Contents

Preface XIX

Foreword XXI
by Robert W. Cahn

Motto XXIII

List of Contributors XXV

1 Introduction 1
Wolfgang Pfeiler

1.1 The Importance of Alloys at the Beginning of the Third Millennium 1
1.2 Historical Development 5
1.2.1 Historical Perspective 5
1.2.2 The Development of Modern Alloy Science 9
1.3 Atom Kinetics 12
1.4 The Structure of this Book 13

References 18

2 Crystal Structure and Chemical Bonding 19
Yuri Grin, Ulrich Schwarz, and Walter Steurer

2.1 Introduction 19
2.2 Factors Governing Formation, Composition and Crystal Structure of Intermetallic Phases 20
2.2.1 Mappings of Crystal Structure Types 21
2.3 Models of Chemical Bonding in Intermetallic Phases 25
2.3.1 Models Based on the Valence (or Total) Electron Numbers 25
2.3.2 Quantum Mechanical Models for Metallic Structures 29
2.3.3 Electronic Closed-Shell Configurations and Two-Center Two-Electron Bonds in Intermetallic Compounds 31
2.3.3.1 Zintl–Klemm Approach 32
3 Solidification and Grown-in Defects 63

Thierry Duffar

3.1 Introduction: the Solid–Liquid Interface 63
3.1.1 Structure of the Solid–Liquid Interface 63
3.1.2 Kinetics of the Solid–Liquid Interface 65
3.1.3 Chemistry of the Solid–Liquid Interface: the Segregation Problem 67
3.1.4 Temperature of the Solid–Liquid Interface 69
3.2 Solidification Structures 70
3.2.1 The Interface Stability and Cell Periodicity 71
3.2.2 Dendrites 74
3.2.2.1 Different Types of Dendrites 75
3.2.2.2 Kinetics of Columnar Dendrites 78
3.2.2.3 Kinetics of Equi-axed Dendrites 81
3.2.2.4 Characteristic Dimensions of the Dendrite 83
3.2.2.5 Microsegregation 85
3.2.3 Rapid Solidification 86
3.2.3.1 Absolute Stability and Diffusionless Solidification 86
3.2.3.2 Nonequilibrium Phase Diagrams 87
3.2.3.3 Structure of the Rapidly Solidified Phase 87
3.2.4 Eutectic Structures 90
3.2.4.1 Size of the Eutectic Structure 90
3.3 Defects in Single and Polycrystals 93
3.3.1 Defects in Single Crystals 94
4 Lattice Statics and Lattice Dynamics 119
Veronique Pierron-Bohnes and Tarik Mehaddene

4.1 Introduction: The Binding and Atomic Interaction Energies 119
4.2 Elasticity of Crystalline Lattices 124
4.2.1 Linear Elasticity 125
4.2.2 Elastic Constants 125
4.2.3 Cases of Cubic and Tetragonal Lattices 127
4.2.4 Usual Elastic Moduli 128
4.2.5 Link with Sound Propagation 130
4.3 Lattice Dynamics and Thermal Properties of Alloys 132
4.3.1 Normal Modes of Vibration in the Harmonic Approximation 133
4.3.1.1 Classical Theory 133
4.3.1.2 Diatomic Linear Chain 136
4.3.1.3 Quantum Theory 138
4.3.1.4 Phonon Density of States 141
4.3.1.5 Lattice Specific Heat 143
4.3.1.6 Debye’s Model 144
4.3.1.7 Elastic Waves in Cubic Crystals 146
4.3.1.8 Vibrational Entropy 147
4.4 Beyond the Harmonic Approximation 149
4.4.1 Thermal Expansion 150
4.4.2 Thermal Conductivity 151
4.4.3 Soft Phonon Modes and Structural Phase Transition 153
4.5 Experimental Investigation of the Normal Modes of Vibration 156
4.5.1 Raman Spectroscopy 156
4.5.2 Inelastic Neutron Scattering 157
4.6 Phonon Spectra and Migration Energy 160
4.7 Outlook 165
References 168

