Index

a
- activation polarization
 - micro fuel cells 54–57
 - reduction 56
- active sites, solid oxide fuel cell cathode 56
- adhesive seals 133
- alloys, nickel-based 12
- alumina layer, porous 28
- alumina wafer, porous anodized 185
- aluminum substrates, pre-treatment 28
- ammonia
 - conversion 206
 - cracking 43, 156, 161
 - decomposition 161, 183, 204
- ammonia line, intermediate-fidelity model 204
- ammonia reforming 43
- anode material 65
- anodic oxidation 28
- anodized alumina wafer, porous 185
- antenna-control problem 264
- area specific polarization resistance 63
- automated catalyst coating 31
- autothermal reforming, hydrogen generation 42, 43
- average power demand 219

b
- batteries
 - alternatives 1
 - energy density 1
- battery current, hybrid devices 239
- battery-fuel cell system 225
- battery model, dynamic 230
- beam resonator, design analysis 173
- biofuel cells 149
- Biot number 84
- bonding techniques 19
- boundary control 251, 252
- boundary heat actuation profile 255
- boundary layers
 - microscale engines 82
 - thermal 84
- brazed seals 133
- brazing 12, 13
- bread-board fuel processor 121
- breadboarding 119
- burner integration 183
- butane line 207
 - Intermediate-Fidelity Model 205
- Butler–Volmer model 54, 55

c
- C3H8/air mixtures 182
- calcinations 30
- capacitor model
 - dynamic battery 230
 - hybrid devices 237
- capacity fade analysis, lithium ion battery 229
- CAPEX 7
- carbon management, pyrolysis 43
- catalyst coating
 - automated 31
 - drying 30
 - techniques 28
- catalyst wall reactor 186
- catalysts, noble metal 186
- catalytic and homogeneous combustion 182
- catalytic membrane microdevice, scheme 46
- catalytic microreactors 243
- catalytic partial oxidation (CPOX) 180
- catalytic reactors, high surface area 184
catalytically-enhanced gas phase combustor 89

cathode material 65
cavity wall, external combustion 95
centrifugal compressor 83
ceramic foams, fabrication 10–13
ceramic microreactors 130
ceramic microstructures, routes 20
ceramic monoliths
 – Cordierite 8
 – fabrication 8, 9
ceramic plates
 – assembly 21
 – interconnection and assembly 21
 – micromachining 20
ceramic powders, micromachining 20
ceramic YSZ thin film, structural design 170
ceramics 130, 131
 – joining 21
 – low thermal conductivity 131
CFD see computational fluid dynamics
channel crack 171
chemical etching, wet 15, 16
chemical microreactors 7
chemical models 189
chemical potential gradient 52
chemical-to-electric conversion efficiency 82, 87
chemistry model, detailed 189
chip-like microreactors
 – fabrication 23
 – slurry preparation 28–30
 – sol deposition 29, 30
 – temperature treatment 30
closed catalytic combustor 108
closed-loop temperature profile, model development 255
coating 29
 – alternative 30, 31
 – catalyst 28, 31
 – ceramic monoliths 9
codesign
 – hardware/software 263
 – microreactor control 264
coefficient of thermal expansion (CTE) 175
cold rolling, membrane production 25
combustion 205
 – catalytic and homogeneous 182
 – gas-phase 89
 – heating 117
 – thermal integration 117–119
combustion heat engines
 – flexing wall 94–96
 – microscale 89
combustor
 – catalytically-enhanced 89
 – closed catalytic 108
combustor–emitter thermal requirements 103
component efficiency 145
component integration strategies 119–122
component mole fractions 206
components
 compression sealing 130–132
 compressors, etched into a silicon wafer 86
computational fluid dynamics (CFD) 187, 200
COMSOL (FEMLAB) simulation 257, 258
concentration polarization, micro fuel cells 57, 58
conservative design 220
conservative power requirement 155
construction materials, thermal management 128
contamination failure 171
continuous coating machine 31
continuous wash-coating 31
continuously stirred tank reactor (CSTR) model 191
continuum conservative equations, model development 247
continuum models, microreactor control 246, 247
control relevant modeling 246–250
convection 105
conventional machining, small-scale 87
conversion efficiency
 – chemical-to-electric 82, 87
copper-metal thermal spreaders 125
Cordierite 8
counter-current, process intensification 186
counter-flow design microstructure 22
counter-flow heat-exchanger 12
couplers, micromachined 133
CPOX see catalytic partial oxidation
 cracking, ammonia 43
cross-flow heat-exchanger, diffusion bonded 13
CSTR see continuously stirred tank reactor
CTE see coefficient of thermal expansion
Curie temperature 91
current density 57
cut etched microchannel 16
Index

