Index

a
absorption coefficient 286
AC impedance analysis 239, 255, 257
– Al/LiCoO$_2$/electrolyte/carbon/Cu battery analysis 249–253
– Al/LiCoO$_2$/electrolyte/MCMB/Cu cell analysis 253, 254
– diffusion coefficient 257
– electrochemical method 239
– electrode characteristic analysis, applications 247–249
– equivalent circuit model 241–247
– ionic conductivity 256
– phase difference 240
– principle 239–241
– relative permittivity 254, 255
active material slurry
– electrode production 99
– preparation of 329
adsorption isotherms, IUPAC classification 314
adsorption kinetics, of carbon sample 315
AFM. See atomic force microscopy (AFM)
AFM equipment structure 301
AFM in situ cell, structure 302
Al current collector foil, C–H groups, comparison 224
alloys 120
– change in potential
– of Sn–Li and Si–Li with varying lithium composition 122, 125
– cracking in metal alloys 123
– discharge capacity 121
– Li, Li–Al, and Li–Si alloys 120
– lithium alloying of loosely arranged micrometal particles 124
– metal/alloy–carbon composites 128
– minimizing volume expansion 123
– multiphase lithium alloys 125
– Sn–Co–C alloying 128, 129
– Sn–Li equilibrium phase 122
aluminum corrosion 226, 227
aluminum current collectors, corrosion 259
aluminum–electrolyte interfacial reactions 226
aluminum metal cylindrical holder 298
aluminum metal, thermodynamically unstable 225
ammonium chloride (NH$_4$Cl) 2
amorphous carbon 100
– carbon raw materials, and carbonization 117
– electrochemical reactions
– of low-crystalline carbon 102–108
– of noncrystalline carbon 108–110
– gaseous carbonization 117
– liquid-phase carbonization 117, 118
– reactions involving electrolytes 110–114
– solid-phase carbonization 118
– structure of 100–102
– structural model 101
– thermochemical characteristics 114–117
animal electricity 1
anode capacity 323
– design of 323
– potential balance, adjustment of 323
anode degradation 324
anode-electrolyte interfacial reactions
– additives effect 212–214
– interfacial reactions
– at graphite (carbon) 209–211
– noncarbonaceous anode and electrolytes 214–216
– of lithium metal 203–209

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

- SEI layer thickness 211, 212
- anode materials 89
- amorphous carbon 100–118
- carbon materials 92–118
- characteristics of 91
- conditions 90, 91
- development history of 89
- graphite 92–100
- half cell capacity 320
- initial irreversible capacity of 321
- lithium metal 91, 92
- nitride anode materials 135–137
- noncarbon materials 118–120
- Li, Li–Al, and Li–Si alloys 120–123
- metal/alloy-carbon composites 128, 129
- metal oxides 130–135
- metal thin-film electrodes 130
- overview of 90, 91
- anode voltage 340
anodic reactions, in organic electrolyte solutions 227
anti-Stokes lines 277
Armand reaction 19
atomic force microscopy (AFM) 300, 301
ATR. See attenuated total reflection (ATR) attenuated total reflection (ATR) 273
audio quality, voltage 340
audiovisual transmission devices 340
Avogadro’s number 314

