1.10.1 Relationship Between ESD Standard Pin Combinations and Failure Mechanisms 12
1.10.2 Relationship Between ESD Standard Pin Combinations and Chip Architecture 13
1.11 System Level Characterization 13
1.12 Summary and Closing Comments 13
Problems 14
References 15

2 Human Body Model 17
2.1 History 17
2.2 Scope 18
2.3 Purpose 18
2.4 Pulse Waveform 18
2.5 Equivalent Circuit 19
2.6 Test Equipment 20
2.7 Test Sequence and Procedure 23
2.8 Failure Mechanisms 25
2.9 HBM ESD Current Paths 26
2.10 HBM ESD Protection Circuit Solutions 28
2.11 Alternate Test Methods 32
 2.11.1 HBM Split Fixture Testing 32
 2.11.2 HBM Sample Testing 33
 2.11.3 HBM Wafer Level ESD Testing 33
 2.11.4 HBM Test Extraction Across the Device Under Test (DUT) 33
2.12 HBM Two-Pin Stress 34
 2.12.1 HBM Two-Pin Stress – Advantages 37
 2.12.2 HBM Two-Pin Stress – Pin Combinations 37
2.13 HBM Small Step Stress 37
 2.13.1 HBM Small Step Stress – Advantages 38
 2.13.2 HBM Small Step Stress – Data Analysis Methods 38
 2.13.3 HBM Small Step Stress – Design Optimization 38
2.14 Summary and Closing Comments 38
Problems 39
References 39

3 Machine Model 43
3.1 History 43
3.2 Scope 43
3.3 Purpose 43
3.4 Pulse Waveform 44
 3.4.1 Comparison of Machine Model (MM) and Human Body Model (HBM) Pulse Waveform 44
3.5 Equivalent Circuit 45
3.6 Test Equipment 45
3.7 Test Sequence and Procedure 47
3.8 Failure Mechanisms 49
3.9 MM ESD Current Paths 49
3.10 MM ESD Protection Circuit Solutions 52
3.11 Alternate Test Methods 55
 3.11.1 Small Charge Model (SCM) 55
3.12 Machine Model to Human Body Model Ratio 57
3.13 Machine Model Status as an ESD Standard 58
3.14 Summary and Closing Comments 58

Problems 59
References 59

4 Charged Device Model (CDM) 61
4.1 History 61
4.2 Scope 61
4.3 Purpose 62
4.4 Pulse Waveform
 4.4.1 Charged Device Model Pulse Waveform 62
 4.4.2 Comparison of Charged Device Model (CDM) and Human Body Model (HBM) Pulse Waveform 63
4.5 Equivalent Circuit 65
4.6 Test Equipment 65
4.7 Test Sequence and Procedure 67
4.8 Failure Mechanisms 69
4.9 CDM ESD Current Paths 70
4.10 CDM ESD Protection Circuit Solutions 72
4.11 Alternative Test Methods
 4.11.1 Alternative Test Methods – Socketed Device Model (SDM) 74
4.12 Charged Board Model (CBM)
 4.12.1 Comparison of Charged Board Model (CBM) and Charged Device Model (CDM) Pulse Waveform 75
 4.12.2 Charged Board Model (CBM) as an ESD Standard 77
4.13 Summary and Closing Comments 77

Problems 79
References 80

5 Transmission Line Pulse (TLP) Testing 84
5.1 History 84
5.2 Scope 85
5.3 Purpose 85
5.4 Pulse Waveform 86
5.5 Equivalent Circuit 87
5.6 Test Equipment
 5.6.1 Current Source 90
 5.6.2 Time Domain Reflection (TDR) 90
5.6.3 Time Domain Transmission (TDT) 91
5.6.4 Time Domain Reflection and Transmission (TDRT) 91
5.6.5 Commercial Transmission Line Pulse (TLP) Systems 92

5.7 Test Sequence and Procedure 95
5.7.1 TLP Pulse Analysis 96
5.7.2 Measurement Window 96
5.7.3 Measurement Analysis – TDR Voltage Waveform 96
5.7.4 Measurement Analysis – Time Domain Reflection (TDR) Current Waveform 97
5.7.5 Measurement Analysis – Time Domain Reflection (TDR) Current–Voltage Characteristic 98

