Index

a
Access Link Control Application Part (ALCAP) 163
ADSL2+ 20–21
air interface
 OFDMA 239–240
 SC-FDMA 240
Alliance of Radio Industries and Business (ARIB) 2
American National Standard Institute (ANSI) 2
area level KPIs 61
artificial intelligence (AI)
 artificial intelligence-based automation 319
 behaviour mapping
 vs. narrative inquiry 368
 vs. traditional market research 368
 digital ecosystem 368–369
 machine learning (ML)
 advantages 365
 vs. human learning 365–366
 role of 369–371
 supervised, unsupervised and reinforcement ML algorithms 367
 statistical relationships 367
asynchronous transfer mode (ATM)
 adaptation layer 201–202
 ATM layer 201
cell loss priority (CLP) 200
generic flow control (GFC) 200
header error control (HEC) 199
multiplexing and switching 202–203
payload type (PT) 200
physical layer 200–201
virtual path and virtual channel identifiers 200
Authentication, Authorisation and Accounting (AAA) 275
autonomous vehicles 319

b
Base Station Identity Code (BSIC) 59
beacon frequency 59
beam forming 248
bearers
 4G core network planning and optimisation 274
 4G (LTE) radio network planning and optimisation
 MAC 242–243
 NAS 244
 physical layer 242
 radio link control (RLC) 243
 radio resource control (RRC) 243
binary hash tree 339
Bitcoins 337, 343, 345
bit error rate (BER) 60
blockchain technology 337
 benefits of 345–346
 vs. centralised database 341, 342
 challenges of 346
 consensus 340
dApp 340
blockchain technology (cont’d)
 data structure 338
 definition 338
 features 339
 immutability 339
 in industries 342–343
 P2P network 339
 smart contracts 339
 Telcos 342, 343
 transactions and blocks 339
 use case examples 344
 broadcasting-satellite service 359
 broadcasting service 359
 Broadcast-Multicast Control (BMC) layers 161

C
 call success rate (CSR) 60, 61
 capacity planning
 EDGE radio network 82–83
 in GPRS network 75
 radio network
 average antenna height 54
 frequency re-use factor 51, 52, 54–55
 frequency usage 54–55
 traffic estimation/modelling 53–54
 carrier aggregation (CA) 264–265, 349, 350
 cell level KPIs 61
 cell loss priority (CLP) 200
 cellular Internet of Things (IoT)
 description 317
 EC-GSM 318
 LTE-M/LTE-CAT-M1 318
 NB-IoT 318
 channel estimation 247
 channelisation code 166
 circuit switch network
 call parameters 230
 circuit group parameters 230
 destination and sub-destination parameters 229–230
 exchange terminals, configuration of 229
 parameter planning 229
 routing parameters 229
 signalling in 230–231
 signalling plans 228
 traffic routing 229
 transit layer planning 229
 cluster tuning 260
 Code Division Multiple Access (CDMA) 5
 coding schemes, in GPRS 72
 cognitive radio (CR) 313
 control channels 31, 32
 coordinated multi-point transmission and reception (CoMP) 265
 core network planning and optimisation
 detailed planning
 numbering and charging 145
 routing plans 144
 signalling plans 145
 synchronisation plans 145
 EDGE core network planning 154
 failure analysis and protection 142–144
 4G core network planning and optimisation
 EPC network
 dimensioning 272–273
 EPC network planning 267–275
 IMS 276–287
 network function virtualisation (NFV) 291
 software defined network (SDN) 288–291
 virtualising network functions 291–294
 voice-flow 287–288
 GPRS core network planning 149–154
 HLR/EIR/AC 133–134
 intelligent network (IN) 141–142
 key performance indicators 145
 MSC/VLR 133
 network analysis 135
 network dimensioning 135–139
 performance analysis 145
 plan implementation 145, 146
 process 147
 scope 133
 signalling network 140–141
signalling plan
 data analysis 149
 data collection 147–148
switching
 data analysis 149
 data collection 147
coverage planning
 EDGE radio network
 body loss 81
diversity effects 81
 incremental redundancy 81
 RX signal strength 81–82
 in GPRS network 74–75
 radio network planning 33
 3G radio network planning and optimisation 178
 E_b/N_0 174
 equipment and network parameters 174
 link budget 175
 loading effect 174–175
 power control headroom 174
 propagation model 175
 soft handover phenomenon 174
coverage thresholds 40