\(d\)
- decomposition 183, 204
- deep reactive ion etching
- methanol steam reformer 24
- micro solid oxide fuel cells 66
- density functional theory (DFT) 188
- deposition techniques 29, 30
- design
 - challenges 169–171
 - conservative 220
 - device 175–177
 - fuel cell stack 219
- hybrid electrochemical devices 223–242
- metallic monolith 10
- microreactor engineering 179–198
- objectives 144
- optimal 199–222, 238
- thermally isolated micromembrane 127
- thermomechanical approach 171
- design costs, optimal design 217
- design space 175
- desulfurization 114–116
- devices
 - ceramic microstructures 20, 21
 - energy generating 7–38
 - micro power 7, 8
 - performance 58–62, 209
- DFT see density functional theory
- diffusion bonding 12
- direct fluidic connections 131–133
- direct fluidic packaging 132
- direct internal reforming 40
- direct methanol fuel cells (DMFC) 71, 72, 149
- discharge machining 14
- distributed parameter system (DPS) models 247
- DMFC see direct methanol fuel cells
- DPS see distributed parameter system
- dynamic models, battery 230
- dynamic models 227
- dynamic systems, simultaneous optimization 226–228
- dynamos, energy storage 2

\(e\)
- effective thermal isolation 108
- effective transport model 190
- efficiency
 - chemical-to-electric conversion 82, 87
 - component 145
- energy conversion 145
- overall 146
- fuel cell performance 60
- portable power generators 102
- system design 155–158
- vs. energy density 144–147
- electric generators 93
- microscale heat engines 90, 91
- electrochemical capacitors 228
- dynamic battery model 230
- hybrid devices 223–242
- electrochemical half-reactions 54
- electrochemical systems, hybrid 224–226
- electrolyte conductivity 54
- electrolyte membrane fuel cells, polymer 70–74
- electrolyte requirements 65
- electron beam welding 11, 12
- electrophoretic deposition 30
- electropolishing, mechanical precision machining 13
- electroquasistatic induction generators 90
- embedded MPC
 - customized hardware 263–265
 - motorola processor 260–263
- embossing 18
- emitters, thermophotovoltaic 101, 102
- empirical models, microreactor control 248–250, 256, 257
- endothermic fuels 117
- endothermic reactor 182
- energy conversion efficiency 145
- overall 146
- energy density 144, 160, 210
- batteries 1
- fuels 2, 208, 218
- methane 156
- power demand 213
- system design 155–158
- vs. efficiency 144–147
- energy generating devices, microfabrication 7–31
- energy harvester 168
- energy integration 119, 126
- energy-related microdevices, manufacturing 7
- energy storage, dynamos 2
- energy transduction, micro fuel cells 51
- engineering models, microreaction 191, 192
- environmental energy, harvesting 3
etching
 – deep reactive ion 24, 66
 – hydrofluoric acid 26
 – wet chemical 15, 16
ethylene combustion, gas-phase 89
excess enthalpy geometries 187
excimer lasers 22
external combustion heat engine 94–96