b
Baghdad battery 2
basal-to-edge ratio 210
batteries 9
- capacity 15, 16, 320, 321, 344–347
- anode 323
- determined from open-circuit voltages of 320
- evaluation of 347
- of LiCoO2 321
- measurement of 346, 347
- characteristics 15
- cycle life 17
- discharge curves 17–19
- energy density 16
- power 16, 17
- components 9
- design 319, 320
- basic principles 319
- cathode/anode capacity ratio 323–325
- electrode potential/battery voltage design 321–323
- practical aspects of 325–327
- discharge performance of 350
- disruption of lithium ions 343
- resistance 344
- types 2
battery cycle life 17
- factors affecting 344
- problems 343
- significance of 342
battery manufacturing process 327
- assembly process 331–334
- cathode tab welding/crimping/x-ray inspection/washing process 334
- electrolyte injection process 334
- jelly roll insertion/cathode tab welding/beading process 332, 333
- winding process 331, 332
- electrode coating 329, 330
- electrode manufacturing process 328
- electrode slurry, preparation of 328, 329
- flow chart of 328
- formation process
- procedures and functions 334, 335
- purpose of 334
- roll pressing process 330
- slitting process 330, 331
- vacuum drying process 331
battery performance 337
- charge/discharge curves 341
- adjustment of 339, 340
- significance of 337–339
- charge/discharge rate 347–349
- discharge performance of 342
- electrical energy 337
- energy density 351
- lithium secondary batteries 351
- mobile applications 351, 352
- overcharging 341
- power density 351
- temperature characteristics
- high 350
- low 349, 350
- transportation applications 352
- typical cycle life problems 343
battery safety 325
- basics of 65–68
- and cathode materials 68, 69
- reactions involving 69
- thermal reactions 67
battery voltage 321. See also voltage
- electrode potential, relationship 322
BET. See Brunauer-Emmett-Teller (BET)
binders 181
- functions 181, 182
– PVdF binders 185–187
– requirements of 182–185
– SBR/CMC binders 187–189
Born–Oppenheimer approximation 78
Bragg angle 265
Bragg scattering 295
Bragg’s law 263
– basal spacing 263
– of diffraction 263, 264
Brunauer-Emmett-Teller (BET) 312, 315
– isotherms 314
– plot 313
– surface analysis 311–315