d
 Data Centre SDN Controller (DC SDN Controller) 293
device-to-device (D2D)
 communications 299
digital ecosystem 368–369
 Digital Subscriber Line (DSL) 20
dimensioning, of EDGE radio network 82–83
 discontinuous transmission (DTX) 56
discrete Fourier transformation (DFT) 6
distributed ledger technology (DLT) 337
domain name system (DNS) 274
downlink power budget 40
dropped call rate (DCR) 60
e
 E-DCH Absolute Grant Channel (E-AGCH) 185
 E-DCH Dedicated Physical Control Channel (E-DPCCH) 185
 E-DCH dedicated Physical Data Channel (E-DPDCH) 185
 E-DCH HARQ Indicator Channel (E-HICH) 185
 E-DCH Relative Grant Channel (E-RGCH) 185
 EGPRS 77, 78
equipment and network parameters 174
end-to-end orchestration (EEO) 293
end-to-end quality of service (E2E) QoS 233–234
Enhanced Circuit Switched Data (ECSD) 77, 78
Enhanced Data Rates in GSM Environment (EDGE) networks 3, 77
capacity planning 82–83
coverage planning
 body loss 81
 diversity effects 81
 incremental redundancy 81
 RX signal strength 81–82
dynamic A_{bis}
 dimensioning 129–130
 functionality 127
timeslot allocation 127–129
 transmission network design, impact of 130–131
 octagonal phase shift keying 78
optimisation
 improvement of throughput 85–86
 key performance indicators 84
 performance measurements 84–85
parameter planning 83–84
radio network planning process 78
 channel allocation 80
coding schemes 79
 incremental redundancy 80
 link adaptation 79–80
 smart radio concept 80
transmission network
 optimisation 131–132
equipment dimensioning 273
 enhanced mobile broadband (eMBB) 300
Erlang B tables 374–382
ethernet radio 215–216
European Telecommunication Standard Institute (ETSI) 1–2
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>evolved packet core (EPC)</td>
<td>274</td>
</tr>
<tr>
<td>bearer and QoS (Quality of Service)</td>
<td>274</td>
</tr>
<tr>
<td>deployment model</td>
<td>271</td>
</tr>
<tr>
<td>domain name system</td>
<td>274</td>
</tr>
<tr>
<td>dynamic tracking area list</td>
<td>273</td>
</tr>
<tr>
<td>home subscriber server (HSS)</td>
<td>269</td>
</tr>
<tr>
<td>latency</td>
<td>270</td>
</tr>
<tr>
<td>MME-HSS selection</td>
<td>273–274</td>
</tr>
<tr>
<td>mobility management entity (MME)</td>
<td>268</td>
</tr>
<tr>
<td>network dimensioning</td>
<td>272–273</td>
</tr>
<tr>
<td>network elements</td>
<td>267</td>
</tr>
<tr>
<td>network interface</td>
<td>269–270</td>
</tr>
<tr>
<td>packet data network (PDN) SAE gateway</td>
<td>268</td>
</tr>
<tr>
<td>policy and charging rules function (PCRF)</td>
<td>269</td>
</tr>
<tr>
<td>processing delay</td>
<td>270</td>
</tr>
<tr>
<td>propagation delay</td>
<td>271</td>
</tr>
<tr>
<td>queuing delay</td>
<td>270</td>
</tr>
<tr>
<td>scope</td>
<td>267, 268</td>
</tr>
<tr>
<td>security framework</td>
<td>272</td>
</tr>
<tr>
<td>serialisation delay</td>
<td>270</td>
</tr>
<tr>
<td>serving SAE gateway</td>
<td>268</td>
</tr>
<tr>
<td>transport network</td>
<td>271–272</td>
</tr>
<tr>
<td>Extended Coverage for GSM (EC-GSM)</td>
<td>318</td>
</tr>
</tbody>
</table>