F
Fecralloy
 – metallic monoliths 9
 – pre-treatment 28
film and device failures 171
film stresses
 – residual 171
 – structural design 169
films
 – methanol partial oxidation 45
 – piezoelectric 95
 – platinum 26
 – thin see thin films
 – titanium 26
finite impulse response (FIR) model 257
FIR see finite impulse response
flexing wall heat engine 94–96
flow, reverse 187
flow bypass, microreactor configuration 184
fluid dynamics
 – computational 187, 200
fluid flow 247
fluidic connections 120
 – direct 131–133
foams
 – ceramic and metallic 10–13
 – fabrication 10–13
 – microfabrication 8–10
foils
 – metallic monoliths 9
 – polyvinylidene fluoride 23
fuel cells 231
 – I–V performance 232
 – cathode, active sites 56
 – direct methanol 71, 72
 – electrolyte 55
 – half-reactions 61
 – hybrid devices 223
 – ion motions 61
 – membraneless 75, 76
 – micro 51–80
 – micro solid oxide 66–70
 – new concepts 74
 – operation 52
 – performance 232
 – platform 70
 – polymer electrolyte membrane 70–74
 – pulsed power profile 232
 – requirements 40
 – reversible 2
 – single chamber 74
 – solid oxide 64
 – stack designs 219
 – systems, losses 58
 – thin films 64
fuel combinations 162
 – system design 159–163
fuel energy density 208, 210
 – maximized 211
 – mission 218
 – power demand 213
fuel processing 148
 – hydrogen generation 39–50
 – scheme 41
fuel processors 7–38, 121
 – Samsung 46, 47
fuels
 – endothermic 117
 – pre-treatment 114
 – properties 116
 – selection 113
 – streams 75
 – theoretical energy density 2
 – utilization 149
 – vaporizers 116
fuels reforming
 – catalysts 118
 – thermal management 117

G
gadolinium doped cerium (GDC) oxide films 69
gap size 106
gas composition 207
gas conduction, reduction 105
gas-phase combustion 180
 – catalytically-enhanced 89
gas purification 149
gas turbines
 – efforts 93
 – engine 83
 – generator 87, 88
gasket materials 11
GDC see gadolinium doped cerium oxide films
general reactor network superstructure 192
generators
– electric 90, 91
– electroquasistatic induction 90
– gas turbine 87, 88
– magnet 91
– micro see micro-generators
– microthermophotovoltaic 108, 109
– permanent magnet 91
– portable power see portable power generators
– thermophotovoltaic 106
Gibbs energy 53, 155
glass micromachining 25
gluing, polymer bonding 22
gravimetric fuel energy density 144, 157, 158
gravimetric system energy density 160

h
half-reactions 54, 61
hardware/software (HW/SW) codesign 263
Hastelloy 12
heat dissipation, system design 147, 148
heat engines 81
– external combustion flexing wall 94–96
– microscale 81–98
– WSU 95
heat-exchangers
– counter-flow 12
– cross-flow 13
– fabrication 10
– integration 186, 187
– microstructured and embossed 18
heat integration, recuperative and regenerative 187, 188
heat losses, power demand 213
heat recirculation, geometries 187
heat recirculation geometry 187
heat signature 144
heat transfer effects 84, 104–106, 120
heatlosses-to-electrical-power ratio 212
hierarchical multiscale modeling framework 188, 189
high-speed rotor 88
homogeneous combustion 182
HW see hardware
hybrid electrochemical devices
– capacitor model 237
– design 223–242
– design specifications 236
– dynamic behavior 236
– finite-dimensional problems 227
– future directions 239
– numerical optimization 226
– optimal design configurations 238
– resistive companion approach 225
– safe operating limits 234
– systems modeling 225
hybrid power system optimization 228, 229
hydrides, hydrogen content 44
hydrocarbon combustion, gas-phase 89
hydrocarbon partial oxidation, volumetric and gravimetric system energy density 160
hydrofluoric acid etching 26
hydrogen clean-up 43, 44
hydrogen combustion 107
hydrogen content, hydrides 44
hydrogen generation
– examples 45–47
– fuel processing 39–50
hydrogen microcombustors 92
hydrogen production techniques, alternative 44, 45
hydrogen separation, membrane machining 25–28

