Introduction to Implant Dentistry

Introduction

The successful long-term clinical use of dental endosseous implants requires some type of biologic attachment of implants to bone. In 1969 Brånemark et al. defined this process as osseointegration (Brånemark et al. 1977). This process has been subsequently studied by numerous researchers around the world and has come to identify the functional stability of the endosseous implant/bone connection (Davies 1998). The histology and biomechanics of osseointegration are beyond the scope of this text; the reader is referred to other sources for further information and increased understanding relative to osseointegration.

Treatment of edentulous or partially edentulous patients with endosseous implants requires a multidisciplinary team approach. This team generally consists of an implant surgeon, restorative dentist, and dental laboratory technician. In some cases, the surgical and restorative portions of the treatments are accomplished by the same clinician. Implant dentistry is a restorative driven service and the ultimate success of implant treatment will be measured, at least in part, by the aesthetic and functional results as perceived by patients. Prosthesis design, whether a single implant-retained crown or full-arch prosthesis, will have a major impact on the number, size, and position of the implant(s) that will be used in a specific treatment plan. Treatment planning for implant dentistry must therefore begin with the restorative phase prior to considering the surgical phases of treatment.

Brånemark and co-workers introduced a two-stage surgical protocol to North America in 1982 (Zarb 1993). Numerous long-term clinical studies have proven the efficacy of titanium endosseous implants (Adell et al. 1981; Fréberg et al. 1991; Sullivan et al. 2002; Testori et al. 2002; Ostman et al. 2012; Nicoli et al. 2017). Most clinicians consider osseointegration of dental implants to be predictable and highly effective in solving clinical problems associated with missing teeth (Davarpah et al. 2002). Alzarea (2016) considered peri-implant soft tissue health as a requisite for successful implant treatment. He evaluated the impact on quality of life of patients treated with dental implants. Alzarea reported that similar inflammatory conditions were present around natural teeth and implant prostheses as suggested by results of mean plaque index, mean bleeding on probing, mean pocket depth, and mean probing attachment level. He reported that this reinforced the importance of periodontal health maintenance prior to and after placement of dental implants. Alzarea concluded that implant prostheses had a significant influence on patients' oral health related quality of life (as depicted by Oral Health Impacts Profile [OHIP]-14); he also concluded that patients’ perceptions and expectations may guide clinicians in providing optimal implant services for their patients.

Purpose of Textbook

The purpose of this textbook is to provide clinicians and dental laboratory technicians with a step-by-step approach to the treatment of certain types of edentulous and partially edentulous patients with dental implants. Six types of patient treatments, with multiple implant loading protocols, have been featured. The treatments will be illustrated with emphasis on diagnosis and treatment planning, restorative dentist/implant surgeon communication, laboratory work orders, and restorative treatments, on an appointment-by-appointment basis. The requisite implant components (restorative and laboratory) will be identified for each specific appointment. Laboratory procedures and work orders will also be included.

The biologic and theoretical aspects of osseointegration will not be reviewed. Osseointegration will be defined as clinically immobile implants; absence of peri-implant radiolucencies as assessed by undistorted, accurately positioned radiographs; mean vertical bone loss less than 0.2 mm annually after the first year of occlusal function; and absence of pain, discomfort, and infection (Smith and
Clinical verification of osseointegration can sometimes be difficult. Some implants that have been considered successful at the second surgical or impression appointments have subsequently failed prior to or after completion of the prosthetic portion of treatment. Zarb and Schmitt (1990) reported that “late failures” occurred 3.3% of the time in patients with mostly edentulous mandibles. Naert et al. (1992) published a report that contained data from edentulous patients. They reported late failures (7 years post insertion) occurred in 4.9% for mandibular and 10.1% for maxillary cases studied. Late failures are important to clinicians and patients because of the additional expenses and treatments that patients may elect to or need to undergo in replacing prostheses on failed implants.

This text will concentrate on how clinicians may successfully incorporate implant restorative dentistry into their practices. A team approach will be emphasized among members of the implant team: restorative dentists, implant surgeons, dental laboratory technicians, dental assistants, office staff, and treatment coordinators. Appointment sequencing, laboratory work orders, and fee determination for restorative dentists will also be discussed including identification of costs associated with fixed overhead, implant components, laboratory services, and profit margins.