5 Point Defects, Atom Jumps, and Diffusion 173
Wolfgang Püschl, Hiroshi Numakura, and Wolfgang Pfeiler

5.1 Point Defects 173
5.1.1 A Brief Overview 173
5.1.1.1 Types of Point Defects 173
5.1.1.2 Formation of Equilibrium and Nonequilibrium Defects 175
5.1.1.3 Mobility 178
5.1.1.4 Experimental Techniques 179
5.1.2 Point Defects in Pure Metals and Dilute Alloys 187
5.1.2.1 Vacancies 187
5.1.2.2 Self-Interstitial Atoms 193
5.1.2.3 Solute Atoms 195
5.1.3 Point Defects in Ordered Alloys 197
5.1.3.1 Point Defects and Properties of the Material 197
5.1.3.2 Statistical Thermodynamics 199
5.1.3.3 Equilibrium Concentrations – Examples 208
5.1.3.4 Abundant Vacancies in some Intermetallic Compounds 213
5.2 Defect Migration: Microscopic Diffusion 217
5.2.1 The Single Atom Jump 217
5.2.1.1 Transition State Theory 217
5.2.1.2 Alternative Methods 221
5.2.2 Solid Solutions 222
5.2.2.1 Random Walk 222
5.2.2.2 Correlated Walk – the Interaction of Defect and Atom 228
5.2.2.3 Diffusion Walk with Chemical Driving Force 234
5.2.2.4 Diffusion Walk in an Inhomogeneous Crystal 237
5.2.3 Atom Migration in Ordered Alloys 238
5.2.3.1 Experimental Approach to Atom Kinetics in Ordered Alloys 238
5.2.3.2 Jumps Within and Between Sublattices 239
5.2.3.3 Jump Cycles and Cooperative Atom Jumps 246
5.3 Statistical Methods: from Single Jump to Configuration Changes 252
5.3.1 Master Equation Method 253
5.3.2 Continuum Approaches to Microscopic Diffusion and their Interrelationship with Atom Jump Statistics 253
5.3.3 Path Probability Method 255
5.3.4 Monte Carlo Simulation Method 255
5.4 Macroscopic Diffusion 256
5.4.1 Formal Description 256
5.4.1.1 Fick's Laws 256
5.4.1.2 Nonreciprocal Diffusion, the Kirkendall Effect 259
5.4.1.3 Nonideal Solutions 261
5.4.2 Phase Transformations as Diffusion Phenomena 263
5.4.2.1 Spinodal Decomposition 263
5.4.2.2 Nucleation, Growth, Coarsening 264
5.4.3 Enhanced Diffusion Paths 265
5.4.3.1 Dislocation-Core Diffusion 266
5.4.3.2 Grain-Boundary Diffusion 268
5.4.3.3 Diffusion along Interfaces and Surfaces 270
5.5 Outlook 272
References 274
6 Dislocations and Mechanical Properties 281

