Contents

List of Contributors xiii

Preface xix
S. Luryi, J. M. Xu, and A. Zaslavsky

Acknowledgments xxiii

I FUTURE OF DIGITAL SILICON

1.1 Prospects of Future Si Technologies in the Data-Driven World 3
Kinam Kim and Gitae Jeong
1. Introduction 3
2. Memory – DRAM 4
3. Memory – NAND 6
4. Logic technology 8
5. CMOS image sensors 11
6. Packaging technology 13
7. Silicon photonics technology 16
8. Concluding remarks 18
Acknowledgments 18
References 18

1.2 How Lithography Enables Moore’s Law 23
J. P. H. Benschop
1. Introduction 23
2. Moore’s Law and the contribution of lithography 23
3. Lithography technology: past and present 24
4. Lithography technology: future 26
5. Summary 31
6. Conclusion 31
Acknowledgments 31
References 32

1.3 What Happened to Post-CMOS? 35
P. M. Solomon
1. Introduction 35
2. General constraints on speed and energy 35
3. Guidelines for success 38
4. Benchmarking and examples 40
5. Discussion 46
6. Conclusion 47
Acknowledgments 47
References 47

1.4 Three-Dimensional Integration of Ge and Two-Dimensional Materials for One-Dimensional Devices 51
M. Östling, E. Dentoni Litta, and P.-E. Hellström

1. Introduction 51
2. FEOL technology and materials for 3D integration 54
3. Integration of “more than Moore” functionality 57
4. Implications of 3D integration at the system level 59
5. Conclusion 61
Acknowledgments 62
References 63

1.5 Challenges to Ultralow-Power Semiconductor Device Operation 69
Francis Balestra

1. Introduction 69
2. Ultimate MOS transistors 70
3. Small slope switches 76
4. Conclusion 77
Acknowledgments 78
References 78

1.6 A Universal Nonvolatile Processing Environment 83
T. Windbacher, A. Makarov, V. Sverdlov, and S. Selberherr

1. Introduction 83
2. Universal nonvolatile processing environment 84
3. Bias-field-free spin-torque oscillator 87
4. Summary 90
Acknowledgments 90
References 90

1.7 Can MRAM (Finally) Be a Factor? 93
Jean-Pierre Nozières

1. Introduction 93
2. What is MRAM? 93
3. Current limitations for stand-alone memories 96
4. Immediate opportunities: embedded memories 98
5. Conclusion 101
References 101
1.8 Nanomanufacturing for Electronics or Optoelectronics 103
 M. J. Kelly
 1. Introduction 103
 2. Nano-LEGO® 104
 3. Tunnel devices 105
 4. Split-gate transistors 106
 5. Other nanoscale systems 108
 6. Conclusion 108
 Acknowledgments 109
 References 109

II NEW MATERIALS AND NEW PHYSICS

2.1 Surface Waves Everywhere 113
 M. I. Dyakonov
 1. Introduction 113
 2. Water waves 113
 3. Surface acoustic waves 116
 4. Surface plasma waves and polaritons 117
 5. Plasma waves in two-dimensional structures 117
 6. Electronic surface states in solids 119
 7. Dyakonov surface waves (DSWs) 121
 References 123

2.2 Graphene and Atom-Thick 2D Materials: Device Application Prospects 127
 Sungwoo Hwang, Jinseong Heo, Min-Hyun Lee, Kyung-Eun Byun, Yeonchoo Cho, and Seongjun Park
 1. Introduction 127
 2. Conventional low-dimensional systems 127
 3. New atomically thin material systems 129
 4. Device application of new material systems 133
 5. Components in Si technology 137
 6. Graphene on Ge 142
 7. Conclusion 142
 References 142

2.3 Computing with Coupled Relaxation Oscillators 147
 N. Shukla, S. Datta, A. Parihar, and A. Raychowdhury
 1. Introduction 147
 2. Vanadium dioxide-based relaxation oscillators 148
3. Experimental demonstration of pairwise coupled HVFET oscillators

- Computing with pairwise coupled HVFET oscillators
- Associative computing using pairwise coupled oscillators
- Conclusion

References

150

2.4 On the Field-Induced Insulator–Metal Transition in VO$_2$ Films

Serge Luryi and Boris Spivak

1. Introduction
2. Electron concentration-induced transition
3. Field-induced transition in a film
4. Need for a ground plane
5. Conclusion

References

157

2.5 Group IV Alloys for Advanced Nano- and Optoelectronic Applications

Detlev Grützmacher

1. Introduction
2. Epitaxial growth of GeSn layers by reactive gas source epitaxy
3. Optically pumped GeSn laser
4. Potential of GeSn alloys for electronic devices
5. Conclusion

Acknowledgments

References

167

2.6 High Sn-Content GeSn Light Emitters for Silicon Photonics

1. Introduction
2. Experimental details of the GeSn material system
3. Direct bandgap GeSn light emitting diodes
4. Group IV GeSn microdisk laser on Si(100)
5. Conclusion and outlook