Clinicians have multiple implant systems to choose from. There are similarities and differences among systems including but not limited to macroscopic surface morphology, implant/abutment connections, diameters, thread pitch, and screw hex/morphology. The author and co-authors purchased all the components that were used in this textbook. The principles described in this textbook should be applicable to multiple implant manufacturers.

Conventional Dentistry Versus Implant Dentistry

Predictability of Fixed Prosthodontics

There are numerous goals of prosthodontic treatment including providing aesthetic and functional replacements for missing teeth on a long-term basis. Clinicians would like to attain these goals with restorations that have a predictable prognosis, minimal biologic trauma, and reasonable cost. For a significant number of restorative dentists, there are multiple advantages associated with conventional fixed prosthodontic therapy for natural teeth: familiarity with protocols, techniques, and materials. There are also multiple limitations associated with conventional fixed prosthodontics: tooth preparation and soft tissue retraction, potential pulpal involvement, recurrent caries, and periodontal disease (Figure 1.1). Missing teeth have been predictably replaced with fixed partial dentures for many years. However, increased stresses and demands placed on the abutment teeth, as well as limitations associated with ectopic tooth positions, have been reported. Sailer and others (2007) performed a systematic review that assessed the five-year survival rates and incidences of complications of all-ceramic fixed dental prostheses (FDPs) and compare them with those of metal ceramic FDPs. The five-year survival rate of metal-ceramic FDPs was significantly ($P < 0.0001$) higher (94.4%) than the survival rate of all-ceramic FDPs (88.6%). The frequencies of material fractures (framework and veneering material) were significantly ($P < 0.0001$) higher for all-ceramic FDPs (6.5 and 13.6%) when compared to the rates associated with metal-ceramic FDPs (1.6 and 2.9%). Other technical complications included loss of retention and biological complications (caries and loss of pulp vitality); these were similar for the two types of reconstructions over the five-year observation period.

In 1990, more than four million FDPs were placed in the United States (ADA Survey 1994). Comparisons between clinical studies cannot be easily accomplished due to the lack of established parameters (Mazurat 1992). Authors have reported failure rates of FDP’s, but the definitions of failures have been inconsistent: recurrent caries, fractured porcelain, broken rigid connectors, loss of periodontal attachment (Schwartz et al. 1970; Reuter and Brose 1984; Walton et al. 1986; Foster 1990; Glantz et al. 1993) (Figure 1.2).

FDPs have documented long-term success. Scurria et al. (1998) performed a meta-analysis of multiple published studies and documented success rates as high as 92% at 10 years and 75% at 15 years. Other authors have recorded failure rates of 30% or more for FPDs at 15–20 years...
Predictability of Implant Prosthodontics

Wong and others (2018) performed a systematic review to analyze prosthodontic complications, survival, and success of meta-ceramic (MC) and all-ceramic (AC) complete-arch fixed implant dental prostheses (CFIDPs) published between 2000 and 2016. The electronic databases search yielded 1804 relevant titles and abstracts; 11 studies were selected (9 for MC; 2 for AC CFIDPs). The authors reported that the risk of bias in most selected studies was low. Heterogeneity across studies of MC CFIDPs was within an acceptable range but not for the AC CFIDP studies; no meta-analysis was performed for the latter. Regarding MC CFIDPs, most studies recorded 100% survival rate (survival range: 92.4–100%, success range: 47–96.7%), with veneer fracture being the most common complication. Five- and 10-year cumulative complication rates for MC CFIDP veneer fractures were 22.1 and 39.3%, respectively, but with variable confidence intervals. The two studies included for AC CFIDPs reported 100% survival rates but differed in success rates; the one using predominantly monolithic zirconia restorations reported 90.9%, and the one using bilayered zirconia reported 60.4%, with complications attributed to veneer fracture. Wong and others reported that MC and AC CFIDPs veneer fractures were the primary complications. These types of prostheses may require significant maintenance. Other complications were negligible after a mean follow-up period of at least five years.