F

- Fast Associated Control Channel (FAACH) signalling 57
- FDD mode 238–239
- Femto cells 312
- Fibre to the Node (FTTN) 21
- fifth-generation (5G) mobile networks 19–20
- Fifth Generation Public Private Partnership (5GPPP) 2, 299
- first-generation mobile systems 1
- 5G technology
 - challenge
 - D2D communications 299
 - devices and data 298
 - E2E network architecture 298
 - M2M communications 298–299
 - network capacity 298
- enabling technologies
 - air-interface of NR and LTE-A 305
 - content cache 305
 - densification and multi-RAT 303
 - energy efficiency 304
 - full duplex communication 304
 - massive MIMO 304
 - self-organising networks 304–305
- 5G NGC (Next Generation Core) 306
- 5G NR (New Radio) 306
- 5G spectrum
 - characteristics 308
 - frequency planning inputs 308, 311
 - national spectrum requirements 308, 309
 - WRC-15 action 308, 310
- key performance indicators (KPI)
 - area traffic capacity 302
 - connection density 302
 - device mobility 301
 - energy efficiency 302
 - latency 301–302
 - peak data rate 300
 - peak spectrum efficiency 301
 - user experienced data rate 300
- network architecture
 - enhanced mobile broadband (eMBB) 300
 - 5GPPP 299
 - 5G requirements 299
 - massive machine-type communication (m-MTC) 300
 - ultra-reliable and low latency communication (u-RLLC) 300
- network planning
 - consideration 311–313
 - network slicing 306–308
 - peak data rates 297, 298
- world in 2020 297
- fixed-satellite service 357
- fixed service 357
- 4G core network planning and optimisation
- evolved packet core (EPC)
 - bearer and QoS (Quality of Service) 274
 - deployment model 271
domain name system 274
dynamic tracking area list 273
home subscriber server (HSS) 269
latency 270
MME-HSS selection 273–274
mobility management entity (MME) 268
network dimensioning 272–273
network elements 267
network interface 269–270
packet data network (PDN) SAE gateway 268
policy and charging rules function (PCRF) 269
processing delay 270
propagation delay 271
queuing delay 270
scope 267, 268
security framework 272
serialisation delay 270
serving SAE gateway 268
transport network 271–272
handover 275
IP multimedia subsystem (IMS)
application 276
core site 277–279
functions and interface 279–282
IMS architecture 277
offline charging 284
online charging 285
protocol structure 282–283
security system 283–284
service provisioning 285–287
network function virtualisation (NFV) 291
software defined network (SDN) 288–291
virtualising network functions 291–294
API interfaces 291
benefits of 292–294
management, automation and orchestration (MANO) 291
voice-flow 287–288
CSFB 287
VoLGA 287
VoLTE 288
4G mobile networks
access network
eNodeB 17–18
E-UTRAN 17
evolved packet core network 18
home subscriber server (HSS) 18
mobility management entity 18
packet data network gateway (P-GW) 18
serving gateway (S-GW) 18
S1 interface 19
X2 interface 19
4G (LTE) radio network planning and optimisation
air interface
OFDMA 239–2340
SC-FDMA 240
bearers
MAC 242–243
NAS 244
physical layer 242
radio link control (RLC) 243
radio resource control (RRC) 243
carrier aggregation 264–265
channel estimation 247
cluster tuning 260
detailed network planning
configuration planning 253
coverage and capacity planning 253–254
parameter planning 255–256
simulations 256
frame structure
type 1 frame structure 240–241
type 2 frame structure 241–242
frequency planning
channel spacing 256
conventional frequency planning 257–258
fractional frequency reuse (FFR) 258–259
spectrum management 256–258
spectrum refarming 256
initial tuning 259–260
inter cell interference 249–250
Index

4G (LTE) radio network planning and optimisation (cont’d)
logical channels
downlink 246
uplink 247
LTE link budget 251–253
market level/network tuning 260–262
MINO 265
multiple input multiple output antenna technique 247–248
network elements
base station (eNodeB) 248–249
user equipment (UE) 248
performance indicators 263–264
physical channels
downlink 244–245
uplink 244–246
pre-planning phase 251–253
quality of service 250–251
radio fundamentals 238–239
relay nodes 265
scheduling mechanism 250
scope 237
self-configuration 261
self-healing 263
self-optimisation 263
self-organising network architecture 263
self-organising networks 260
system requirements 237–238
transport channels
downlink 246
uplink 246
fractional frequency reuse (FFR) 258–259
frame error rate (FER) 60
frequency diversity 48, 56
Frequency Division Multiple Access (FDMA) 4
frequency hopping (FH) technique 44, 48, 56
frequency planning
in GPRS network 75–76
in LTE
channel spacing 256
conventional frequency planning 257–258
fractional frequency reuse (FFR) 258–259
spectrum management 256–258
spectrum refarming 256
radio network planning 55
transmission network 107–110
frequency selective fading 37
full duplex communication, in 5G 304