i
ideal capacitor, dynamic battery model 230
indirect internal reforming 40
induction
– electroquasistatic 90
– magnetic 91
injection molding 22
integrated layout, system design 151–155
integrated microchemical system 243
– prototypical 244
integration 119
– burner 183
– cartesian 122, 123
– complex 125, 126
– energy 126
– horizontal 119, 120
– one-dimensional 122–125
– radial 123–125
– recuperative and regenerative 187, 188
– three-dimensional 125, 126
– two-dimensional 125, 126
– two reactions 186, 187
– zero-dimensional 119, 120
integration routes 114
interconnection
– ceramic plate 21
– plates 19
– polymer plate 22, 23
intermediate-fidelity model 200, 201, 203–206, 208
– ammonia line 204
– burner 205
– butane line 205
– gas composition 207
internal combustion engines 94
internal microstructure optimization 190
internal reforming, direct 40
ion motions, fuel cell types 61
ionic conductivity 62

j
jet noise, microscale heat engines 93
jetting, microreactor configuration 184
joint sealing 133

k
kinetic rate expressions 205
kinetic rates, system performance 214–216

l
laminar flow micro fuel cell 75, 76
lamination process 16
laser ablation 19
laser machining 22
laser melting
– selective 16, 17, 20
laser welding 11
layer effects, microscale heat engines 83, 84
layers
– growth 24
– multiple 124
layout, integrated 151–155
liquid flow 257
liquid fuels
– catalytic partial oxidation (CPOX) 180
– conversion 114
liquid laminar flow micro fuel cell 75, 76
liquid–liquid interface 75
lithium ion battery 228
– capacity fade analysis 229
low bandgap photodiodes 106
low-temperature co-fired ceramic tapes 19
low-temperature proton-exchange
– membrane fuel cells (PEMFC) 117
low thermal conductivity ceramics 131