Mei and others (2017) reported the results of a prospective, longitudinal study that evaluated the clinical and radiographic outcomes of root form, platform switched, microthreaded and sandblasted, large grit, acid etched surface implants for five years. Four patients did not complete the study; 56 implants achieved a 100% survival rate and 98.2% success rate. Three prosthetic complications were reported (success rate for prostheses of 94.6%).
The incidence of peri-implant mucositis was 9.1%; no peri-implantitis was reported. The average marginal bone loss for the mesial implant surfaces was 0.46 ± 0.27 mm after one year; it was 0.48 ± 0.27 mm after five years. The average marginal bone loss on the distal implant surfaces was 0.46 ± 0.32 mm after one year and 0.50 ± 0.35 mm after five years. Mei and others concluded that after five years of loading, the root form, platform-switched, microthreaded, and sandblasted, large grit, acid-etched surface implants demonstrated high survival and success rates, steady crestal bone levels, and excellent long-term clinical outcomes (Figures 1.3 and 1.4).

Economics of Implant Dentistry

One of the major reasons cited by general dentists relative to including or excluding implant dentistry in their practices is the relatively high costs involved in dental implant treatment. Levin (2004) reported that more than 35% of patients referred from general dentists to oral surgeons or periodontists for implant dentistry never actually make the appointment. He recommended that financing should be offered to every implant patient because it is not known which patients will require financing for treatment and which ones will not. Levin considered that offering financing to perspective dental implant patients was no longer an option; it was a necessity. He reported that clients of The Levin Group significantly increased their levels of case acceptance by making financing options available to patients.

Levin (2005) described a comprehensive approach to dentistry that included four significant parts:

1) Comprehensive examination
2) Tooth-by-tooth exam
3) Cosmetic exam
4) Implant exam

Levin identified implant dentistry for his general practitioner clients as an enormous growth opportunity; he also reported that more than half of general dentists do not restore a single implant in any given year. Implant dentistry not only improves the lives of patients, it also can be a significant profit center for dental practices. Because implant dentistry generally is not covered by dental insurance, Levin stated that implants should be viewed as an opportunity to increase the elective portions of dental practices.

Implant treatment may be divided into treatments relative to partially edentulous and edentulous patients. Partially edentulous patients may warrant treatment involving the replacement of one tooth or they may require replacement of multiple teeth. Periodontal disease may also factor into dental implant treatment planning. It has been the author’s personal experience that patients will frequently call for “comparison shopping.” A common question is, “How much will implants cost?” Patients may also request the costs of a single crown for comparison purposes. It is the responsibility of the dental staff to make sure patients know that to make fair comparisons, patients must compare the costs associated with three-unit FDPs or similar prosthesis to the costs of an implant-retained restoration replacing one tooth. This may sometimes be difficult to explain/inquire of patients during initial phone conversations. (See Tables 1.1 through 1.4.)

Implant dentistry should also be profitable for clinicians and dental laboratory technicians. Initially, as with other new technologies that require acquisition of learned, skilled behaviors, implant restorative dentistry may not be as profitable as other aspects of restorative dentistry. Restorative dentists should expect a learning curve relative to diagnosing, treatment planning, and treatment regarding dental

Figure 1.3 Anterior view of a patient in centric occlusion with maxillary/mandibular fixed hybrid prostheses three years post insertion.

Figure 1.4 Anterior view of a patient in centric occlusion with implant-retained crown restorations that replaced the maxillary left incisors. The restorations have been in place for approximately six years.
Prognostic Indicators for Teeth

With practice and reasonable efforts on behalf of the dentist and staff, implant dentistry should become one of the most profitable aspects of general practice.

Prognostic Indicators for Teeth

A question often asked by clinicians and patients relates to the viability and prognosis of maintaining compromised teeth. Even with the advances in implant dentistry since the 1970s, predictability of implants is still not 100%. Therefore, it may still be difficult to recommend extraction of a tooth with a compromised prognosis and suggest replacement of the missing tooth with a dental implant. The American Academy of Periodontology’s position paper on dental implants stated that all patients should be informed as to the risks and benefits of implant and alternative treatment prior to implant placement and restoration (AAP Position Paper 2000).