g
Gaussian minimum phase shift keying (GMSK) 5–6
General Packet Radio Services (GPRS) 3
border gateway (BG) 68
coding schemes 72
core network planning
IP addressing 152–153
IP routing 153–154
packet core network planning 150–152
domain name system (DNS) 68
elements 66
GPRS gateway support node (GGSN) 68
interfaces 68–69
legal interception gateway (LIG) 68
logical channels 71–72
mobile station 67–68
mobility and radio resource management 73
network and optimisation 123
network optimisation 76–77
packet control unit (PCU) 68
power control 73
protocol structure
BSS protocols 70
MS protocols 69–70
SGSN protocols 70–71
radio network planning 71
capacity planning 75
coverage planning 74–75
frequency planning 75–76
parameter planning 76
serving GPRS support node (SGSN) 68
temporary block flow (TBF) 74
generic flow control (GFC) 200
G.Fast 22
Gigabit Ethernet Passive Optical Network (GEPON) 22
Gigabit Passive Optical Network (GPON) 22
Global System for Mobile communication (GSM) 3
architecture 8, 9
base station subsystem 8–9
channel configuration 31, 32
GSM 900 and 1800 systems power budget calculation 42–44
interfaces and signalling
air interface 11–12
A\textsubscript{bis} interface 12
A interface 12
modified Link Access Protocol for D-Channel (LAPD\textsubscript{m}) 12
SS7 12
X.25 12–13
network management system 10
network subsystem 9–10
time slot 54

h
handover 275
description 55
in WCDMA radio networks 172–173
handover (HO) rate 60–61
header error control (HEC) 199
heterogeneous networks (HetNet), in 5G networks 312
High Speed Circuit Switched Data (HSCSD) 66
High Speed Downlink Packet Access (HSUPA)
adaptive modulation and coding (AMC) 182, 183
channels 182
code multiplexing 184
fast packet scheduling 184
HARQ (Hybrid Automatic Repeat reQuest) 183–184
HS-DPCCH (High Speed Dedicated Physical Control Channel) 183
HS-DSCH (High Speed Downlink Shared Channel) 182–183
HS-SCCH (High Speed Shared Control Channel) 183
power control 183
protocol structure 182
radio resource management 183
user equipment 182
High Speed Uplink Packet Access (HSUPA)
channels 185
HARQ 185
protocol structure 184
scheduling 185
soft handover 186
home eNB (low-power eNB) 349

i
interfaces and signalling, in GSM
air interface 11–12
A\textsubscript{bis} interface 12
A interface 12
modified Link Access Protocol for D-Channel (LAPD\textsubscript{m}) 12
SS7 12
X.25 12–13
interference diversity 56
International Frequency Allocation Table 356–359
International Telecommunication Union (ITU) 1
Internet of Things (IoT)
artificial intelligence-based automation 319
autonomous vehicles 319
Business Process Reengineering opportunities 317
cellular Internet of Things (IoT) description 317
EC-GSM 318
LTE-M/LTE-CAT-M1 318
NB-IoT 318
connected traffic management 319
constituents of 315–316
critical MTC use cases 318–319
high speed computing 317
industrial robots and drones, wireless control of 319
Internet of Things (IoT) (cont’d)
massive MTC use cases
connected car 319–320
smart street lighting 321
variable messaging display and environment sensor integration 320–321
maturity phases 323
noncellular IoT
description 317
long range 318
short range 318
remote surgery 319
representation 315, 316
types of 317–318
value chain 322
virtual reality 319
IP multimedia subsystem (IMS)
application 276
core site
access gateway 278
access network 278
breakout gateway control function 278
call session control function 278
domain name server (DNS) 278
Firewall 278
foreign agent 278
home agent 279
home subscriber server 279
media gateway 279
media gateway control function 279
policy decision function 279
position determining entity 279
SIP application development and operation 279
functions and interface
application server (AS) 280
breakout gateway control function (BGCF) 280
call session control function (CSCF) 280
home subscriber server (HSS) 280
interrogating call session control function (I-CSCF) 280
IP multimedia subsystem-media gateway function (IMS-MGW) 280
media gateway control function (MGCF) 280
media resource function (MRF) 280
multimedia resource function controller (MRFC) 280
multimedia resource function processor (MRFP) 280
policy decision function (PDF) 281–282
proxy call session control function (P-CSCF) 280
serving call session control function (S-CSCF) 280
signalling gateway function (SGF) 281
subscription locator function (SLF) 280
IMS architecture 277
offline charging 284
online charging 285
protocol structure 282–283
security system 283–284
service provisioning
de-registration 286–287
registration 285–286
IPSec 283
isotropic antenna 34, 35

k
key performance indicators (KPI) 59–61, 119
core network planning and optimisation 145
EDGE networks 84
5G technology
area traffic capacity 302
connection density 302
device mobility 301
energy efficiency 302
latency 301–302
peak data rate 300
peak spectrum efficiency 301
user experienced data rate 300
optimisation, of radio network 59–61
radio network planning 59–61
WCDMA radio network
optimisation 187
knife-edge diffraction 105

