Index

Note: Page numbers in bold refer to tables and those in italics refer to figures.

30-Minute stagnation time sampling, 75–76, 77, 97
 average of first and second litre, 79, 83, 84
first litre, 79, 83
second litre, 79, 83, 84
Aggressiveness of test waters, 152, 168
Alkalinity, effect on cementitious materials in contact with drinking water, 168
Aluminium, 159, 168, 169
Anion analysis methods, 33–34
Anions and oxidisability parameters, 32
ANSI/NSF Standard 61-1997b, 123
Audit monitoring, 100
Blast furnace cement, 164
 composition, 157
 effect of preconditioning, 167
 pore solution composition, 158
Box and whisker plots, 92–95
Brass
 BS 7766: 1994 test protocol, 122
 severity of contamination of metals from, 131
 in sit-and-soak tests, 128
Bromate
 bromide as precursor for, 60–61
 carcinogenicity in drinking water, 59–60
 estimation of performance characteristics, 30
 occurrence in drinking water, 60
 permissible level in drinking water, 40, 55–56
 toxicity in drinking water, 60
Bromate determination, 39–62
 field-based methods, 49–50
 flow injection–ICP-MS, 48–49
 flow injection–spectrophotometric detection, 51
 inorganic and organic interferences, 41–43
 interlaboratory exercise, 55–59
 ion chromatography methods, 41–45
 ion chromatography spectrophotometry detection, 46–47
 ion chromatography/ICP-MS, 45–46
 ion pair chromatography–fluorescence detection, 47–48
 methods of, 40
 organic interferences study, 43
 in the presence of hypochlorite ions, 50
 sample pre-treatment automation, 43–45
 spectrophotometric method with methylene blue, 49–51
Bromate stability, 51–55
 effect of water matrix on, 52–53, 54
 of species immobilized on alumina microcolumns, 53–55
Bromide, as bromate precursor in drinking water, 60–61
 BS 7766: 1994 procedure, 122
Calcium, 167, 168
Calcium aluminate cement see High alumina cement
Calcium carbonate, 158–159, 168
Carbonation, cementitious materials, 157–158, 172

Analytical Methods for Drinking Water Edited by P. Quevauviller and K. C. Thompson
© 2006 John Wiley & Sons, Ltd.

175
Carcinogenic parameters, 7
Cement
definition, 156
effect of preconditioning on high alumina, 167
see also Blast furnace cement, High alumina cement, Portland cement
Cement-based materials see Cementitious materials
Cementitious materials
carbonation, 157–158, 172
carbonation, 157–158, 172
comparison of natural and synthetic migration waters, 168
effect of free CO2 content of test water, 168
effect of migration test water characteristics, 167–169, 172
effect of preconditioning and migration water, 161–169
effect of test water alkalinity, 168
effects on water quality, 159
influence of water composition, 158–159
preconditioning of test samples, 160, 161
reproducibility tests, 169–170
schematic structure, 156
test procedure, 156–172
typical compositions, 157
CEN TC 230 water analysis standardization, 17–19
Chlorine demand test, 117
Chromium, 148
Composite proportional sample, 76
ratio between tested protocols and, 85–88
Composite proportional sample procedure, 73
Composite proportional sampling device, 73, 74, 76
Composition list substances, 117
Concrete, structure of cement matrix in, 157
Conormative research experiments, 123–148
Contaminant Candidate List (CCL), 14
Contaminants
development of regulations for, 11
unregulated, 14
Contamination, prevention of, 15
Copper
comparison of rig results with consumers’ taps, 139
contamination from brass fittings, 139–141
monitoring of, 100
results in pipe rig tests, 135, 136, 137
in sit-and-soak tests, 127
water corrosivity and concentration of, 138–139, 140
Corrosion product
mechanical stability of, 151
solubility of, 151
Corrosion rate, of metals, 150
Cytotoxicity assessment, 118
DIN 50931-1 German standard, 123
Disinfection byproduct rules, 13
Drinking water
admissible concentration of bromate in, 40, 55–56
CEN and ISO standard analysis methods, 31–33
colour and turbidity, 116
disinfection of, 6
effects of cement-based materials on quality, 159
factors determining lead concentration in, 65–68
flow regime, 121–122
hygiene assessments, 117
materials in contact with, 115–173
odour and flavour, 116
organoleptic assessments, 116
parameters used for control of materials effects, 116–118
quality control requirements, 17
sampling of lead in, 68–75
sources of lead in, 64–65
Drinking water directives, 3–9
80/778/EEC, 3, 4, 8
98/83/EC, 6–7, 8, 98–99, 100–101
parameters, 6–7, 117
parameters and parametric values, 6
principles for, 4–5
related EU directives, 4
revision of, 3–4, 9
sampling and monitoring requirements, 8
types of water covered by, 5
Drinking water exposure level (DWEL), 11
Drinking water regulations
in the EU, 3–9
standardization, 16–34
in the United States, 10–16
DWD 80/778/EEC, 3, 4
quality control and assurance, 8
sampling and monitoring requirements, 8
Index