Periodontal Disease

O’Neal and Butler (2002) discussed the clinical and economic factors that clinicians should consider in making

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Restorative costs/fees/profits associated with a three-unit porcelain fused to metal fixed dental prosthesis (FDP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedures</td>
<td>Expenses</td>
</tr>
<tr>
<td>Clinical</td>
<td>Preparation, Impressions, Provisional Restoration</td>
</tr>
<tr>
<td>Insertion</td>
<td>0.75 hours @ $450 per hour $338</td>
</tr>
<tr>
<td>Subtotal (clinic)</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>Casts</td>
</tr>
<tr>
<td></td>
<td>Dies</td>
</tr>
<tr>
<td></td>
<td>Articulation</td>
</tr>
<tr>
<td></td>
<td>FDP</td>
</tr>
<tr>
<td>Subtotal (laboratory)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.2</th>
<th>Restorative costs/fees/profits associated with a three-unit all ceramic fixed dental prosthesis (FDP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedures</td>
<td>Expenses</td>
</tr>
<tr>
<td>Clinical</td>
<td>Preparation, Impressions, Provisional Restoration</td>
</tr>
<tr>
<td>Insertion</td>
<td>0.75 hours @ $450 per hour $338</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>Casts</td>
</tr>
<tr>
<td></td>
<td>Dies</td>
</tr>
<tr>
<td></td>
<td>Articulation</td>
</tr>
<tr>
<td></td>
<td>FDP</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
</tbody>
</table>
decisions relative to extraction and implant placement versus retention of compromised teeth. They divided the clinical issues into four basic categories:

1) The heavily restored tooth.
2) The furcation-involved tooth.
3) The periodontal-prosthesis patient.
4) Difficult aesthetic cases.

The Heavily Restored Tooth

This type of tooth may have been damaged because of trauma, dental caries, or multiple dental restorations (Figure 1.5). In Figure 1.5, this mandibular molar had been treated endodontically and had moderate horizontal bone loss and recurrent dental caries. The author considered the long-term prognosis for this tooth to be poor if used as the distal abutment for a new three-unit FDP. The treatment choices for this patient included hemisection and distal root amputation, osseous surgery, and a new three-unit FDP. Or, the tooth could be extracted, the socket grafted with bone or a bone substitute, and the extraction site allowed to heal prior to placing an implant and implant restoration (Figure 1.6). Based on the reports of Miyamoto and Priest, the prognosis for the latter choice is better and
may be more conservative long term than the first treatment option.

The clinical condition exemplified by Figure 1.7 is also frequently encountered in clinical practice: an incompletely fractured tooth with previous endodontic therapy where the crown was held in place by a post. Numerous authors have suggested that the axial walls of tooth preparations for endodontically treated teeth should include at least 1 mm of dentin to provide the requisite ferrule effect needed for predictable retention for the crown (Sorenson and Engelman 1990; Fan et al. 1995; Libman and Nicholls 1995). Crown lengthening procedures can be accomplished to obtain greater access to dentin for increased retention of the crown, but this type of surgery is associated with moderate to significant surgical morbidity and accomplished at the expense of the supporting bone.

Figures 1.7 through 1.9.
The Furcation-Involved Tooth

Posterior teeth with advanced bone loss are commonly lost or removed. Hirschfeld studied natural teeth over a 22-year period and found that 31.4% of molars and 4.9% of single rooted teeth were lost (Hirschfeld and Wasserman 1978). Decisions to retain or extract posterior teeth generally involve multirooted molars. Both maxillary and mandibular molar teeth exhibit concavities associated with multiple roots. The anatomy may also be compromised with recurrent caries and lateral canals. In Figure 1.10, the mandibular right first molar had previous endodontic therapy, advanced horizontal bone loss around both roots and in the furcation, mobility, and was uncomfortable for the patient. The patient’s chief complaint related to the discomfort that she was feeling anytime she attempted to chew on the right side. She did not want to have this tooth extracted. Even with a root resection, this tooth had a poor prognosis as an abutment for an FDP. A more appropriate choice would be extraction, grafting, and placement of one implant to replace the missing molar.