5.8 TLP Pulsed I–V Characteristic 98
5.8.1 TLP I–V Characteristic Key Parameters 99
5.8.2 TLP Power Versus Time 99
5.8.3 TLP Power Versus Time – Measurement Analysis 100
5.8.4 TLP Power-to-Failure Versus Pulse Width Plot 100

5.9 Alternate Methods 101
5.9.1 Long Duration TLP (LD-TLP) 101
5.9.2 Long Duration TLP Time Domain 102

5.10 TLP-to-HBM Ratio 104
5.10.1 Comparison of Transmission Line Pulse (TLP) and Human Body Model (HBM) Pulse Width 104

5.11 Summary and Closing Comments
Problems 104
References 105

6 Very Fast Transmission Line Pulse (VF-TLP) Testing 108
6.1 History 108
6.2 Scope 108
6.3 Purpose 108
6.4 Pulse Waveform
6.4.1 Comparison of VF-TLP Versus TLP Waveform 110
6.5 Equivalent Circuit 111
6.6 Test Equipment Configuration
6.6.1 Current Source 111
6.6.2 Time Domain Reflection (TDR) 112
6.6.3 Time Domain Transmission (TDT) 112
6.6.4 Time Domain Reflection and Transmission (TDRT) 113
6.6.5 Early VF-TLP Systems 114
6.6.6 Commercial VF-TLP Test Systems 116
6.7 Test Sequence and Procedure 117
6.7.1 VF-TLP Pulse Analysis 118
6.7.2 Measurement Window 118
6.7.3 Measurement Analysis – VF-TLP Voltage Waveform 118
6.7.4 Measurement Analysis – Time Domain Reflectometry (TDR) Current Waveform 118
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Pulse Waveform</td>
<td>148</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Pulse Waveform Equation</td>
<td>148</td>
</tr>
<tr>
<td>8.5</td>
<td>Equivalent Circuit</td>
<td>149</td>
</tr>
<tr>
<td>8.6</td>
<td>Test Equipment</td>
<td>149</td>
</tr>
<tr>
<td>8.7</td>
<td>Test Configuration</td>
<td>150</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Horizontal Configuration</td>
<td>151</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Vertical Configuration</td>
<td>151</td>
</tr>
<tr>
<td>8.7.3</td>
<td>HMM Fixture Board</td>
<td>152</td>
</tr>
<tr>
<td>8.8</td>
<td>Test Sequence and Procedure</td>
<td>153</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Current Waveform Verification</td>
<td>154</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Current Probe Verification Methodology</td>
<td>154</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Current Probe Waveform Comparison</td>
<td>156</td>
</tr>
<tr>
<td>8.9</td>
<td>Failure Mechanisms</td>
<td>157</td>
</tr>
<tr>
<td>8.10</td>
<td>ESD Current Paths</td>
<td>158</td>
</tr>
<tr>
<td>8.11</td>
<td>ESD Protection Circuit Solutions</td>
<td>158</td>
</tr>
<tr>
<td>8.12</td>
<td>Summary and Closing Comments</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>IEC 61000-4-5</td>
<td>163</td>
</tr>
<tr>
<td>9.1</td>
<td>History</td>
<td>163</td>
</tr>
<tr>
<td>9.2</td>
<td>Scope</td>
<td>164</td>
</tr>
<tr>
<td>9.3</td>
<td>Purpose</td>
<td>164</td>
</tr>
<tr>
<td>9.4</td>
<td>Pulse Waveform</td>
<td>165</td>
</tr>
<tr>
<td>9.5</td>
<td>Equivalent Circuit</td>
<td>166</td>
</tr>
<tr>
<td>9.6</td>
<td>Test Equipment</td>
<td>166</td>
</tr>
<tr>
<td>9.7</td>
<td>Test Sequence and Procedure</td>
<td>168</td>
</tr>
<tr>
<td>9.8</td>
<td>Failure Mechanisms</td>
<td>168</td>
</tr>
<tr>
<td>9.9</td>
<td>IEC 61000-4-5 ESD Current Paths</td>
<td>170</td>
</tr>
<tr>
<td>9.10</td>
<td>ESD Protection Circuit Solutions</td>
<td>170</td>
</tr>
<tr>
<td>9.11</td>
<td>Alternate Test Methods</td>
<td>171</td>
</tr>
<tr>
<td>9.12</td>