\(c\)
cadmium 3
California Air Resource Board (CARB) 352
capacity 15, 16
– degradation 324
– effect of temperature on 19
– metal elements, form alloys with lithium 119
CARB. See California Air Resource Board (CARB)
carbon anode
– lithium ion batteries, design of 55
– lithium secondary battery, redox reactions of 23
– SEI characteristics of 213
carbonate solvents
– electrochemical decomposition of 195
– lithium secondary batteries 148
– LUMO energy levels 204
– oxidative decomposition reactions of 196
– reduction reactions of 196
carbon–electrolyte interface 210
carbon/electrolyte/lithium cell 248
carbonization reactions 117
– carbon raw materials and 117
– gaseous 117
– liquid-phase 117, 118
– solid-phase 118
carbon (SWCNT)/lithium battery
– cross-sectional sem image of 299
cathode capacity, potential balance 322
cathode degradation 324
cathode–electrolyte interfacial reactions 216
– interfacial reactions
– phosphate cathode materials 223–225
– oxide cathode materials
– interfacial reactions 218–223
– native surface layers of 217, 218
– SEI layers of 218
cathode materials 21, 23
– battery characteristics of 28
– charge and discharge curves 339
– demand characteristics of 26, 27
– development history 21
– discharge potential curves 24–26
– half cell capacity 320
– initial irreversible capacity of 321
– layered structure compounds 27–30
– LiCoO\(_2\) 30–34
– LiMO\(_2\) (M=Mn, Fe) 37–40
– LiNi\(_{1-x}\)Co\(_x\)O\(_2\) 34–37
– lithium-rich phases 44–46
– Ni–Co–Mn three-component system 40, 41
– Ni–Mn System 41–44
– Li\(_x\)TiS\(_2\), structure 22
– octahedral and tetrahedral sites 29
– olivine composites 52
– LiFePO\(_4\) 52–55
– LiMPO\(_4\) (M=Mn, Co, Ni) 55–57
– principle cathode materials 27
– redox reaction of 23, 24
– spinel composites 46
– LiMn\(_2\)O\(_4\) 46–51
– Li\(_x\)Mn\(_{2-x}\)O\(_4\) (M=Transition Metal) 51, 52
– structure of densest oxygen layer 28
– structure of layered LiMO\(_2\) 30
– TEM image 217
– thermal stability of 65, 69, 70
– LiCoO\(_2\) complex oxide 70
– LiFePO\(_4\) active material 74, 75
– Ni-Co-Mn three-component oxide 71, 73
– spinel LiMn\(_2\)O\(_4\) 73, 74
– vanadium composites 57, 58
cathode physical properties 75–77
– first-principles calculation 77
– prediction from 76
– potential difference 76
– redox couple 76
cathode tab welding process 334
cathode voltage 341
CCV. See closed-circuit voltage
cell composition 249
cell technology, development of 3
chalcogen compounds 22
charge balance 321, 322
charge-coupled detector 277
charge transfer 250
– from electrochemical reactions 259
– in electrode materials 231
– Faraday constant 259
– lithium secondary batteries 256
– rate-limiting process 14
– SEI layer 201
charging voltage 13
chemical ionization 310
chromatography 306
closed-circuit voltage (CCV) measures 231
CO
– gas 200
– K-shell absorption edge 287
C–O bond, β-decomposition 198
Co–Co peak intensity 292
Cole–Cole plot 241, 250
– lithium secondary battery 251
conducting agents 189
– dispersibility 190
– modification of 191
– types of 189, 190
– and wettability of electrodes 190
confocal microscopy 278
constant capacity cutoff control 236
constant current/constant voltage (CC/CV) 341, 347
constant voltage charging 236
conventional TEM (CTEM) 294
CoO cathode material, SAED patterns 297
core–shell particle shape 299
Coulomb energy 78, 79
Coulomb interactions 78
covalent bonds 270
– electromagnetic waves 270
– graphene layers 92
– infrared rays 270
– Li2 107
CRT display 298
crystalline materials 293
crystalline phase identification 263, 264
crystallinity 264
crystallite size 264
CTEM. See conventional TEM (CTEM)
current 14, 16, 17, 19, 156, 178, 232, 348, 351.
See also voltage
current breaks 334
current collectors 191
– aluminum corrosion 226–228
– aluminum surface, passive layers formation 228
– anode 192
– cathode 192
– lithium bis-perfluoroalkylsulfonylimide (Li[N(SO2CF3)2]) 226
– native layer of aluminum 225, 226
– requirements 192
– role of 191
current density 15, 18, 57, 60, 78, 79, 148, 267, 342
current–voltage curves 232
CV. See cyclic voltammetry (CV)
cyclic carbonates
– free radical state, resonance structure 199
– oxidative decomposition reactions 199, 200
– vinylene carbonate 200
cyclic voltammetry (CV) 232
– characteristics of 237
– comparison 237
– current–voltage 233, 234
– graphite anode 232
– redox reactions 232
– reduction peak 211
– in situ 303
cylindrical batteries
– dimensions of 346
– electrochemical design factors of 326
– physical design factors 325
dark field (DF) images 295
Debye–Waller factor 290
DEC. See diethylene carbonate
density functional theory (DFT) 79, 196
– calculations 197
– for EC 196
DFT. See density functional theory
diethyl carbonate 231
diethyl carbonate
– DSC thermogram of 306
– lithium ethylene dicarbonate 207
diethylene carbonate (DEC) 196
differential scanning calorimetry (DSC) 302
– of cathode, anode, and electrolyte 68
– for EC 207
– heat flux, equipment structure 304
– of Li0.5CoO2 71, 72
– Li0.5FePO4 75
– Li0.5NiO2 73, 74
– thermogram 304
– of EC/DEC 306
– polyethylene terephthalate 305
differential thermal analysis (DTA) 301
calorimetric 305
calorimeter 305
– Bragg’s law of 263, 264
– X-ray 265
diffusion coefficient 250
 – of ions 257
 – of lithium 238
diffusion, one-dimensional 250
dimethyl carbonate (DMC) 6, 196, 232
 – electrochemical reduction potential of 196
 – graphite Timrex KS 44, charge/discharge curves 111
 – lithium metal/platinum electrodes, cell consists of 232
 – organic solvents, physicochemical properties of 143
 – oxidation potential 196
dione 200
discharging 10
 – lithium metal alloys 121
 – voltage 13
DMC. See dimethyl carbonate (DMC)
DSC. See differential scanning calorimetry (DSC)
DTA. See differential thermal analysis
e
EC. See ethylene carbonate (EC)
EDS. See energy dispersive spectroscopy (EDS)
electric current 1
electric dipole 275
electric potential 11, 12
 – versus capacity 23
 – cathode material 24, 25, 75
 – circuit voltage 12
 – current flow 16
 – d-orbital electrons 25
 – electrodes 12
 – voltage 12
electric resistance 343
electric vehicles (EVs) 3
electrochemical analysis 231, 234
 – constant current method
 – constant capacity cutoff control 236
 – constant voltage control 234–236
 – constant voltage method
 – charging 236
 – potential stepping test 236, 237
 – cyclic voltammetry 232–234
 – linear sweep voltammetry 232
 – open-circuit voltage 231, 232
electrochemical cells 9
electrochemical decomposition, nonaqueous electrolytes 195–200
electrochemical equilibrium 236
electrochemical oxidation 10
electrochemical quartz crystal microbalance (EQCM) analysis 257
 – charge transfer, from electrochemical reactions 259
 – corrosion reactions 259
 – device 258
 – electrochemical reactions 257
 – film deposition 258
 – LiMn$_2$O$_4$ film 260
 – mass changes 259
 – oscillation frequency 258
 – piezoelectric quartz crystals 257
electrochemical reaction 11, 12
 – discharge 11
 – curves 18
 – electrode/cathode 11, 14
 – of graphite 94
 – kinetics 195
 – LiMn$_2$O$_4$ 218
 – of Li$_2$MnO$_3$ 46
 – lithium channel 55
 – lithium ion batteries 142
 – of low-crystalline carbon 102
 – of noncrystalline carbon 108
 – redox reactions 10
 – separators 173
electrode coating process 329
electrode density 327
electrode/electrolyte configurations 319
electrode-electrolyte interfacial reactions 195, 200
 – electrode materials and electrolytes 195
 – Li$^+$ ions 200
 – lithium metals 172
 – polymer electrolytes 172
 – SEI layer formation 201
electrode physical properties
 – application programs 83
 – battery voltage 80
 – input files 83, 84
 – lithium diffusion 80–82
 – prediction, using first-principles calculation 79
 – structural stability of electrode materials 80
electrode slurry
 – coating of 330
 – current collector, coating 330
 – manufacturing based on nanosized particles 134
 – preparation of 328
electrolyte–electrode interface 334
electrolytes 10, 209
 – lithium secondary batteries 195
Index