The most common causes of failure in posterior, furcation-involved teeth have been reported to be recurrent caries and endodontic failure (Buhler 1994). When clinical success is likely, root resection procedures can be clinically acceptable with a reasonable long-term prognosis. In Figures 1.11 through 1.13, compromised mandibular molars were treated with endodontic therapy, posts, root resections, and a fixed periodontal splint. This radiograph was taken 15 years after the prosthesis was inserted.

Figure 1.9 The patient in Figure 1.8 elected to have the maxillary incisors removed and replaced with dental implants. This image was taken approximately three months post implant placement.

Figure 1.10 Radiograph of mandibular right posterior segment that demonstrates advanced bone loss around the first molar and Class III furcations. This tooth was a poor candidate for root resection and future use as an abutment for a three-unit fixed dental prosthesis (FDP).

Figure 1.11 Radiograph after endodontic therapy for the mandibular right first and second molars prior to resection of the second molar’s mesial root and hemisection of the mandibular first molar’s roots.

Figure 1.12 Clinical image with the mandibular fixed dental prosthesis (FDP) cemented in place of the patient in Figure 1.11.
The Periodontal Prosthesis Patient

Dentistry has experienced significant advances in treatment alternatives for the severely compromised dentition. In the 1960s and 1970s these advances resulted in salvaging many teeth that had previously been extracted (Yalisove and Dietz 1977). Conventional fixed and removable prosthodontic treatments were not applicable to treat severely compromised dentitions; especially in cases where there were multiple missing teeth and moderate to advanced bone loss. Amsterdam defined the sophisticated dental therapy to treat such patients as periodontal prosthesis (Amsterdam 1974). Periodontal prosthesis is the treatment required to stabilize and retain dentitions that have been weakened by the loss of alveolar bone and multiple teeth. In the past, periodontal prostheses were the primary means to treat these debilitated dentitions. Today the use of dental implants has decreased the frequency for these complex patients to be treated with periodontal prosthesis (Nevins 1993).

This patient presented to the author in 1988 with multiple missing teeth, an end-to-end dental occlusion, moderate to advanced bone loss, and a severe gag reflex (Figures 1.14 and 1.15). The diagnostic phase of treatment consisted of thorough radiographic and physical examinations. The treatment plan that was developed and agreed upon with the patient called for a diagnostic articulator mounting (Figure 1.16), diagnostic wax patterns (Figure 1.17), extraction of several hopeless teeth, periodontal osseous and soft tissue surgery, and a maxillary periodontal prosthesis (Figures 1.18–1.20). The mandibular incisal plane was recontoured in conjunction with the maxillary reconstruction.

The patient functioned comfortably for several years and then presented with a problem with the maxillary right canine eight years post insertion (Figure 1.21). This tooth was diagnosed as having a combined periodontal/ endodontic lesion. The periodontal prosthesis was tapped...
off and the cuspid was extracted. The periodontal prosthesis was recemented and remained in place for an additional 8 years (16 years post insertion; the last recare appointment). Note the amount of residual ridge resorption gingival to the cuspid and lateral incisor pontics (Figure 1.22).

If this patient presented to a dentist today, this treatment certainly should be offered as a treatment alternative. The morbidity associated with periodontal surgery, endodontic surgery, and the complexities associated with the fixed prosthodontic treatment probably would outweigh the morbidities involved in extraction of the teeth, grafting as needed, placement of implants, and implant prosthetic treatment with either fixed or removable prosthodontics. Implant placement and immediate occlusal function also could be considered. The net, long-term results with fixed implant-retained restorations would likely be more predictable on a long-term basis than the results that could be obtained with periodontal prosthesis (Figures 1.23–1.25).

Difficult Aesthetic Cases

Replacement of anterior teeth with dental implants is probably one of the greatest challenges that a dental implant team will face. There are numerous factors to consider in
order to fabricate aesthetic, long-term, functional restorations: bone quality and bone quantity, gingival symmetry, periodontal biotype, three-dimensional orientation of the edentulous space and adjacent teeth, presence or absence of interdental papillae, location of the lip during speaking, smiling and at rest. Dentists and patients have come to expect excellent aesthetic and functional results in the anterior regions of the mouth (Chang et al. 1999).