<td>Summary and Closing Comments</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>172</td>
</tr>
<tr>
<td>10</td>
<td>Cable Discharge Event (CDE)</td>
<td>174</td>
</tr>
<tr>
<td>10.1</td>
<td>History</td>
<td>174</td>
</tr>
<tr>
<td>10.2</td>
<td>Scope</td>
<td>175</td>
</tr>
<tr>
<td>10.3</td>
<td>Purpose</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>Cable Discharge Event – Charging, Discharging, and Pulse Waveform</td>
<td>175</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Charging Process</td>
<td>176</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Discharging Process</td>
<td>176</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Pulse Waveform</td>
<td>176</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Comparison of CDE and IEC 61000-4-2 Pulse Waveform</td>
<td>176</td>
</tr>
<tr>
<td>10.5</td>
<td>Equivalent Circuit</td>
<td>178</td>
</tr>
<tr>
<td>10.6</td>
<td>Test Equipment</td>
<td>179</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Commercial Test Systems</td>
<td>179</td>
</tr>
</tbody>
</table>
10.7 Test Measurement 180
 10.7.1 Measurement 180
 10.7.2 Measurement – Transmission Line Test Generators 180
 10.7.3 Measurement – Low-Impedance Transmission Line Waveform 181
 10.7.4 Schematic Capturing System Response to Reference Waveform 182
 10.7.5 Tapered Transmission Lines 185
 10.7.6 ESD Current Sensor 185
10.8 Test Procedure 185
10.9 Measurement of a Cable in Different Conditions 185
 10.9.1 Test System Configuration and Diagram 187
 10.9.2 Cable Configurations – Handheld Cable 189
 10.9.3 Cable Configuration – Taped to Ground Plane 191
 10.9.4 Cable Configurations – Pulse Analysis Summary 191
10.10 Transient Field Measurements 195
 10.10.1 Transient Field Measurement of Short-Length Cable Discharge Events 195
 10.10.2 Antenna-Induced Voltages 195
10.11 Telecommunication Cable Discharge Test System 195
10.12 Cable Discharge Current Paths 200
10.13 Failure Mechanisms 200
 10.13.1 Cable Discharge Event Failure – Connector Failure 200
 10.13.2 Cable Discharge Event Failure – Printed Circuit Board 201
 10.13.3 Cable Discharge Event Failure – Semiconductor On-Chip 201
 10.13.4 Cable Discharge Event (CDE)-Induced Latchup 201
10.14 Cable Discharge Event (CDE) Protection 201
 10.14.1 RJ-45 Connectors 202
 10.14.2 Printed Circuit Board Design Considerations 202
 10.14.3 ESD Circuitry 202
 10.14.4 Cable Discharge Event (CDE) ESD Protection Validation 203
10.15 Alternative Test Methods 203
10.16 Summary and Closing Comments 204
Problems 204
References 204

11 Latchup 206
11.1 History 206
11.2 Purpose 208
11.3 Scope 209
11.4 Pulse Waveform 209
11.5 Equivalent Circuit 209
11.6 Test Equipment 209
11.7 Test Sequence and Procedure 211
11.8 Failure Mechanisms 215
11.9 Latchup Current Paths 216
11.10 Latchup Protection Solutions 216
 11.10.1 Latchup Protection Solutions – Semiconductor Process 219
 11.10.2 Latchup Protection Solutions – Design Layout 219
11.10.3 Latchup Protection Solutions – Circuit Design 220
11.10.4 Latchup Protection Solutions – System Level Design 221
11.11 Alternate Test Methods 222
 11.11.1 Photoemission Techniques – PICA–TLP 222
 11.11.2 Photoemission Techniques – CCD Method 224
11.12 Single Event Latchup (SEL) Test Methods 224
11.13 Summary and Closing Comments 224
 Problems 227
 References 227