- oxidative decomposition reactions 196, 208, 222, 274
- oxidative reactions, at cathode material surface 344
- solvents, electrochemical stability 198
- measurement techniques for 270
- types 272
- electromagnetic wave 275
electron binding energy 283
electron gun 296
energy dispersive spectroscopy (EDS) 300
EQCM analysis. See electrochemical quartz crystal microbalance (EQCM) analysis
equivalent circuit
- of LiCoO$_2$/carbon cell 250
- resistance–capacitance 247
- of series resistance 246
ethylene carbonate (EC) 196, 231
cyclic carbonates 199
decomposition 305
DEC solvent 305
DFT calculations for 196
DMC electrolyte 214
DSC thermogram of 306
electrochemical reduction potential of 196
- Li$^+$ reductive decomposition mechanism 198
- lithium ethylene dicarbonate 207
- oxidation potential 196
- thermal decomposition 199
EVs. See electric vehicles (EVs)
EXAFS. See extended X-ray absorption fine structure (EXAFS)
exchange–correlation energy 79
exothermic/endothermic reactions 304
extended X-ray absorption fine structure (EXAFS)
- absorption coefficient 287
- analysis of 290, 291
- backscattering of electrons 288
- structural factors 291

Fermi contact 282
Fermi level 286, 287
FE-SEM. See field-emission SEM (FE-SEM)
field-emission SEM (FE-SEM) 298
- equipment structure 298
- field emission electron guns 298
fingerprint region 273
first principles calculation 40, 57
- application programs 83
- prediction of cathode material from 77
- structural stability of electrode materials 80
- understanding of 77–79
Fourier transform (FT) 291
- Co–Ni oxide 292
- infrared spectroscopy 274
- Ni EXAFS spectrum 292
- spectrum 290, 291
Fourier transform infrared spectroscopy (FTIR) 270–275
- analysis of 204
- ex situ internal reflection spectroscopy 274
- of LiMn$_2$O$_4$ cathode surface 221
- lithium ethylene carbonate 274
- lithium methyl carbonate 205
fragmentation pattern analysis 310
FT. See Fourier transform (FT)
FTIR. See Fourier transform infrared spectroscopy (FTIR)
full cell 11
galvanostatic intermittent titration technique (GITT) 238, 239
- current and voltage changes 238
- electrochemical methods 257
- experiment 238
gas chromatography (GC) 306
- analysis of 309
- equipment structure 307
- mass spectrometry (GC–MS) 306–311
- stationary phase 308
gaseous molecules, vaporization 312
gasket 334
Gaussian vs. Lorentzian 284
GC. See gas chromatography (GC)
generalized gradient approximation (GGA) 79
GGA. See generalized gradient approximation (GGA)
GITT. See galvanostatic intermittent titration technique (GITT)
grain boundary 300
graphite 92. See anode materials
- anisotropic behavior 92, 93
- charge/discharge curves 98
- depth profile 286
- design of graphite particles 94–99
- discharge curves of batteries with 120
- electrochemical reaction 94
--- galvanostatic curve 95
--- staging effects during lithium intercalation 95
--- voltammetric curve 95
--- impedance spectrum and equivalent circuit of 210
--- Raman spectroscopy 103
--- SEI layer formation in 124
--- structure 92–94
--- in-plane structure 96
--- MPCF artificial graphite 98
--- particle shapes 96, 99
--- graphite anodes, exfoliation 217
--- graphite/lithium cell
--- charge/discharge capacity and coulombic efficiency 235
--- differential capacity curves of 236
--- voltage controlled constant current charge–discharge curve 235
--- graphite surface, SEI layer image 295
--- green energy 7
--- gyromagnetic ratio 280