However, implant-retained restorations may not always be the most appropriate treatment option. Fixed and removable partial dentures may still be viable options for patients who need to replace anterior teeth (Figure 1.26). In the case of multiple missing teeth, anatomical limitations, and inadequate bone volume, a fixed partial denture

Figure 1.22 Clinical left lateral view 8 years post extraction of maxillary right cuspid (16 years post insertion of the original prosthesis). Note the amount of alveolar ridge resorption gingival to the cuspid and lateral incisor pontics.

Figure 1.23 Preoperative panoramic radiograph of a patient that demonstrated severe dental caries, moderate horizontal bone loss and multiple missing teeth.

Figure 1.24 Postoperative panoramic radiograph of the patient in Figure 1.23 after removal of the failing dentition, followed by maxillary and mandibular implant placement and immediate occlusal loading of interim maxillary and mandibular prostheses.

Figure 1.25 Clinical view of patient from Figures 1.23 and 1.24, smiling with the definitive maxillary and mandibular implant prostheses in place.

Figure 1.26 Clinical view of a patient missing a maxillary right lateral incisor who had inadequate bone volume for implant placement and did not want to have bone grafting accomplished for an implant-retained crown. The missing lateral incisor was replaced with a three-unit fixed dental prosthesis (FDP); pink gingival porcelain was used on the cervical portion of the pontic to compensate for the loss of alveolar bone and soft tissues.
may be more appropriate if bone grafting is needed (Figure 1.27). In the case of multiple missing teeth and significant alveolar ridge resorption, an RDP with a labial acrylic resin flange may be the treatment of choice in order to provide patients with the requisite lip support (Figures 1.28 and 1.29).

For aesthetic restorations, implants must be placed in optimal positions relative to the proposed locations of the teeth, not relative to the available bone (Garber 1995). Implant placement must also be viewed in three dimensions: mesio/distal, facial/lingual, and occlusal/cervical. Deficient sites need to be augmented with bone and/or soft tissue as needed to ensure optimal implant placement. In this instance, there appeared to be adequate bone volume for implant placement on the periapical radiograph (Figure 1.30). At the surgical appointment, the bone was noted to be deficient vertically; the implant surgeon chose to place the implants despite the vertical deficiency (Figure 1.31). In spite of multiple issues associated with implant placement, location, and lack of keratinized tissues around the premolar implant, this patient has adapted to the restorations and maintained them 15 years post implant insertion (Figure 1.32).

Classification of Ridge Defects

Restoration of edentulous spaces in the aesthetic zone with dental implants should probably not be undertaken by surgeons and restorative dentists with limited implant experience (Weisgold et al. 1997). Thorough preoperative
diagnostic workups are especially warranted prior to embarking on treatment in the anterior maxillae (Hess et al. 1998). Ridge deformities have been classified into three types: Class I-loss of buccal/lingual width; Class II-loss of vertical height; Class III-combination of Class I and II (Seibert 1983). Bone regeneration therapy is now well accepted by dentistry. The horizontal Class I defect was predictable to treat (Figures 1.33 and 1.34). However, augmentation procedures will likely add time to the overall time frame of implant treatment, as well as adding expense for the treatment.

This RDP did not restore the surgical or restorative volumes required for aesthetic replacement of the missing maxillary central incisor (Figure 1.35). The defect was significant in both vertical and horizontal planes. In this case, the ill-fitting partial denture was diagnostic for the surgeon by giving him/her an idea as to the volume of material required to eliminate the defect (Figure 1.36). A surgical guide would still be beneficial for the surgeon, even if an implant cannot be placed at the time of bone grafting (Figure 1.37).

This 28-year-old patient presented with internal and external resorption of the maxillary left incisors (Figures 1.38 and 1.39). The patient was presented with several treatment options including endodontic treatment for both teeth. Patel and others (2018) reviewed external cervical resorption

Figure 1.31 This is the same patient as in Figure 1.30. Postoperative radiograph identified that the two implants were placed too close together and superior relative to the cemento/enamel junction of the adjacent teeth.

Figure 1.32 Clinical view of the patient in Figures 1.30 and 1.31. Note the contours, lack of keratinized tissue, and quality of the peri-implant soft tissues around the implant restorations. The long term prognosis for these restorations and implants was poor.