I
land mobile-satellite service 359
land mobile service 359
latency, in 5G networks 301–302
light fidelity (Li-Fi) 25
link budget calculations, in radio network plan 45–47
cell range 44
components 41
coverage thresholds 40, 44
output and effect 44
path loss and received power 44
link protocol, in GSM network 57, 58
location probability 51
logical channels 31
in 4G LTE
downlink 246
uplink 247
in GPRS network 71–72
Long Range Wide Area Networks (LoRa) 24
Long Term Evolution (LTE) 4
low noise amplifier (LNA) 48
LTE Broadcast see Multimultimedia Broadcast/Multicast Services (eMBMS)
LTE eMTC 23
LTE RAN, in 3GPP specifications
Release 8, 347–349
Release 9, 349
Release 10, 349–350
Release 11, 350
Release 12, 350
Release 13, 351
Release 14, 351–352
Release 15, 352

m
machine learning (ML) 365
advantages 365
vs. human learning 365–366
role of 369–371
supervised, unsupervised and reinforcement ML algorithms 367
machine-to-machine (M2M) communications 298–299, 315, 316
macro-cell 33, 34
massive machine-type communication (m-MTC) 300
massive MIMO 333–335
Merkle tree 339
micro-cell 33, 34
microwave link planning fading
atmospheric fading 105
diffraction fading 104–105
ducting 101–102
flat fading 101
frequency selective fading 103
k-fading 104
rain attenuation 102–103
link budget calculations 95–97
multipath propagation 100–101
propagation phenomena 97–100
mobile-initiated de-registration 286
mobile networks 1
evolution
fifth-generation 4
first-generation 2
fourth-generation 4
second-generation 3
third-generation 3–4
5G mobile networks, 19–20 (see also 5G technology)
4G mobile networks (see 4G mobile networks)
information theory 4–8
3G mobile networks (see 3G mobile networks)
mobile-satellite service 359
mobile service 357
modulation method
discrete Fourier transformation 6
Gaussian minimum phase shift keying 5–6
octagonal phase shift keying 6
quadrature amplitude modulation 6
quadrature phase shift keying 6
Monte Carlo simulation 256
Multimedia Broadcast/Multicast Services (eMBMS) 349
multipath fading 37
multiple access techniques
code division multiple access 5
frequency division multiple access 4
orthogonal frequency division multiple access 5
time division multiple access 5
multiple antenna techniques 325
multiple-input multiple-output (MIMO) technology 325
array gain 331
combined advantages 331, 332
diversity gain 331
HSPA + MIMO 332
interference reduction 331
LTE Downlink 332, 333
massive/large-scale 333–335
multi-user 326–329
performance improvements 331
spatial multiplexing 331
spectral efficiency 326
WiMAX Downlink 333
multiple-input single-output (MISO) configurations 328
multiprotocol label switching (MPLS) 283
multi-user MIMO (MU-MIMO) 326–329

N
Narrow-Band IoT (NB-IoT) 23, 318
National Frequency Allocation Plan (NFAP) 360–361
network dimensioning 38
calling and moving interest 137
core network planning and optimisation 135–139
EPC network dimensioning 272–273
evolved packet core (EPC) 272–273
example of 139
4G core network planning and optimisation 272–273
interswitch connection 138
outputs of 136
routing plan 139
3G core network planning
circuit switch 225–226
packet switch 227
traffic calculation 136–137
traffic route 138
transit switch 138
network-initiated
de-registration 286–287
network planning process, for 5G radio and core networks 311–313
Next Generation PON2 (NGPON2) 23
NFC 23–24
Node B Application Protocol (NBAP) 163
noncellular IoT
description 317
long range 318
short range 318
Nordic Mobile Telephones (NMTs) 1

O
octagonal phase shift keying (8-PSK) 6
open system interconnection (OSI)
reference model 6
application layer 8
basic function 7
data link layer 7
network layer 8
physical layer 7
presentation layer 8
session layer 8
transport layer 8
Operations Support Systems and Business Support Systems (OSS/BSS) 294
Orthogonal Frequency Division Multiple Access 5
orthogonal frequency division multiplexing (OFDM) 239–240, 347

P
packet core network planning
frame relay planning 151
Gb interface 150–151
Gi interface 152
Index