DWD 98/83/EC, 4
lead monitoring and sampling requirements, 98–99
parameters in, 6–7
quality control and assurance, 8
sampling of metals, 100–101
sampling and monitoring requirements, 8

Elemental analysis methods, 34
Elements and ammonium, chemical and indicator parameters, 32
EN ISO standard method, example of structure, 25
Estimation of trueness and precision, 29
EU directive on drinking water, 3–9
EU water legislation, 3

Field-based methods, bromate determination, 49–51
Fixed stagnation time monitoring, 101
Flow injection–ICP-MS, 48–49
Flow injection–spectrophotometric detection, 51
Flow rate in lead pipes, 67
France, lead monitoring field experiments, 98
Fully flushed samples, 77, 82, 97

Galvanic interaction, 150–151
Galvanized steel
in pipe rig tests, 141–148
in sit-and-soak tests, 127
Gaseous preconditioning, 161, 171, 172
Germany, pipe rig tests, 123
Ground Water Rule (GWR), 14

Hard water, tested for bromate stability, 53
Heavy metals, in cement matrices, 159
High alumina cement, 164, 167
composition, 157
Household size, inter-use stagnation times and, 122
Hygiene assessments, 117

Inter-use stagnation times, 66, 122
Ion chromatography, 41–45
inorganic and organic interferences, 41–43
interference during pre-concentration step, 42
potential organic interference study, 43
removal of major inorganic interfering anions, 42, 43
sample pre-treatment automation, 43–45
Ion chromatography spectrophotometry detection, 46–47
Ion chromatography/ICP-MS, 45–46
Ion pair chromatography–fluorescence detection, 47–48
Iron, 148
ICP-MS determination, 34
ISO standardization process, principles of, 20
ISO/TC 147
development of standards, 19–23
subcommittees, 19
water quality standardization, 17–19
Laboratory internal performance data, examples of, 30–31
Laboratory pipe rig waters, contamination results, 131
Laboratory sit-and-soak tests, achieving reproducibility, 148–150
Lead
applied test procedures, 78–79
audit monitoring, 100
composite proportional sample procedure, 73
concentration distribution in test areas, 109–110
definition of a ‘Representative Sample’, 69–73
effect of water composition on level in tap drinking water, 110–111
factors determining concentration in drinking water, 65–68
in galvanized steel, 147
intermediate PV priority setting, 106–107
levels in drinking water, 109–112
parametric value, 69
performance criteria of sampling protocols, 79–81
in pipe rig tests, 141
representative sampling at an individual consumer’s tap, 73
sampling of lead in drinking water, 68–75
sampling and monitoring strategies, 100–101
sources in drinking water, 64–65
supply area lead level, 68–69
Index