Daniel Caillard

6.1 Introduction 281
6.2 Thermally Activated Mechanisms 283
6.2.1 Introduction to Thermal Activation 283
6.2.2 Interactions with Solute Atoms 285
6.2.2.1 General Aspects 285
6.2.2.2 Low Temperatures (Domain 2, Interaction with Fixed Solute Atoms) 286
6.2.2.3 Intermediate Temperatures (Domain 3, Stress Instabilities) 289
6.2.2.4 High Temperatures (Domain 4, Diffusion-Controlled Glide) 291
6.2.3 Forest Mechanism 292
6.2.4 Peierls-Type Friction Forces 293
6.2.4.1 The Kink-Pair Mechanism 293
6.2.4.2 Locking–Unlocking Mechanism 295
6.2.4.3 Transition between Kink-Pair and Locking–Unlocking Mechanisms 297
6.2.4.4 Observations of Peierls-Type Mechanisms 298
6.2.5 Cross-Slip in fcc Metals and Alloys 305
6.2.5.1 Elastic Calculations 305
6.2.5.2 Atomistic Calculations 307
6.2.5.3 Experimental Results 307
6.2.6 Dislocation Climb 309
6.2.6.1 Emission of Vacancies at Jogs 309
6.2.6.2 Diffusion of Vacancies from Jogs 310
6.2.6.3 Jog Density and Jog-Pair Mechanism 311
6.2.6.4 Effect of Over- (Under-) Saturations of Vacancies: Chemical Force 313
6.2.6.5 Stress Dependence of the Dislocation Climb Velocity 314
6.2.6.6 Experimental Results 314
6.2.7 Conclusions on Thermally Activated Mechanisms 316
6.3 Hardening and Recovery 316
6.3.1 Dislocation Multiplication versus Exhaustion 317
6.3.1.1 Dislocation Sources 318
6.3.1.2 Dislocation Exhaustion and Annihilation 320
6.3.2 Dislocation–Dislocation Interaction and Internal Stress: the Taylor Law 321
6.3.3 Hardening Stages in fcc Metals and Alloys 323
6.3.3.1 Stage II (Linear Hardening) 324
6.3.3.2 Stage III 329
6.3.3.3 Stage IV 330
6.3.3.4 Strain-Hardening in Intermetallic Alloys 330
6.4 Complex Behavior 330
6.4.1 Yield Stress Anomalies 330
6.4.1.1 Dynamic Strain Aging 331
6.4.1.2 Cross-Slip Locking 332
6.4.2 Fatigue 333
6.4.2.1 Microstructure of Fatigued Metals and Alloys 334
6.4.2.2 Comparison with Stages II and III of Monotonic Strain Hardening 335
6.4.2.3 Intrusions, Extrusions and Fracture 335
6.4.2.4 Conclusions 336
6.4.3 Strength of Nanocrystalline Alloys and Thin Layers 336
6.4.3.1 The Hall–Petch Law (Grain Size $D \geq 20$ nm) 337
6.4.3.2 Hall–Petch Law Breakdown (Grain Size $D \leq 20$ nm) 337
6.4.4 Fracture 338
6.4.5 Quasicrystals 339
6.5 Outlook 342
References 342

7 Phase Equilibria and Phase Transformations 347
Brent Fultz and Jeffrey J. Hoyt

7.1 Alloy Phase Diagrams 347
7.1.1 Solid Solutions 347
7.1.2 Free Energy and the Lever Rule 351
7.1.3 Common Tangent Construction 353
7.1.4 Unmixing and Continuous Solid Solubility Phase Diagrams 354
7.1.5 Eutectic and Peritectic Phase Diagrams 356
7.1.6 More Complex Phase Diagrams 357
7.1.7 Atomic Ordering 359
7.1.8 Beyond Simple Models 362
7.1.9 Entropy of Configurations 363
7.1.10 Principles of Phonon Entropy 365
7.1.11 Trends of Phonon Entropy 367
7.1.12 Phonon Entropy at Elevated Temperatures 369
7.2 Kinetics and the Approach to Equilibrium 371
7.2.1 Suppressed Diffusion in the Solid (Nonequilibrium Compositions) 371
7.2.2 Nucleation Kinetics 373
7.2.3 Suppressed Diffusion in the Liquid (Glasses) 374
7.2.4 Suppressed Diffusion in a Solid Phase (Solid-State Amorphization) 375
7.2.5 Combined Reactions 376
7.2.6 Statistical Kinetics of Phase Transformations 377
7.2.7 Kinetic Pair Approximation 378
7.2.8 Equilibrium State of Order 380
7.2.9 Kinetic Paths 380
7.3 Nucleation and Growth Transformations 382
7.3.1 Definitions 382
8 Kinetics in Nonequilibrium Alloys 423
Pascal Bellon and Georges Martin