m
machining
– laser 22
– mechanical precision 13, 14
– membrane 25–28
– micro electro discharge 14
– small-scale 87
macroscale process synthesis 143
magnet generators 91
magnetic induction 91
management, thermal see thermal management
manpower 2, 3
manufacturing technologies, classes 7
mass matrix 227
mass objective function 233
mass of the engine 81
mass production, techniques 15
massless particle tags, spatiotemporal distribution 259
matched emitters 102
materials
– challenges 84
– chemical microreactors 8
– construction 126–128
– micro power devices 7, 8
– microscale heat engines 85
– silicon-based 128, 129
materials selection 10, 11
– hydrogen clean-up 45
– microreactor engineering 186
materials selection chart 173
maximal energy density 146
maximum power
– demand 219
– hybrid devices 236
– output 60
mean power demand, conservative design 220
mechanical couplers, micromachined 133
mechanical precision machining 13, 14
mechanical systems, energy storage 2
melting
– laser 16, 17, 20
membrane fuel cells
– half-reactions 61
– polymer 70–74
– polymer electrolyte 72–74
membrane microreactor/microseparator 243
membrane machining, hydrogen separation 25–28
membrane microdevice, scheme 46
membrane microreactors 26
membrane production, cold rolling 25
membraneless micro fuel cells 75, 76
membranes
– free standing 125
– gas separation performance 27
– mechanical stability 27
– palladium 44
– production 25
MEMS see microelectromechanical systems
metal drill, mechanical precision machining 14
metal plates
– interconnection and assembly 19
– micromachining 13
– sealing techniques 11
metallic foams, fabrication 10–13
metallic monolith designs 10
metallic monoliths
– fabrication 9, 10
– Fecralloy alloys 9
– foils 9
metals 129, 130
– material choice 10, 11
– thermal conductivities 130
methanation reactors 44
methane, gravimetric fuel energy density 157
methane oxidation 156
methanol fuel cells 71, 72
methanol partial oxidation 45, 46
methanol steam reformer
– fabrication steps 24, 26
Metheon process, automated catalyst coating 31
MHC see moving horizon control
micro electro discharge machining (μEDM) 14
micro fuel cells 51–80
– concentration polarization 57, 58
– electrochemical potential 52, 53
– energy transduction 51
– liquid laminar flow micro fuel cell 75, 76
– membraneless 75, 76
– new concepts 74
– ohmic polarization 53–64
– operation 52–64
micro fuel processor, Samsung 46, 47
micro-generators
– portable 108, 109
– power applications 108, 109
– thermophotovoltaic 106
micro polymer electrolyte membrane fuel cells 72–74
micro power devices
– fabrication 7, 8
– structural considerations 167
micro power generation process 202
micro solid oxide fuel cells 66–70
– resistance heater 66
– silver film 67
micro stereolithography 22
– counter-flow design microstructure
– polymer heat-exchanger 22
micro-TPV power generator photocell 107
microburner, process selection 182
microchannels
– embossed 18
– fabrication 13–23
– for chip-like microreactors 23
– surface quality 14
– wet chemical etching 15
microchemical systems
– alternatives 1–3
– control relevant modeling 246–250
– feedback control 250–260
– hardware embedded model predictive control 260–265
– integrated 243
– model development 246
– prototypical 244
– transients 185
microcombustors, hydrogen 92
microdevices
– energy-related 7
– flow 247
microelectromechanical systems (MEMS) 23, 85
– devices 167
– gas turbine generator 87, 88
microfabrication 7–31
– ducts 8–10
– silicon 84–87
– techniques choice 7, 8
microflows, empirical model-based predictive control 256, 257
microhotplate fuel cell platform 70
micromachining
– ceramic plate 20
– glass 25
– mechanical couplers 133
– polymer plate 21, 22
– silicon 23–25
– steel and metal plate 13
– substrates 73
micromembrane designs, thermally isolated 127
micromilling
– machines 87
– mechanical precision machining 13
micromixers 184
– microreactor configuration 183
micropower devices
– design 175–177
– scalability 158
– structural design challenges 169–171
microreactor engineering 179–198
– methodological steps 189
– mixing 183, 184
– models 191, 192
– multiscale modeling 188
– thermal transients 251, 252
microreactors
– bypass configuration 184
– catalyst design 184, 185, 192, 193
– catalyst selection 180–183
– catalytic 243
– ceramic 130
– chemical 7
– chip-like 23
– configuration 183
– control 243–265
– , continuum models 246, 247
– internal microstructure optimization 190
– membrane 26
– optimization 191
– process and catalyst selection 180–183
– suspended 108
– tunable 185
microscale engines 81–98
– examples 87–96
microscale fuel vaporizers 116
microscale heat engines 81–98
– bearings 88, 89
– boundary layer effects 82–84
– challenges 82–87
– examples 87–96
– fabrication 84
– heat transfer effects 84
– jet noise 93
– noise level 92
– physical challenges 82
– precision reduction 85
– rotodynamics 88, 89
– silicon microfabrication 84–87
– turbocharger 89, 90
μSOFC 69, 168
microstructure cube, CAD model 17
microstructure optimization, internal 190
microstructured plates, alignment 19
microstructured reactors, fabrication 13–23
microstructures, ceramic 20
microstructuring, glass 25
microsystems, thermal transients 251, 252
microthermophotovoltaic power generator, prototype 106
microturbine devices 174
microvaporizer-reformer, silicon-based 46
milling, micro machines 87
mini fluidic ducts, minichannels 8–10
minichannels, fabrication 8–10
minimal microreactor engineering models 191, 192
mission fuel energy density 218
MIT MEMS gas turbine generator 87, 88
MIT self-sustaining engine 92
mixed reactant mode 74
mixing/heating unit 243
model
– batteries 230
– capacitor 237
– chemical 189
– chemistry 189
– continuously stirred tank reactor 191
– intermediate-fidelity 200, 203–206
– microkinetic 189
– microreactor engineering 191, 192
– optimal design and operation 200–208
– pseudo-2D 190
– steady-state 151
– transport 190
model development
– continuum conservative equations 247
– control problem 250, 254
– control profile 258
– eigenfunctions 251
– microchemical systems 246
– optimal control profile 258
– spatial eigenfunctions 251
– temperature distribution 252
– temperature profile 254
model formulation 203
model predictive control (MPC) 258, 259
– empirical 256, 257
– hardware embedded 260–265
– microchemical systems 260–265
– microflows 256, 257
model reduction, microreactor control 247, 248
modeling
– control relevant 246–250
– hierarchical framework 188, 189
– microreactor engineering 179–198
mold shape deposition manufacturing (SDM) process 93
molding
– injection 22
– slurry-based 20
monoliths
– ceramic 8, 9
– minichannels 8–10
Motorola processor, embedded MPC 260–263
moving horizon control (MHC) 258
MPC see model predictive control
multifunctionality 186
multiple functional layers 124
multiscale modeling framework, hierarchical 188, 189