Lead (Continued)
variation in average weekly concentrations at consumers’ tap, 69–71
variations of average weekly lead concentrations in a supply zone, 72
water treatment priority setting, 108–109
Lead analysis in tap water
required accuracy of, 73, 74
sampling and pre-treatment, 74–75
Lead concentration
effect of plumbing materials, 111
effect of water consumption, 111–112
Lead monitoring, 63–113
analytical techniques, 75
customer information, 102
detected problem properties, 102–105
DWD 98/83/EC requirements, 98–99
effect of measures, 102
field experiments in France, 98
fit for purpose protocols, 98–109
general applications, 101
number of samples needed, 72–73
purposes of, 101–109
statutory monitoring, 101
zone assessment, 101–102
Lead pipes, 64
effects of plumbing dimensions and design, 67–68
Lead sampling in drinking water, 68–75
available procedures, 68–69
representative sample definition, 69–73
representative sampling at consumer’s tap, 73
Lead sampling procedures
comparison of, 75–98
final evaluation, 96–97
relationships between results sampling methods, 81–85
representativeness of the tested protocols, 81–90
reproducibility of, 91–95
Lead solubility, 67
Limit of detection, 29
Limit of quantification, 29
Liquid preconditioning, 161, 162, 171
with low mineralized water, 165, 171
with medium mineralized water, 166, 172
Maximum contaminant level goal (MCLG), 11
Maximum contaminant level (MCL), 11
Mean inter-use stagnation time, 66
Mercury analysis, 34
Metals
ageing of surfaces, 121, 152
assessing potential of metals to contaminate potable water, 124
corrosion rates of, 150
effect of surfaces on flow regime, 152
effect of surfaces on test water aggressivity, 152
existing test protocols, 122–123
galvanic interaction between materials, 150–151
influence on water characteristics, 120–121
parameters influencing metal release, 119
surfaces, 151
test procedures, 118–156
used in plumbing systems, 119
Microbial growth, 118
Microbial rules, 13
Microbiological parameters, 7
Migration test device, 163
Migration tests, 160–161, 162
Monitoring protocols
consumer acceptance, 96
costs, 95
practicality, 96
Monitoring requirements, DWD 98/83/EC, 8
Monitoring strategies, of metals, 100–101
Mortar, structure of cement matrix, 157
Multiple component analysis methods, 31
National Drinking Water Contaminant Data Base (NCOD), 14–15
National Primary Drinking Water Regulations (NPDWRs), 11–12
National Secondary Drinking Water Regulations, 12
The Netherlands, pipe rig tests, 122–123
Nickel, 100, 148
NSF/61–1997b test, 123
Organic compounds analysis methods, 34
Organic parameters, 33
Oxygen, concentration in test waters, 150
Parallel voting procedure (PVP), 24
Parameters
for control of materials effects, 116–118
setting parametric values for, 7
Index