Gn interface 151–152
SGSN dimensioning 151
Packet Data Convergence Protocol (PDCP) 161
packet switch network 231–232
parameter planning
 in EDGE network 83–84
 in GPRS network 76
 in LTE
 physical cell identity (PCI) 255–256
 physical resource block (PRB) 255
 received signal strength indicator (RSSI) 255
 reference signal received power (RSRP) 255
 reference signal received quality (RSRQ) 255
 signal to interference and noise ratio (SINR) 255
 tracking area 256
in radio network
 neighbour cells 58–59
Radio Resource Management (RRM) 57–58
signalling 57
Passive Optical Network (PON) 22
payload type (PT) 200
peer-to-peer (P2P) networks 339
performance indicators, in 4G
 LTE 263–264
permissioned blockchain 338
physical channels 31
physical network function (PNF) 293
pico-cell 34
polarisation diversity 48
power budget calculations see link budget calculations
power control, in GPRS networks 73
primary service allocations 359
professional/private mobile radio (PMR) 26
Proof of Authority (PoA) consensus algorithm 341
Proof of Elapsed Time (PoET) consensus algorithm 341
Proof of Stake (PoS) consensus algorithm 340
Proof of Work (PoW) consensus algorithm 340
Public Land Mobile Network (PLMN) 58
q
 quadrature amplitude modulation (QAM) 6
 quadrature phase shift keying (QPSK) 6
 quality of service (QoS)
 4G core network planning and optimisation
 default and dedicated 274
 parameters 274–275
 4G (LTE) radio network planning and optimisation 250–251
r
Radio Access Network Application Protocol (RANAP) 162
radio frequency identification (RFID) 23
radio frequency (RF) spectrum 353
radio interface protocol architecture
 channel configuration 163–164
 link layer 161–162
 physical layer 161
radio resource control (RRC) sublayer 162
UTRAN, protocol structure for 162–163
Radio LAN (RLAN) 26
radio network planning and optimisation
 see also 4G (LTE) radio network planning and optimisation; 3G
radio network planning and optimisation
 aim/goal 32
 base transceiver station 31
 blocking 53
 capacity planning
 average antenna height 54
 frequency re-use factor 51, 52, 54–55
 frequency usage 54–55
 traffic estimation/modelling 53–54
 cell and network coverage
 correction factors 51, 52
 location probability 51
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-cancellation techniques</td>
<td>304</td>
</tr>
<tr>
<td>self-configuration</td>
<td>261</td>
</tr>
<tr>
<td>self-healing</td>
<td>263</td>
</tr>
<tr>
<td>self-optimisation</td>
<td>263</td>
</tr>
<tr>
<td>self-organising network architecture</td>
<td>263</td>
</tr>
<tr>
<td>self-organising networks</td>
<td>260</td>
</tr>
<tr>
<td>service assurance (SA)</td>
<td>293</td>
</tr>
<tr>
<td>service orchestration</td>
<td>294</td>
</tr>
<tr>
<td>Short Message Service Centre (SMSC)</td>
<td>3</td>
</tr>
<tr>
<td>Short-Range Devices (SRD)</td>
<td>25</td>
</tr>
<tr>
<td>SigFox</td>
<td>24–25</td>
</tr>
<tr>
<td>signalling network</td>
<td></td>
</tr>
<tr>
<td>signalling dimension</td>
<td>141</td>
</tr>
<tr>
<td>signalling link</td>
<td>140</td>
</tr>
<tr>
<td>signalling points</td>
<td>140</td>
</tr>
<tr>
<td>single-input multiple-output (SIMO)</td>
<td></td>
</tr>
<tr>
<td>configurations</td>
<td>327, 328</td>
</tr>
<tr>
<td>single-input single-output (SISO)</td>
<td></td>
</tr>
<tr>
<td>configurations</td>
<td>327</td>
</tr>
<tr>
<td>single-user MIMO (SU-MIMO)</td>
<td>326–327</td>
</tr>
<tr>
<td>sleep ratio</td>
<td>302</td>
</tr>
<tr>
<td>Slow Associated Control Channels</td>
<td>57</td>
</tr>
<tr>
<td>(SAACH)</td>
<td></td>
</tr>
<tr>
<td>small cells, in 5G networks</td>
<td>312, 313</td>
</tr>
<tr>
<td>smart contracts</td>
<td>339</td>
</tr>
<tr>
<td>smart radio concept</td>
<td>80</td>
</tr>
<tr>
<td>smooth-sphere diffraction</td>
<td>104–105</td>
</tr>
<tr>
<td>software defined network</td>
<td></td>
</tr>
<tr>
<td>(SDN)</td>
<td>288–291</td>
</tr>
<tr>
<td>software defined radio (SDR)</td>
<td></td>
</tr>
<tr>
<td>technology</td>