h
half cells 11
Hartree–Fock calculations 204
Hartree–Fock method 78
Hartree potential 79
HEVs. See hybrid electric vehicles (HEVs)

H_{Fermi} contact 281
H_{J}-coupling 281
Hohenberg–Kohn theorem 78
HOMO energy level 218

j
hybrid electric vehicles (HEVs) 3, 51, 53, 342, 348
--- anode material 107
--- application 3
--- batteries 134, 348, 349, 351
--- commercial 352
--- objective of 352
H_{Zeeman} 281
--- very low-frequency region 252, 253
--- inductively coupled plasma (ICP) 311
--- equipment structure 311
--- mass spectrometry (ICP-MS) 311
--- information technology (IT) 1
--- infrared 269
--- absorption 270, 273
--- electromagnetic spectrum 270
--- Fourier transform 274
--- functional groups, observation of 273
--- molecular vibrational energy, transition of 272
--- Raman spectroscopy 275
--- reflection absorption infrared spectroscopy (RAIRS) 273
--- spectrum 273
--- infrared reflection absorption spectroscopy (IRAS) 273
--- interfacial reactions, at graphite (carbon) 209–211
--- internal reflection elements (IRE) 273
International Center for Diffraction Data (ICDD) 263
IRAS. See infrared reflection absorption spectroscopy (IRAS)
iR drop 338
--- polarization 14, 19, 338
--- within thick electrode 339

k
kine tic energy 79
Kohn–Sham equations 79

l
LDA. See local density approximation (LDA)
lead–acid batteries 2, 3
Leclanché (or manganese) cell 2
LiBF$_{4}$
--- corrosion/passive layer formation 228
LiBOB decomposition 212
LIBs. See lithium ion batteries (LIBs)
Li/(CF)$_{n}$ batteries 21
Li$_2$CO$_3$, cathode surface 217
Index