8.1 Relaxation of Nonequilibrium Alloys 424
8.1.1 Coherent Precipitation: Nothing but Solid-State Diffusion 425
8.1.2 Cluster Dynamics, Nucleation Theory, Diffusion Equations: Three Tools for Describing Kinetic Pathways 426
8.1.3 Cluster Dynamics 427
8.1.3.1 Dilute Alloy at Equilibrium 427
8.1.3.2 Fluctuations in the Gas of Clusters at Equilibrium 429
8.1.3.3 Relaxation of a Nonequilibrium Cluster Gas 429
8.1.4 Classical Nucleation Theory 432
8.1.4.1 Summary of CNT 432
8.1.4.2 Source of Fluctuations Consistent with CNT 433
8.1.4.3 A First Application 435
8.1.5 Kinetics of Concentration Fields 436
8.1.6 Conclusion 438
8.2 Driven Alloys 438
8.2.1 Examples of Driven Alloys 439
8.2.1.1 Alloys Subjected to Sustained Irradiation 439
8.2.1.2 Alloys Subjected to Sustained Plastic Deformation 447
8.2.1.3 Alloys Subjected to Sustained Electrochemical Exchanges 449
8.2.2 Identification of the Relevant Control Parameters: Toward a Dynamical Equilibrium Phase Diagram 450
8.2.3 Theoretical Approaches and Simulation Techniques 454
8.2.3.1 Molecular Dynamics Simulations 455
8.2.3.2 Microscopic Master Equation 456
8.2.3.3 Kinetic Monte Carlo Simulations 458
8.2.3.4 Kinetics of Concentration Fields under Irradiation 460
8.2.3.5 Nucleation Theory under Irradiation 466
8.2.4 Self-Organization in Driven Alloys: Role of Length Scales of the
External Forcing 468
8.2.4.1 Compositional Patterning under Irradiation 469
8.2.4.2 Patterning of Chemical Order under Irradiation 478
8.2.4.3 Compositional Patterning under Plastic Deformation 480
8.2.5 Practical Applications and Extensions 481
8.2.5.1 Tribochemical Reactions 481
8.2.5.2 Pharmaceutical Compounds Synthesized by Mechanical
Activation 483
8.3 Outlook 484
References 484

9 Change of Alloy Properties under Dimensional Restrictions 491
Hirotaro Mori and Jung-Goo Lee
9.1 Introduction 491
9.2 Instrumentation for in-situ Observation of Phase Transformation of
Nanometer-Sized Alloy Particles 492
9.3 Depression of the Eutectic Temperature and its Relevant
Phenomena 494
9.3.1 Atomic Diffusivity in Nanometer-Sized Particles 494
9.3.2 Eutectic Temperature in Nanometer-Sized Alloy Particles 496
9.3.3 Structural Instability 500
9.3.4 Thermodynamic Discussion 503
9.3.4.1 Gibbs Free Energy in Nanometer-Sized Alloy Systems 503
9.3.4.2 Result of Calculations 505
9.4 Solid/Liquid Two-Phase Microstructure 508
9.4.1 Solid–Liquid Phase Transition 508
9.4.2 Two-Phase Microstructure 514
9.5 Solid Solubility in Nanometer-Sized Alloy Particles 518
9.6 Summary and Future Perspectives 521
References 522

10 Statistical Thermodynamics and Model Calculations 525
Tetsuo Mohri
10.1 Introduction 525
10.2 Statistical Thermodynamics on a Discrete Lattice 527
10.2.1 Description of Atomic Configuration 527
10.2.2 Internal Energy 534
10.2.3 Entropy and Cluster Variation Method 536
12.4.4 Application: Spinodal Decomposition 693
12.4.5 Cahn–Allen Model 694
12.4.5.1 Kinetics 695
12.4.6 Generalized Phase Field Models 696
12.4.6.1 Key Features of Phase Field Models 696
12.4.6.2 Precipitation of an Ordered Phase 697
12.4.6.3 Grain Growth in Polycrystals 698
12.4.6.4 Solidification 700
12.4.7 Other Topics 700
12.4.7.1 Anisotropy in Interfacial Energy 700
12.4.7.2 Elastic Strain Energy 701
12.5 Outlook 702
Appendix 702
References 703