<td>313</td>
</tr>
<tr>
<td>space diversity</td>
<td>48</td>
</tr>
<tr>
<td>spatial multiplexing</td>
<td>328–331</td>
</tr>
<tr>
<td>spectrum bands</td>
<td>359–360</td>
</tr>
<tr>
<td>spectrum management</td>
<td>256–258</td>
</tr>
<tr>
<td>spectrum refarming</td>
<td>256</td>
</tr>
<tr>
<td>spreading phenomenon</td>
<td></td>
</tr>
<tr>
<td>channelisation code</td>
<td>166</td>
</tr>
<tr>
<td>and despreading</td>
<td>165</td>
</tr>
<tr>
<td>DS-WCDMA_FDD method</td>
<td>164</td>
</tr>
<tr>
<td>processing gain</td>
<td>165</td>
</tr>
<tr>
<td>scrambling code</td>
<td>166</td>
</tr>
<tr>
<td>TDMA and FDMA systems</td>
<td>164</td>
</tr>
<tr>
<td>subscriber identity module (SIM)</td>
<td>30–31</td>
</tr>
<tr>
<td>synchronisation planning</td>
<td></td>
</tr>
<tr>
<td>clock distribution</td>
<td>114</td>
</tr>
<tr>
<td>implementation</td>
<td>116</td>
</tr>
<tr>
<td>PDH and SDH equipment</td>
<td>114</td>
</tr>
<tr>
<td>planning principles</td>
<td>115</td>
</tr>
<tr>
<td>slave clocks</td>
<td>115</td>
</tr>
<tr>
<td>TDD mode</td>
<td>238–239</td>
</tr>
<tr>
<td>Telcos, in blockchain technology</td>
<td>342, 343</td>
</tr>
<tr>
<td>telecommunication network operator, radio services</td>
<td>357, 359</td>
</tr>
<tr>
<td>temporary block flow (TBF)</td>
<td>74</td>
</tr>
<tr>
<td>Third Generation Partnership Project (3GPP)</td>
<td>2</td>
</tr>
<tr>
<td>3G core network planning</td>
<td></td>
</tr>
<tr>
<td>circuit switch</td>
<td></td>
</tr>
<tr>
<td>network analysis</td>
<td>225</td>
</tr>
<tr>
<td>detailed network planning</td>
<td></td>
</tr>
<tr>
<td>circuit switch network</td>
<td>228–231</td>
</tr>
<tr>
<td>packet switch network</td>
<td>231–232</td>
</tr>
<tr>
<td>network elements</td>
<td>223</td>
</tr>
<tr>
<td>and optimisation process</td>
<td>232–233</td>
</tr>
<tr>
<td>packet switch</td>
<td></td>
</tr>
<tr>
<td>network analysis</td>
<td>226</td>
</tr>
<tr>
<td>network dimension</td>
<td>227</td>
</tr>
<tr>
<td>scope</td>
<td>223–224</td>
</tr>
<tr>
<td>3G mobile networks</td>
<td></td>
</tr>
<tr>
<td>core network</td>
<td></td>
</tr>
<tr>
<td>gateway GPRS support node</td>
<td>14</td>
</tr>
<tr>
<td>gateway mobile switching centre</td>
<td>14</td>
</tr>
<tr>
<td>home location register</td>
<td>14</td>
</tr>
<tr>
<td>network management</td>
<td></td>
</tr>
<tr>
<td>systems</td>
<td>14–15</td>
</tr>
<tr>
<td>serving GPRS support node</td>
<td>14</td>
</tr>
<tr>
<td>visitor location register</td>
<td>14</td>
</tr>
<tr>
<td>WCDMA mobile switching centre</td>
<td>14</td>
</tr>
<tr>
<td>frequency bands in WCDMA-FDD</td>
<td>15–16</td>
</tr>
<tr>
<td>Iub interface</td>
<td>16</td>
</tr>
<tr>
<td>Iu interface</td>
<td>16</td>
</tr>
<tr>
<td>Iur interface</td>
<td>16</td>
</tr>
<tr>
<td>OSI model</td>
<td>16, 17</td>
</tr>
<tr>
<td>radio access network</td>
<td></td>
</tr>
<tr>
<td>base station</td>
<td>13</td>
</tr>
<tr>
<td>radio network controller</td>
<td>14</td>
</tr>
<tr>
<td>signalling</td>
<td>16</td>
</tr>
<tr>
<td>Uu/WCDMA air-interface</td>
<td>15</td>
</tr>
</tbody>
</table>
3G radio network planning and optimisation
amplifiers and filters 160
AMR 175, 178
base station 160
capacity planning 175, 179
code planning 171
coverage planning 178
E_b/N_0 174
equipment and network parameters 174
link budget 175
loading effect 174–175
power control headroom 174
propagation model 175
soft handover phenomenon 174
handover in 172–173
high speed packet access (HSPA)
HSDPA (see High Speed Downlink Packet Access (HSDPA))
HSUPA (High Speed Uplink Packer Access) (see High Speed Uplink Packer Access (HSUPA))
modulation/demodulation and spreading unit 160
multipath propagation 166–167
network interface unit 160
physical layer performance and structure
physical channels 169–170
transport channels 169
power control 171–172
pre-planning phase 168–169
radio fundamentals 158
radio interface protocol architecture
link layer 161–162
physical layer 161
radio resource control (RRC)