LiCoO$_2$ A$_{1g}$ mode, Raman band changes 279
LiCoO$_2$/electrolyte/lithium cell 248
LiCoO$_2$–graphite system 340
LiFePO$_4$
 – electrochemical cycle characteristics 223
 – FTIR analysis 224
 – FTIR spectra 225
 – rietveld refinement of 266
light intensity 275
Li-ion batteries 319
 – manufacturing process 327
Li/LiNiO$_2$ cell
 – capacity–potential curve of 223
Li/MnO$_2$ batteries 21
LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$
 – 7Li MAS NMR spectrum with charge state of 282
LiNi$_{0.80}$Co$_{0.15}$Al$_{0.05}$O$_2$–graphite–acetylene black
 – Raman microscope image of 277
LiNi$_{0.80}$Co$_{0.15}$Al$_{0.05}$O$_2$–graphite-type carbon–acetylene black
 – Raman microscope image of 278
LiNiO$_2$, lithium deintercalation 270
LIPBs. See lithium ion polymer batteries (LIPBs)
LiPF$_6$/EC/PC electrolytes 215
 – liquid electrolytes 142
 – characteristics of 147–149
 – components of 143–147
 – development trends 161, 162
 – electrolyte additives 153–157
 – enhancement of thermal stability 157, 160, 161
 – ionic liquids 149–153
 – requirements of 142
Li/SO$_2$ batteries 21
Li/SC$_2$O$_2$ batteries 21
7Li static NMR spectrum, thermal effect 283
LiTFSI salts 228
lithium alkoxide 219
lithium alkyl bicarbonates 196
lithium alkyl carbonate 207, 208
lithium alloying 214
lithium anions, hydrolysis of 208
lithium batteries 196, 306
 – cross-sectional SEM image of 299
 – electrode-electrolyte interactions in 259
lithium bis-perfluoroalkylsulfonylimide 226
lithium cells 196. See also lithium batteries
 – cycle life 200
 – cycling of 218
 – inert metal electrodes and electrolytes 196
 – SEI layer formation 201
lithium deintercalation–intercalation
 – in situ XRD patterns 271
lithium deposition 323
lithium, diffusion coefficient 238
lithium ethylene carbonate, molecular structure 275
lithium ethylene dicarbonate 207, 208
lithium intercalation–deintercalation cycle 21
lithium ion batteries (LIBs) 5
 – lithium ion mobility 350
lithium ion polymer batteries (LIPBs) 5
 – lithium iron oxide 223
lithium metal alloys 209
 – discharge capacity 121
 – solvent, reactions between 209
lithium metal oxides, crystal structure 320
lithium methyl carbonate 206
 – FTIR spectrum 205
lithium secondary batteries 1, 3–7, 278, 337, 351, 353
 – capacity 345
 – changes in energy density and characteristics 6
 – charge and discharge curves of 338
 – charge transfer 256
 – commercialization of 22
 – discharge curves of 120
 – DSC characteristics, of components 116
 – electrode of 247
Index

– resistance component 242
– resistance–reactance–capacitance (RLC) component 244

O
OCV. See open circuit voltage (OCV)
ohmic polarization. See iR drop
open circuit voltage (OCV) 13, 231
– battery capacity 320
– electrochemical cell 231
– electrode materials 231
– LiMn$_2$O$_4$ film, mpe changes of 260
– oxidation number of lithium ions 25
– single-walled carbon nanotubes (SWCNTs) 231, 232
– Sn–Li and Si–Li 122
overcharging 340
– battery capacity 342
– behavior of battery 341
– charging of battery 38
– oxidation number of Co 33
– redox additives 156
oxidative electrode 11
oxidative reactions 232

P
parallel resistance–capacitance
– equivalent circuit 245, 246
– Nyquist plot of 245, 246
PC. See propylene carbonate (PC)
permittivity measurements
– electrochemical cell 255
– equivalent circuit 255
– Nyquist plot 255
PET. See polyethylene terephthalate (PET)
PITT. See potentiostatic intermittent titration technique (PITT)
plug-in hybrid electric vehicles (PHEVs) 3
polarization 13, 14, 15
– effect of current density on 15
polyethylene terephthalate (PET)
– DSC analysis of 305
– DSC thermogram of 305
polymer electrolytes 162, 328
– characteristics of 171–173
– development trends 173
– preparation of 169–171
– types of 162–169
positive temperature coefficient (PTC) 334
potassium hydroxide (KOH) 2
potential stepping
– current–time and differentiated capacity–voltage plots 237
potentiostatic intermittent titration technique (PITT) 238, 239
– change in current 239
– diffusion coefficient 239
propylene carbonate (PC) 195
– decomposition
– in situ IR cell 276
– electron transfer, oxidation reactions 199
– graphite interfacial reactions 212
– lithium bisoxalato borate (LiBOB) 212
– oxidation reactions from electron transfer 199
– reduction reactions of 195
– ring-opening reactions 196
– undergoes ring-opening oxidative reactions 220
PTC. See positive temperature coefficient (PTC)

r
radiation intensities 284
RAIRS. See reflection absorption infrared spectroscopy (RAIRS)
Raman cell, in situ 279
Raman scattering 275, 277
Raman spectroscopy 270, 275–279
– for crystalline graphite 101
– carbon materials 103
– energy absorption 276
– hyperspectral imaging 277
– light intensity 275
– used to observe molecular vibrations 277
Randles circuit 218
Rayleigh–Ritz variational theorem 78
Rayleigh scattering 275
RC. See resistance–capacitance (RC)
redox reactions at electrodes 10
reductive electrode 11
reflection absorption infrared spectroscopy (RAIRS) 273
resistance–capacitance (RC) 245, 247
– equivalent circuits 252
– model conditions of 253
resistance–reactance–capacitance (RLC) component 244
roll pressing process 331