Figure 1.33 Preoperative occlusal view of a maxillary diagnostic cast that demonstrated a Class I horizontal ridge defect.

Figure 1.34 10-week postoperative clinical view of the patient in Figure 1.33 that demonstrated the increased buccal/lingual width of the edentulous ridge secondary to grafting with demineralized, freeze-dried bone and placement of a resorbable membrane.

Figure 1.35 Postoperative radiograph identified that the two implants were placed too close together and superior relative to the cemento/enamel junction of the adjacent teeth.

Figure 1.36 Clinical view of the patient in Figures 1.30 and 1.31. Note the contours, lack of keratinized tissue, and quality of the peri-implant soft tissues around the implant restorations. The long term prognosis for these restorations and implants was poor.

Prognostic Indicators for Teeth
Introduction to Implant Dentistry

They reported that effective management of ECR depended on accurate assessment of the true nature and accessibility of ECR. In cases where ECR was supracrestal, superficial, and with limited circumferential spread around the tooth, a surgical repair without root canal treatment was preferred. With more extensive ECR lesions, Patel and others advised that vital pulp therapy or root canal treatment may be indicated. Internal repair was indicated where there was limited resorptive damage to the external aspect of the tooth and/or where an

Figure 1.35 Clinical view of a transitional removable dental prosthesis (RDP) that did not replace the missing hard and soft tissues associated with the missing maxillary left central incisor.

Figure 1.36 Clinical occlusal view that demonstrated the significant horizontal component of a defect that would have to be addressed prior to or during implant placement.

Figure 1.37 Surgical guide on a diagnostic cast that would be appropriate for the implant surgeon to use during the augmentation portion of the surgical treatment.

Figure 1.38 Clinical image of a patient with splinted crowns that restored the maxillary incisors. They were splinted together to camouflage the missing interdental papillae between the incisors.

Figure 1.39 Periapical radiograph of the teeth in Figure 1.38. The central incisor had external resorption and a periapical radiolucency; the lateral incisor had internal resorption. Both teeth were scheduled for removal in anticipation of dental implant placement and restoration.
external (surgical) approach was not possible due to the inaccessible nature of subcrestal ECR. In these cases, root canal treatment was needed. Intentional reimplantation was indicated in cases where surgical or internal approach was not practical. Atraumatic extractions and short amounts of time where the extracted tooth was out of the mouth, followed by two weeks splinting were important prognostic factors. Patel and others also concluded that extraction of the affected tooth may be the only option in untreatable cases where aesthetic, functional, and/or symptomatic issues were involved. The long-term prognosis for this specific case was determined to be poor.

The maxillary left incisors were removed atraumatically and grafted with freeze-dried, demineralized bone. An Essix retainer was inserted to avoid pressure on the surgical site (Figures 1.40 and 1.41). Due to limited space available for implant placement and the patient’s low lip line, it was felt that a computer-guided surgical approach would be appropriate. A computer-generated surgical guide was fabricated from a Cone Beam CT (CBCT) scan (Figures 1.42 through 1.44). The implants were placed uneventfully with a two-stage surgical protocol (Figure 1.45). Computer-assisted design/computer-assisted machining (CAD/CAM) abutments were designed, milled, and inserted prior to insertion of the definitive all ceramic crown restorations (Figures 1.46 and 1.47).

Treatment Prognosis for the Dentition

Diagnosis and treatment planning for patients with compromised dentitions can be one of the more daunting challenges facing dental practitioners. A process should be developed that assists practitioners in formulating treatment plans that are evidence based, predictable, and as practical as possible. Accurate diagnoses are critical for treatment success and need to be identified relative to periodontal disease, occlusion (skeletal and dental), and other anatomical considerations (maxillary sinus, inferior alveolar canal, etc.).
Patients who present with moderate to advanced periodontitis have several generic treatment options available to them: periodontal surgery with grafting, membranes, antimicrobial therapy, etc.; selective extraction and replacement with removable or fixed prostheses supported by natural teeth; selective extraction and replacement with removable or fixed prostheses supported by dental implants; or full-arch extractions and prosthetic replacement (Figure 1.48).