n
Nafion 72
natural convection 105
Nernst equation 57, 58
Nernst potential 204
nickel-based alloys 12
nickel film, micro solid oxide fuel cells 67
noble metal catalysts 186
nomenclature 163
nominal power demand design,
 performance 219, 220
nominal power demand effect 213

o
ohmic polarization, micro fuel cells 53–64
operating temperature 123, 211
operation
– micro fuel cells 52–64
– models 200–208
– steady-state 199–222
OPEX 7
optimal design 199–222
– case study 202, 203, 210, 211, 218, 219
– models 200–208
– nominal power demand 208–216
– operating cost 217
– paradigm 200
– variable power demand 216–218
optimization
– dynamic systems 226–228
– hybrid devices 226
– hybrid power system 228, 229
– microreactor engineering 188
– microstructure 190
– single microreactor 191
– superstructure 191
organic support tapes 130
osmosis effects 25
overall energy conversion efficiency 146
overpotentials 53
oxidation
– partial 42
– partial, methanol 45, 46
oxidation reactor 181
oxide fuel cells, solid 64–69

p
packaging strategies, thermal management 131–133
palladium membranes 25, 44
– silicon component 27
palladium silver film, methanol partial
oxidation 45
partial oxidation 160
– hydrogen generation 42
– methanol 45, 46
– propane 157
PCFC see proton ceramic fuel cell
PEM see proton exchange membrane, see
 polymer electrolyte membrane
PEMFC see proton exchange membrane fuel
cells
perfl uorousulfonic acid membrane 70
performance curve 59
permanent magnet generators 91
PFR see plug-flow reactor
photocell materials 101
photodiodes, low bandgap 106
photolithography, microscale heat engines 85
physical vapor deposition, coating
 techniques 30
PID see proportional-integral-derivative
piezoelectric energy harvester 168
piezoelectric fatigue 175
piezoelectric films, external combustion 95
piezoelectric systems, energy storage 2
plate heat-exchanger
– fabrication 10
– materials 11
plates
– ceramic 20
– interconnection and assembly 19, 21–23
– micromachining 21, 22
platinum films, membrane microreactor 26
plug-flow reactor (PFR) 203
POD see proper orthogonal decomposition
POD-based boundary control 251, 252
polarization
– activation 54–57
– concentration 57, 58
– ohmic 53–64
polarization resistance 63
polymer bonding 22, 23
polymer electrolyte membrane (PEM) fuel cells 70–74, 156
– half-reactions 61
– lifetimes 71
– micro 72–74
polymer foams 10
polymer heat-exchanger, micro stereolithography 22
polymer plates
– interconnection and assembly 22, 23
– micromachining 21, 22
polymers, injection molding 22
polyvinylidene fluoride foils 23
porous alumina layer 28
porous anodized alumina wafer 185
portable fuels reforming 117
portable power generators 179, 183
– broadband emitters 101
– components 115
– design 144
– fully closed systems 103
– micro-generator 108, 109
– microthermophotovoltaic 106
– performance 102
– quaternary semiconductors 101
– silicon photocells 101
– ternary semiconductors 101
– thermal management 113
– thermophotovoltaic 100
portable TPV power generators 100, 101
post-optimal sensitivity analysis 214
powder sintering 19
power, portable 183
power demand
– nominal, design 208–216, 219, 220
– variable 216–218
power density 82
power generation devices, portable see portable power generators
power generator photocell, micro-TPV 107
power plants 81
– microscale heat engines 81
power production, components 116, 117
power system optimization, hybrid 228, 229
power transfer, wireless 3
practical device performance 58–62
precision machining, mechanical 13, 14
predictive control
– microchemical systems 260–265
– microflows 256, 257
– model 258, 259