12 Electrical Overstress (EOS) 230
 12.1 History 230
 12.2 Scope 232
 12.3 Purpose 233
 12.4 Pulse Waveform 233
 12.5 Equivalent Circuit 233
 12.6 Test Equipment 234
 12.7 Test Procedure and Sequence 234
 12.8 Failure Mechanisms 236
 12.8.1 Information Gathering 236
 12.8.2 Failure Verification 237
 12.8.3 Failure Site Identification and Localization 237
 12.8.4 Root Cause Determination 238
 12.8.5 Feedback of Root Cause 238
 12.8.6 Corrective Actions 238
 12.8.7 Documentation Reports 238
 12.8.8 Statistical Analysis, Record Retention, and Control 238
 12.9 Electrical Overstress (EOS) Protection Circuit Solutions 240
 12.10 Electrical Overstress (EOS) Testing – TLP Method and EOS 249
 12.10.1 Electrical Overstress (EOS) Testing – Long Duration Transmission Line Pulse (LD-TLP) Method 250
 12.10.2 Electrical Overstress (EOS) Testing – Transmission Line Pulse (TLP) Method, EOS, and the Wunsch–Bell Model 250
 12.10.4 Electrical Overstress (EOS) Testing – Electromagnetic Pulse (EMP) 251
 12.11 Electrical Overstress (EOS) Testing – DC and Transient Latchup Testing 252
 12.12 Summary and Closing Comments 252
 Problems 252
 References 253

13 Electromagnetic Compatibility (EMC) 257
 13.1 History 257
 13.2 Purpose 258
 13.3 Scope 258
13.4 Pulse Waveform 258
13.5 Equivalent Circuit 259
13.6 Test Equipment 259
 13.6.1 Commercial Test System 259
 13.6.2 Scanning Systems 260
13.7 Test Procedures 261
 13.7.1 ESD/EMC Scanning Test Procedure and Method 261
13.8 Failure Mechanisms 261
13.9 ESD/EMC Current Paths 263
13.10 EMC Solutions 264
13.11 Alternative Test Methods 266
 13.11.1 Scanning Methodologies 266
 13.11.2 Testing – Susceptibility and Vulnerability 266
 13.11.3 EMC/ESD Scanning – Semiconductor Component and Populated
 Printed Circuit Board 267
13.12 EMC/ESD Product Evaluation – IC Prequalification 267
13.13 EMC/ESD Scanning Detection – Upset Evaluation 267
 13.13.1 ESD/EMC Scanning Stimulus 267
13.14 EMC/ESD Product Qualification Process 268
 13.14.1 EMC/ESD Reproducibility 268
 13.14.2 EMC/ESD Failure Threshold Mapping and Histogram 268
 13.14.3 ESD Immunity Test – IC Level 268
 13.14.4 ESD Immunity Test – ATE Stage 271
13.15 Alternative ESD/EMC Scanning Methods 271
 13.15.1 Alternative ESD/EMC Scanning Methods – Printed Circuit Board 271
 13.15.2 Electromagnetic Interference (EMI) Emission Scanning Methodology 274
 13.15.3 Radio Frequency (RF) Immunity Scanning Methodology 274
 13.15.4 Resonance Scanning Methodology 275
 13.15.5 Current Spreading Scanning Methodology 275
13.16 Current Reconstruction Methodology 276
 13.16.1 EOS and Residual Current 276
 13.16.2 Printed Circuit Board (PCB) Trace Electromagnetic Emissions 276
 13.16.3 Test Procedure and Sequence 277
13.17 Printed Circuit Board (PCB) Design EMC Solutions 277
13.18 Summary and Closing Comments 280
 Problems 281
 References 282

A Glossary of Terms 284

B Standards 288
B.1 ESD Association 288
B.2 International Organization of Standards 289
B.3 IEC 289
B.4 RTCA 289
B.5 Department of Defense
B.6 Military Standards
B.7 Airborne Standards and Lightning

Index