Performance data, examples of laboratory internal, 30–31
pH, relationship between zinc concentration and temperature, 146
pH of drinking water, 159
Pipe rig tests, 123, 132–148, 155–156
conclusions, 155
copper with brass fittings results, 139–141, 142
copper results, 135–139
design of rigs, 132
example of test device, 134
experimental procedure, 132
experimental results, 135–148
flow regime, 132, 134
galvanized steel results, 141–148
in Germany, 123
lead concentrations, 141, 147
results, 153–154
sampling procedure, 133–135
and sit-and-soak tests comparison, 154
stagnation curves, 135
stainless steel results, 148
in The Netherlands, 120, 122–123
zinc concentrations, 141, 142, 143, 144, 145–147, 145
Pipe rigs, mean composition of laboratory waters supplied to, 126
Plumbing design, lead concentration and, 121
Plumbing materials
effect on lead concentration, 111
as source of lead in drinking water, 64–65
Plumbing systems, metallic materials used in, 119
Portland cement, 164
composition, 157
effect of preconditioning of, 166
pore solution composition, 158
Positive list substances, 117
Potable water, assessing the potential of metals to contaminate, 124
Potassium, 159, 167, 168
Precision, estimation of, 29
Preconditioning, 171–172
effect at different ageing times, 170–171
effect on cementitious materials, 165
effect on migration results, 165
effect on Portland cement, 166
Preconditioning and migration tests device, 163
Problem properties, 102–105, 106
PVC pipes, 65
Quality control and assurance, 80/778/EEC DWD, 8
Random daytime samples, average of fully flushed samples and, 83, 85
Random daytime sampling, 76, 81, 82, 97, 100
Reference dose (RfD), 11
Reference rig experiments see Pipe rig tests
Representative sample, definition, 69–73
Reproducibility tests, cementitious materials, 169–170
Results, presentation of interlaboratory trials, 28
Rig tests see Pipe rig tests
Safe Drinking Water Act (SDWA)
1986 Amendments, 12
1996 Amendments, 12
development of regulations, 11–12
disinfection byproduct rules, 13
ground water rule, 14
highlights of, 12–15
history of, 10
microbial rules, 13
regulated contaminants, 12–13
Selenium analysis, 34
Silica, effect on cementitious materials, 172
Single-component analysis methods, 31
Sit-and-soak tests, 123, 124
achieving reproducibility, 148–150
conclusions, 155
control mechanisms, 152
reflection of behaviour in authentic plumbing systems, 150
and rig tests comparison, 154
summary of results, 127–128
Soft water
effect on cementitious materials, 172
tested for bromate stability, 53
Solid phase extraction (SPE) column, 43, 44
Special standards development procedures, 23–24
Spectrophotometric method with methylene blue, 49–51
Stagnation curves, 135
Stainless steel, 148
in sit-and-soak tests, 127
Index

- **Standard methods, EU requirements for**
 - analytical, 28–34
- **Standardization**, 16–34
- **Standardization in CEN TC 230 and ISO TC 147**, 17–19
- **Standards**
 - apparatus section, 26–27
 - calculation instructions, 27
 - development procedures of special, 23–24
 - drafting of, 24–28
 - example of structure of EN/ISO 15061, 25
 - fast-track procedure, 23
 - foreword, 25
 - interferences section, 26
 - interlaboratory trials results, 28
 - introduction, 25
 - normative references, 26
 - principle, 26
 - procedure clause, 27
 - reagents clause, 26
 - results expression, 27
 - revision of, 23
 - sampling and sample pre-treatment clause, 27
 - scope, 26
 - test report, 27
 - title, 25
 - withdrawal of, 23
- **Substances that pose a risk to health**, 117–118
- **Surface finish**, of test metals, 151
- **Tap water, lead analysis**, 73–75
- **Test areas, characteristics of lead monitoring**, 77–78
- **Tested protocols**
 - 90% prediction range, 88–90
 - reproducibility, 91–92
- **Total Coliform Rule (TCR)**, 13
- **Total organic carbon (TOC)**, 117
- **Trueness, estimation of**, 29
- **Unique acceptance procedure (UAP)**, 24
- **United States of America**
 - drinking water regulations, 10–15
 - implementation of regulations, 15–16
 - Safe Drinking Water Act (SDWA), 10
 - Unregulated Contaminant Monitoring Rule (UCMR), 15
- **Unsuspected organic substances**, 117
- **Vienna Agreement**, 18–19
- **transfer of standard methods**, 23–24
- **Water**
 - aggressivity of, 152, 168
 - volume drawn, 66–67
 - composition, 67
 - consumption, 66
 - daily distribution based on composite proportional sampling, 80–81
 - effect on lead concentration, 111–112
 - mean daily consumption for different household sizes, 80, 81
 - matrix, bromate stability in, 52–53
 - use pattern, 65–66
 - Wellhead Protection Program, 15
- **Zinc**
 - in copper with brass fittings rig experiments, 141, 142, 143
 - in galvanized steel rig experiments, 141, 143, 144, 145–147

With thanks to Geraldine Begley for creation of this index.