s
Sauerbrey equation 258
scanning electron microscope (SEM) 296–300
– cross-sectional 299
– dry process/wet process 181
– electron accelerator 296
– energy dispersive spectroscopy (EDS) 300
– equipment, structure of 297, 298
– field-emission 298
– MCMB-25-28 artificial graphite 97
– microporous film 180
– MPCF-3000 artificial graphite 99
– scanning tunnel microscopy (STM) 300
Schrödinger equation 77, 78
SEI layer. See solid electrolyte interphase (SEI) layer
selected area electron diffraction (SAED) 295
SEM. See scanning electron microscopy (SEM)
separators 173
– basic characteristics 174–176
– cycle performance 178
– development of materials 179, 180
– effects on battery assembly 176
– functions 173, 174
– manufacturing process 180, 181
– oxidative stability 176, 177
– prospects for 181
– thermal stability 178
single-walled carbon nanotubes (SWCNTs) 231
Si/Sb-based alloys 215
Si/Sn/Sb-based metals 214
slitting process 330, 332
slurry storage process 329
Sn-based anode material
– in situ XRD patterns of 270
SnO₂ cathode material particle
– electron diffraction patterns of 296
Sn–Sb–Cu–graphite alloy anode 215
solid electrolyte interphase (SEI) layer 200
– at anode 321
– anode–electrolyte interface, Randles circuit 218
– battery performance 217
– cathode–electrolyte interface, Randles circuit 218
– charge/discharge of lithium batteries 203
– collector–electrolyte interface 203
– disproportionation reactions 222
– at electrode surface 200–203
– electrolyte decomposition 210
– electrolyte/gold electrode, cyclic voltammetry of 211
– formation 201, 209, 210, 211, 303, 334
– in metals 124
– FTIR spectrum of 215
– Li⁺ ion transport 202
– of LiMn₂O₄ 219
solvent reduction, potential values 196
sulfonyl amide lithium salts 226
surface–graphite interface 211
surface modification, surface modification 58–60
– layered structure compounds 60, 61
– olivine compounds 64, 65
– spinel compound 61–64
TEM structure 294
– conventional TEM (CTEM) 294
tetrahydrofuran (THF) 185, 195, 196
TGA. See thermogravimetric analysis (TGA)
thermal analysis 301–306
thermal conductivity 307
thermal decomposition 302
thermal stability, cathode materials 65
thermodynamic equilibrium 231
thermogravimetric analysis (TGA) 301
– equipment structure, schematic diagram 304
THF. See tetrahydrofuran (THF)
THF/LiClO₄ electrolyte 196
transmission electron microscopy (TEM) 292–296
transverse acoustic waves 257
– in quartz crystals 258
tungsten filament 292, 296
vacuum drying process 331
VC. See vinylen carbonate (VC)
vinylen carbonate (VC) 196, 200
– oxidation potential 196
– ring-opening polymers 213
voltage 12. See also current
– anode 340
– audio quality 340
– cathode materials 340
– effect of current density on 18
– metal elements, form alloys with lithium 119
voltage/current behavior, during charging 347
voltaic pile 2
Warburg impedance 249, 250
wavefunction 78
welding tip 332
winding process 331
– winds electrodes 330, 331
wireless charging 7
X
XAS measurement cell
 – in situ 291
XPS system 283, 284
X-ray absorption 284
X-ray absorption near-edge structure (XANES) 287, 288
 – LiFePO₄ 288
 – physical mechanism of 288
 – P K-edge 289
X-ray absorption spectroscopy (XAS) 285–287
 – extended x-ray absorption fine structure (EXAFS) 288–292
 – X-ray absorption near-edge structure (XANES) 287, 288
X-ray beam 263
X-ray diffraction analysis
 – principle of 263–265
 – Rietveld refinement 265–267
 – in situ 267–269
 – LiCoO₂ 269
X-ray incident radiation 286
X-ray photoelectron spectroscopy (XPS) 282–285
 – peaks for carbon materials 114
X-ray transmission 271
XRD analysis 263
XRD device 265

Z
Zaviosky detected electron paramagnetic resonance 280
Zeeman interaction 280
zinc anode 2
zinc chloride (ZnCl₂) 2