sublayer 162
UTRAN, protocol structure for 162–163
radio network controller (RNC) 161
radio resource management 179–181
requirements 157
scope 157, 158
spreading phenomenon
channelisation code 166
and despreading 165
DS-WCDMA_FDD method 164
processing gain 165
scrambling code 166
TDMA and FDMA systems 164
transceiver 160
UMTS, service classes in 158–159
uplink and downlink modulation 170
uplink and downlink spreading 170–171
user equipment (UE) 159–160
3G transmission network planning and optimisation
asynchronous transfer mode
adaptation layer 201–202
ATM layer 201
cell loss priority (CLP) 200
generic flow control (GFC) 200
header error control (HEC) 199
multiplexing and switching 202–203
payload type (PT) 200
physical layer 200–201
virtual path and virtual channel identifiers 200
ATM layer
architecture elements 219–220
parameter setting 220–221
propagation conditions 219
traffic load 219
base stations
antenna filter and power amplifier (AF and PA) 195
application manager (AM) 196
ATM Cross Connect (AXC) 197
interface unit (IFU) 197
signal processor (SP) 196
summing and multiplexing units (S and M) 195–196
transceivers (TRXs) 195
basics of 217
detailed planning
ATM planning 214
network element and interface configuration
parameters 212–213
network management plan 215
parameter planning 209
synchronisation plan 214–215
traffic management on ATM 209–212
dimensioning phase
protocol overhead 205
signalling overhead 205
soft handover (SHO) 203, 205
transmission interfaces, signalling on 205
voice activity factor (VAF) 203
ethernet radio 215–216
microwave link planning 206–208
network analysis
capacity analysis 218
quality optimisation 218
nominal planning 198
process definition 217
radio network controller (RNC)
control unit 197
interface unit (IFU) 197
switching unit 197
scope 195
Time Division Multiple Access
(Time Division Multiple Access) 5
traffic (bh) and signalling
dimensioning 273
transmission network
base station controller 87–88
base station transceiver (BTS) 87
design principles for 105–106
EDGE networks 123, 127–132
derror performance and availability 106–107
fading 101–105
frequency planning 107–110
GPRS network and optimisation 123
imaginary network topology 89
ITU recommendations 90
line of sight (LOS) 90
2 Mbps planning 112–113
microwave transmission 89
network management
planning 116–117
optimisation process
capacity analysis 119–120
cellular transmission network optimization cycle 118
definition 118–119
quality analysis 120–125
pre-planning
A_{ts} and A_{tr} interface 91–92
equipment location 92
line-of-sight survey 94
microwave link planning 95–105
network topology 92–93
one PCM connection 90–91
phase 89
radius of Fresnel zone 94–95
site selection process 93–94
scope 87
synchronisation planning 114–116
timeslot allocation planning 111
transcoders and sub-multiplexers 88–89
TRX level KPIs 61

U
ultra-reliable and low latency communication
(u-RLLC) 300
Universal Terrestrial Mobile System (UTMS) 4
Universal Terrestrial Radio Access Network (UTRAN) 162–163
uplink power budget 40
User Data Protocol/Transport Control Protocol (UDP/TCP) 71
user throughput 300

V
V+ 21
value added services (VAS) 3
VDSL2 21
very-high-bit-rate DSL 21
V2I communication 25
virtualised network function manager (VNFM) 293
virtual LANs (VLANs) 283
virtual reality based immersive event experience 319
voice activity detection (VAD) 56
voice-flow, in LTE
Circuit Switch Fall Back
(CSFB) 287–288
Voice over LTE (VoLTE) 288
Voice over LTE via Generic Access
(VoLGA) 287
voice mail system (VMS) 3
V2V communication 25

W
WCDMA radio network optimisation
admission control 193
capacity enhancements 189–190
coverage enhancements 189–190
handover optimisation 192
key performance indicators 187

network performance
monitoring 187–188
packet scheduling optimisation 193
parameter tuning 192
power control 193
quality 192
wireless communication
technology 316–317

X
XG-PON1 22
XGS-PON 22

Z
ZigBee 24
Z-Wave 24