13 High-Resolution Experimental Methods 707

13.1 High-Resolution Scattering Methods and Time-Resolved Diffraction 707
Bogdan Sepiol and Karl F. Ludwig

13.1.2 Magnetic Scattering 710
13.1.2.1 Magnetic Neutron Scattering 710
13.1.2.2 Magnetic X-Ray Scattering 715
13.1.3 Spectroscopy 721
13.1.3.1 Coherent Time-Resolved X-Ray Scattering 722
13.1.3.1.1 Homodyne X-Ray Studies of Equilibrium Fluctuation Dynamics 723
13.1.3.1.2 Heterodyne X-Ray Studies of Equilibrium Fluctuation Dynamics 725
13.1.3.1.3 Studies of Critical Fluctuations with Microbeams 726
13.1.3.1.4 Coherent X-Ray Studies of the Kinetics of Nonequilibrium Systems 726
13.1.3.1.5 Coherent X-Ray Studies of Microscopic Reversibility 729
13.1.3.2 Phonon Excitations 729
13.1.3.2.1 Inelastic X-Ray Scattering 730
13.1.3.2.2 Nuclear Inelastic Scattering 732
13.1.3.3 Quasielastic Scattering: Diffusion 733
13.1.3.3.1 Quasielastic Methods: Mössbauer Spectroscopy and Neutron Scattering 738
13.1.3.3.2 Nuclear Resonant Scattering of Synchrotron Radiation 741
13.1.3.3.3 Pure Metals and Dilute Alloys 743
13.1.3.3.4 Ordered Alloys 744
13.1.3.5 Amorphous Materials 745
13.1.4 Time-Resolved Scattering 749
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.4.1 Technical Capabilities</td>
</tr>
<tr>
<td>13.1.4.2 Time-Resolved Studies – Examples</td>
</tr>
<tr>
<td>13.1.5 Diffuse Scattering from Disordered Alloys</td>
</tr>
<tr>
<td>13.1.5.1 Metallic Glasses and Liquids</td>
</tr>
<tr>
<td>13.1.5.2 Diffuse Scattering from Disordered Crystalline Alloys</td>
</tr>
<tr>
<td>13.1.6 Surface Scattering – Atomic Segregation and Ordering near Surfaces</td>
</tr>
<tr>
<td>13.1.7 Scattering from Quasicrystals</td>
</tr>
<tr>
<td>13.1.8 Outlook</td>
</tr>
</tbody>
</table>