An argument could be made for the patient in Figure 1.48 that with selective extractions, periodontal therapy, and fixed/removable prosthodontic treatment, the dentition could be salvaged and maintained for a number of years. However, what would the morbidity and expense be for the required treatments and how long should the patient and clinician reasonably expect the reconstruction to last? Wang et al. (1994) studied the influence of furcation involvement on tooth loss over a period of eight years. They reported that with and without furcation involvement, 23 and 13% respectively were lost after eight years. Other authors have reported similar findings (Hirschfeld and Wasserman 1978; McFall 1982; Goldman et al. 1986).

Raval and Johansson reported on the results of tooth loss in periodontally treated patients over 11–14 years.
Sixty-four patients participated in the follow-up study. Reasons for tooth loss were identified through dental records, radiographs, and clinical photos. They identified factors contributing to tooth loss, via a logistic multilevel regression analysis. During the course of the study, 211 teeth were lost. They identified the main reason for tooth loss was recurring periodontal disease \((n = 153)\). Root caries and endodontic complications were responsible for 28 and 17 lost teeth, respectively. Thirteen teeth were lost for other reasons. Ravald and Johansson also reported that the number of teeth \((P = 0.05)\) and prevalence of probing pocket depths, 4–6 mm \((P = 0.01)\) at baseline, smoking \((P = 0.01)\) and the number of recare visits with dental hygienists \((P = 0.03)\) during the maintenance phase of therapy significantly contributed to the variations noted for tooth loss. They concluded that previously treated patients at their periodontal specialty office continued to lose teeth despite maintenance treatments at general practitioner offices with professional dental hygienists. They also concluded that the main reason for tooth loss in their study was recurring periodontal disease. They also noted that tooth loss was significantly more prevalent among smokers than nonsmokers and concluded that tooth loss risk factors included smoking, low numbers of teeth present preoperatively, and prevalence of 4–6 mm periodontal pockets.

Findings such as these may make it difficult for clinicians to recommend intensive periodontal and fixed prostodontic therapy to patients where the support for the reconstruction is dependent on compromised teeth.

In another case of a debilitated dentition, a patient presented three years post periodontal surgery (Figure 1.49 and 1.50). This patient reported that she spent approximately 20 minutes per day brushing, flossing, and rubber tipping in and around all of her teeth and gingival tissues. She reported that the teeth were still sensitive and prone to food impaction and she considered her smile to be quite unattractive. One of the treatment options that was discussed included selective extractions of the most compromised teeth and replacement of the missing teeth with fixed or removable prostheses. The patient did not wish to spend any more time or money on maintaining her teeth and opted to have the teeth extracted and replaced with complete dentures. She healed uneventfully from the extractions but had great difficulty managing the mandibular complete denture. After further consultation, she proceeded with implant placement and reconstruction with a maxillary complete denture and mandibular fixed hybrid prosthesis (Figure 1.51).

Morrow and Brewer (1980) presented a treatment planning concept for debilitated dentitions prior to the advent of implant dentistry as we know it today. They considered removable overdentures to be indicated if four or fewer...
retainable teeth remained in a dental arch. If more than four viable teeth remained, they considered fixed or removable partial prosthodontic treatment for potential long-term treatment solutions. They stressed that having four teeth was not immutable and that treatment planning required flexibility as to the number and position of the abutments for overdentures. Morrow and Brewer recognized that overdentures were not appropriate for every patient, but they also stated that there were few situations where complete dentures were preferable to overdentures, as they routinely saw the results of long-term edentulism and the difficulties associated with adaptation to complete dentures (Figures 1.52 and 1.53).

Summary

In order to provide state-of-the-art treatment for patients, clinicians must constantly update their knowledge and clinical skills. Clinicians are responsible for gathering the physical and radiographic data required for accurate diagnoses of patients’ conditions. They are also required to provide treatment options to patients that are evidence based and predictable. Financial considerations also need to be considered by patients and clinicians. Treatment planning will become less problematic for clinicians who keep their knowledge and skills current, perform comprehensive examinations, and provide evidence-based treatment options. Patients will also benefit by having treatments performed that are best for them at the time decisions need to be made.

Bibliography

Chang, M., Odman, P., Wennstrom, J., and Andersson, B. (1999). Esthetic outcomes of implant-supported...