preferential oxidation reactor (PROX) 181
premixed C3H8/air mixtures 182
process design
– objectives, constraints and alternatives 144–149
– selection 143–166
process integration 119, 121
process intensification 119, 126, 186
process layout 153
process performance, effect of scale 158, 159
process synthesis 150
profiling results 262
programmable load 232
programming design, two-stage 220
propane
– partial oxidation 157, 158
– steam reforming 157, 158
propane, gas-phase combustion 89
proper orthogonal decomposition (POD) 247
– receding horizon control 253, 254
proportional-integral-derivative (PID) 260
proton ceramic fuel cell (PCFC) 149
proton exchange membrane (PEM) 70, 143
PROX see preferential oxidation reactor
pseudo-2D models 190
pulsed-power design specifications 236
pulsed-power load permutations 233
punching 17
pyrolysis
– carbon management 43
– hydrogen generation 43
R
Rankine engines 93, 94
reactions
– integration 186, 187
– reforming 41
reactive ion etching
– methanol steam reformer 24
– micro solid oxide fuel cells 66
reactors
– catalyst wall 186
– configurations, novel 183
– fabrication 10, 13–23
– materials 11
– methanation 44
– plug-flow 203
receding horizon control (RHC) 258
– using POD 253, 254
recuperative heat integration 187, 188
reduced chemical models 189
reduced reaction mechanisms 190
reducing activation polarization 56
reforming
– ammonia 43
– autothermal 42, 43
– fuels 117
– hydrogen generation 40
– internal 40
– portable 117
– reactions 41
– silicon-based 46
– steam 40–42
regenerative heat integration 187, 188
residual film stresses 171
resistance
– area-specific 59
– ohmic 53
resource allocation 214–216
reverse flow 187
reversible fuel cells, theoretical energy density 2
Reynolds number 256
– microreactor configuration 183
– microscale engines 83
RHC see receding horizon control
rolling 18
rotor
– high-speed 88
– silicon nitride 93
– turbocharger 90
safety
– microreactor engineering 185, 186
– system design 147, 148
Samsung micro fuel processor 46, 47
scaling 180
– process performance 158, 159
– thermophotovoltaic systems 103, 104, 106
SDM see mold shape deposition
manufacturing
sealing 11
– compression 130–132
– micro power devices 7, 8
– solder-joint 133
seals, adhesive and brazed 133
secondary fuel 159
selection alternatives 143–166
selective emitters 102
selective laser melting 16, 17, 20
self-sustaining engines 91–93
sensitivity analysis, post-optimal 214
silicon 109
– single crystal 86
– silicon-based materials 128, 129
– silicon-based microvaporizer-reformer 46
– silicon micromachining 23–25
– Teflon capillaries 25
– silicon nitride rotor 93
– silicon wafers 47, 86
– silicon walls, flexible 94
– silver membranes 25
simulation
– COMSOL (femlab) 257, 258
– results 259, 260
– microreactor control 254–256
– steady-state 206–208
– simultaneous optimization, dynamic systems 226–228
– single chamber fuel cells 74
– single crystal silicon 86, 128
– single integrated component 120
sintering 12
– powder 19
SISO see standard single-input single-output
SLM see selective laser melting
slurry-based molding 20
slurry viscosity 29
small-scale conventional machining 87
μRE see microreactor, suspended
μRE TPV power generation 109
SOC see state of charge
SOFC see solid oxide fuel cells
sol–gel methods, slurry preparation 29
solar cell technology 99
solder-joint sealing 133
solid oxide fuel cells (SOFC) 64–70, 117, 204
– cathode 56
– electrochemically active sites 56
– electrolyte 55
– open-circuit potential 204
– zirconia 55, 65
specific energy 144
spool efficiency 90
stacking 122
stainless steel 10
standard single-input single-output (SISO) controllers 260
