticides 189–90
radioactivity and radioelements 126, 132–3
toxic trace elements 91–2, 94–100, 103–4
soil guideline values (SGV) 38, 78–9
source–pathway–receptor model 69, 107–8
soya based formula (SBF) 246
specific incidence 14
spore-producing micro-organisms 261
SSRI see selective serotonin reuptake inhibitors
standardisation 14
statistical analysis 18
steroid disruption 187
steroid oestrogens 229–30
carcinogenicity 244–5
dietary contribution 242–4
endogenous production 243
environmental pathways 241–2
hazardous properties 238–9
human health impacts 243–5
risk reduction 248–9
sources 240–1
structures 230
strontium 125, 129
strontium-neodymium-lead isotope ratios 268, 270
study design 17–18
sufficiency of evidence 20
sulfur dioxide 43–6
sulfuric acid 186
SWCNT see single-walled carbon nanotubes
synergism 10–11

TCE see trichloroethylene
TDS see testicular dysgenesis syndrome
technologically enhanced naturally occurring radioactive material (TENORM) 127–8
TEL see tetraethyl lead
TENORM see technologically enhanced naturally occurring radioactive material
teratogenicity 169
testicular cancer 244
testicular dysgenesis syndrome (TDS) 247
tetraethyl lead (TEL) 87
thallium 88
anthropogenic sources 93–4
environmental pathways 100–1
hazardous properties 90, 107
natural sources 91, 92
properties 94
thorium 119, 122–6, 133–6, 138–9, 141
time series 17
tissue proteins 186
tissue-weighting factors 118
titanium dioxide nanoparticles 291, 300, 302–3, 307, 309–11
tobacco smoking 70, 163, 272, 275
total ozone mapping spectrometry (TOMS) 262
Toxic Substances Control Act (TSCA) 33–4
toxic trace elements (TTE) 87–114
airborne particles 257, 260–1, 265
anthropogenic sources 92–4
bioaccessibility 101–3
environmental pathways 94–101
hazardous properties and toxicology 89–90, 103–7
human health effects 103–7

human health exposure pathways 101–3
natural sources 90–2
properties 94
risk reduction 107–8
toxicodynamics 7–8
toxicokinetics 7
toxicology 5–13
animal models 11
chemical interactions 10–11
dose–response relationships 8–10, 11, 23
duration of exposure 6, 7
endocrine disruption hypothesis 22–3
essential trace elements 56–8
hazard characterization criteria 11–12
hormesis 9–10
low dose responses 8–9
mechanisms of toxicity 6–8
nanomaterials 289–94, 304–12
pharmaceuticals and personal-care products 219
regulatory systems 34–5
routes of exposure 6
scientific evidence 19

trace elements see essential trace elements; toxic trace elements
transport emissions 257, 261, 265–6, 280
trichloroethylene (TCE)
environmental pathways 163–4
hazardous properties 148, 153, 157, 165, 167–70
risk reduction and future trends 170–2
sources and applications 158, 161
TSCA see Toxic Substances Control Act
tschimganidine 237
tschimgine 237
TTE see toxic trace elements

uncertainty 20–3
UNCLOS see United Nations Convention of the Law of the Sea
UNEP see United Nations Environment Programme
United Kingdom (UK) regulations 32–3, 35–6, 38–40, 44–7
United Nations Environment Programme (UNEP) 29, 152
United States of America (USA) regulations 33–4, 36, 38–40, 44–7, 208
uranium 116, 119–31, 133–5, 138–9, 257
USEPA see Environmental Protection Agency
validity 15
very persistent and very bioaccumulative substances (vPvB) 12, 152
veterinary pharmaceuticals 208, 210, 212
VGSC see voltage-gated sodium channels
vinyl chloride 149
viruses 261
volcanic ash 256, 261, 263–4, 270, 279
voltage-gated sodium channels (VGSC) 194