References 765

13.2 High-Resolution Microscopy 774

Guido Schmitz and James M. Howe

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.1 Surface Analysis by Scanning Probe Microscopy</td>
</tr>
<tr>
<td>13.2.1.1 Functional Principle of Scanning Tunneling and Atomic Force Microscopy</td>
</tr>
<tr>
<td>13.2.1.2 Modes of Measurement in AFM</td>
</tr>
<tr>
<td>13.2.1.3 Cantilever Design for the AFM</td>
</tr>
<tr>
<td>13.2.1.4 Exemplary Studies by Scanning Probe Microscopy</td>
</tr>
<tr>
<td>13.2.1.4.1 Chemical Contrast by STM and Surface Ordering</td>
</tr>
<tr>
<td>13.2.1.4.2 Microstructure Characterization and Surface Topology by AFM</td>
</tr>
<tr>
<td>13.2.1.4.3 Imaging of Nanomagnets by Magnetic Force Microscopy</td>
</tr>
<tr>
<td>13.2.2 High-Resolution Transmission Electron Microscopy and Related Techniques</td>
</tr>
<tr>
<td>13.2.2.1 Principles of Image Formation in and Practical Aspects of High-Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>13.2.2.1.1 Principles of Image Formation</td>
</tr>
<tr>
<td>13.2.2.1.2 Practical Aspects of HRTEM</td>
</tr>
<tr>
<td>13.2.2.2 In-Situ Hot-Stage High-Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>13.2.2.3 Examples of HRTEM Studies of Dislocation and Interphase Boundaries</td>
</tr>
<tr>
<td>13.2.2.3.1 Disclinations in Mechanically Milled Fe Powder</td>
</tr>
<tr>
<td>13.2.2.3.2 Interphase Boundaries in Metal Alloys</td>
</tr>
<tr>
<td>13.2.2.3.3 Diffuse Interface in Cu–Au</td>
</tr>
<tr>
<td>13.2.2.3.4 Partly Coherent Interfaces in Al–Cu</td>
</tr>
<tr>
<td>13.2.2.3.5 Incoherent Interfaces in Ti–Al</td>
</tr>
<tr>
<td>13.2.3 Local Analysis by Atom Probe Tomography</td>
</tr>
<tr>
<td>13.2.3.1 The Functional Principle of Atom Probe Tomography</td>
</tr>
<tr>
<td>13.2.3.2 Two-Dimensional Single-Ion Detector Systems</td>
</tr>
<tr>
<td>13.2.3.3 Ion Trajectories and Image Magnification</td>
</tr>
<tr>
<td>13.2.3.4 Tomographic Reconstruction</td>
</tr>
<tr>
<td>13.2.3.5 Accuracy of the Reconstruction</td>
</tr>
<tr>
<td>13.2.3.6 Specimen Preparation</td>
</tr>
<tr>
<td>13.2.3.7 Examples of Studies by Atom Probe Tomography</td>
</tr>
</tbody>
</table>
13.2.3.7.1 Decomposition in Supersaturated Alloys 837
13.2.3.7.2 Nucleation of the First Product Phase 843
13.2.3.7.3 Diffusion in Nanocrystalline Thin Films 847
13.2.3.7.4 Thermal Stability of GMR Sensor Layers 850
13.2.4 Future Development and Outlook 853

References 857

14 Materials and Process Design 861

14.1 Soft and Hard Magnets 861
Roland Grössinger

14.1.1 What do “Soft” and “Hard” Magnetic Mean? 861
14.1.1.1 Intrinsic Properties Determining the Hysteresis Loop (Anisotropy, Magnetostriction) 863
14.1.1.2 Extrinsic Properties – Microstructure 864
14.1.2 Soft Magnetic Materials 865
14.1.2.1 Pure Fe and Fe–Si 867
14.1.2.2 Ni–Fe Alloys 868
14.1.2.3 Soft Magnetic Ferrites 869
14.1.2.4 Amorphous Materials 871
14.1.2.5 Nanocrystalline Materials 872
14.1.3 Hard Magnetic Materials 873
14.1.3.1 AlNiCo 876
14.1.3.2 Ferrites 877
14.1.3.3 Sm–Co 878
14.1.3.4 Nd–Fe–B 879
14.1.3.5 Nanocrystalline Materials 880
14.1.3.6 Industrial Nanocrystalline Hard Magnetic Materials 882
14.1.4 Outlook 883

References 883

14.2 Invar Alloys 885
Peter Mohn

14.2.1 Introduction and General Remarks 885
14.2.2 Spontaneous Volume Magnetostricition 888
14.2.3 The Modeling of Invar Properties 889
14.2.4 A Microscopic Model 893
14.2.5 Outlook 894

References 895

14.3 Magnetic Media 895
Laurent Ranno

14.3.1 Data Storage 895
14.3.1.1 Information Storage 895