Stanford μSOFC 69
state of charge (SOC) 229
steady-state model 151
steady-state operation 199–222
– nominal power demand 208–216
– sensitivity to uncertain kinetic rates 214–216
– variable power demand 216–218
steady-state simulations 206–208
steam reformers
– fabrication steps 24, 26
steam reforming 40–42, 180
– propane 157, 158
steel, material choice 10, 11
steel plate
– interconnection and assembly 19
– micromachining 13
– sealing techniques 11
stereolithography, micro 22
stochastic programming, two-stage 217
stress-driven failures 171
stress drivers, structural design 169
sulfur contents 114
superheating, thermal management 116
superstructure 150, 151
– general reactor network 192
– system design 151
surface pre-treatment 28
surface reaction mechanisms 189
SW see hardware/software
system components, thermophotovoltaic 100–109
system design 141–270
– alternatives 155–158
– case studies 155
– decisions 148–150
– dissipation 147, 148
– layout effects 159–163
– methodologies 150–155
– numbering up 179
– scale-out 179
– temperatures 147, 148
– weight 236
system integration 113–142
system performance
– kinetic rates 216
– temperature effect 212
tapes
– low-temperature co-fired ceramic 19
– organic 130
TE see thermoelectric
temperature effect 212
thermal barriers 129
thermal boundary layers 84
thermal conductivities of metals 130
thermal integration, combustion 117–119
thermal isolation 108
thermal management 113–142
– cartesian integration 122, 123
– common construction materials 128
– complex integration 125, 126
– component processes 113–119
– dimensions 119–126
– fuels properties 116
– integration schemes 119–126
– metal sheets 129
– methods 119–126
– packaging strategies 131–133
– power production components 116, 117
– radial integration 123–125
– system design 151–155
– thermophotovoltaic systems 100–103
thermal mass, single chamber fuel cells 75
thermal spreaders 125
thermal switch, external combustion 95
thermally isolated micromembrane designs 127
thermoelectric (TE) devices 99, 182
– burner integration 183
thermoelectric conversion 3
thermomechanical design 171, 176
thermophotovoltaic systems
– components 100–109
– emitters 101, 102
– examples 106
– mean free path 105
– optics 104
– portable 108, 109
– power generator 106
– scaling 103, 104
– surface-to-volume ratio 105
– thermal management 102, 103
thermophotovoltaics 99–112
thin films
– ceramic YSZ 170
– fuel cell production 64
– micro solid oxide fuel cells 67, 68
– piezoelectric energy harvester 168
– thermal management 129
titanium films, membrane microreactor 26
toxicity, stored and produced chemicals 147
TPV see thermophotovoltaics
transport correlations 190
transport models 247
– effective 190
triple phase boundaries 63
tubular architecture with radial layering 123
tubular microcombustor 107
turbocharger rotor 90
two-stage programming design
– performance 220
– stochastic 217

u
uncoupled process components 154
unit-operations paradigm 200
UV-Nd:YAG lasers 22

v
vacuum packaging, thermophotovoltaic systems 105
vaporization 116
variable power demand 216–218
volumetric energy density 144

w
wafers
– alumina 185
– etched compressors 86
– silicon 47, 86
– temperature profile control 252, 253
wash coating
– continuous 31
– slurry preparation 29
water-gas shift (WGS) reaction 43, 185
weighted residual method (WRM) 247
welding
– electron beam 11, 12
– laser 11
– polymer bonding 22
wet chemical etching 15, 16
WGS see water-gas shift
wireless power transfer 3
WRM see weighted residual method
WSU heat engine 95

y
YSZ electrolyte 68
YSZ thin film, ceramic 170

z
zirconia solid oxide fuel cells 55