References

181

2.7 Gallium Nitride-Based Lateral and Vertical Nanowire Devices

Y.-W. Jo, D.-H. Son, K.-S. Im, and J.-H. Lee

1. Introduction
2. Crystallographic study of GaN nanowires using TMAH wet etching

References

195
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Ω-shaped-gate lateral AlGaN/GaN FETs</td>
<td>199</td>
</tr>
<tr>
<td>4. Gate-all-around vertical GaN FETs</td>
<td>200</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>203</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>204</td>
</tr>
<tr>
<td>References</td>
<td>204</td>
</tr>
<tr>
<td>2.8 Scribing Graphene Circuits</td>
<td>207</td>
</tr>
<tr>
<td>N. Rodriguez, R. J. Ruiz, C. Marquez, and F. Gamiz</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>207</td>
</tr>
<tr>
<td>2. Graphene oxide from graphite</td>
<td>208</td>
</tr>
<tr>
<td>3. GO exfoliation</td>
<td>209</td>
</tr>
<tr>
<td>4. Selective reduction of graphene oxide</td>
<td>210</td>
</tr>
<tr>
<td>5. Raman spectroscopy</td>
<td>211</td>
</tr>
<tr>
<td>6. Electrical properties of graphene oxide and reduced graphene oxide</td>
<td>212</td>
</tr>
<tr>
<td>7. Future perspectives</td>
<td>214</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>215</td>
</tr>
<tr>
<td>References</td>
<td>215</td>
</tr>
<tr>
<td>2.9 Structure and Electron Transport in Irradiated Monolayer Graphene</td>
<td>217</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>217</td>
</tr>
<tr>
<td>2. Samples</td>
<td>217</td>
</tr>
<tr>
<td>3. Raman scattering (RS) spectra</td>
<td>218</td>
</tr>
<tr>
<td>4. Sample resistance</td>
<td>220</td>
</tr>
<tr>
<td>5. Hopping magnetoresistance</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
<tr>
<td>2.10 Interplay of Coulomb Blockade and Luttinger-Liquid Physics in Disordered 1D InAs Nanowires with Strong Spin–Orbit Coupling</td>
<td>233</td>
</tr>
<tr>
<td>R. Hevroni, V. Shelukhin, M. Karpovski, M. Goldstein, E. Sela, A. Palevski, and Hadas Shtrikman</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>233</td>
</tr>
<tr>
<td>2. Sample preparation and the experimental setup</td>
<td>234</td>
</tr>
<tr>
<td>3. Experimental results</td>
<td>234</td>
</tr>
<tr>
<td>4. Conclusion</td>
<td>240</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>240</td>
</tr>
<tr>
<td>References</td>
<td>240</td>
</tr>
</tbody>
</table>
III MICROELECTRONICS IN HEALTH, ENERGY HARVESTING, AND COMMUNICATIONS

3.1 Image-Guided Intervention and Therapy: The First Time Right

245

B. H. W. Hendriks, D. Mioni, W. Crooijmans, and H. van Houten

1. Introduction
2. Societal challenge: Rapid rise of cardiovascular diseases
3. Societal challenge: Rapid rise of cancer
4. Drivers of change in healthcare
5. Conclusion

Acknowledgments
References

3.2 Rewiring the Nervous System, Without Wires

259

D. A. Borton

1. Introduction
2. Why go wireless?
3. One wireless recording solution used to explore primary motor cortex control of locomotion
4. Writing into the nervous system with epidural electrical stimulation of spinal circuits effectively modulates gait
5. Genetic technology brings a better model to neuroscience
6. The wireless bridge for closed-loop control and rehabilitation
7. Conclusion

Acknowledgments
References

3.3 Nanopower-Integrated Electronics for Energy Harvesting, Conversion, and Management

275

1. Introduction
2. Commercial ICs for micropower harvesting
3. State-of-the-art integrated nanocurrent power converters for energy-harvesting applications
4. A multisource-integrated energy-harvesting circuit
5. Conclusion

Acknowledgments
References

3.4 Will Composite Nanomaterials Replace Piezoelectric Thin Films for Energy Transduction Applications?

291

R. Tao, G. Ardila, R. Hinchet, A. Michard, L. Montès, and M. Mouis

1. Introduction
2. Thin film piezoelectric materials and applications 292
3. Individual ZnO and GaN piezoelectric nanowires: experiments and simulations 293
4. Piezoelectric composite materials using nanowires 295
5. Conclusion 303
Acknowledgments 304
References 304

3.5 New Generation of Vertical-Cavity Surface-Emitting Lasers for Optical Interconnects 309
1. Introduction 309
2. VCSEL requirements 310
3. Optical leakage 312
4. Experiment 313
5. Simulation 316
6. Conclusion 323
Acknowledgments 323
References 323

3.6 Reconfigurable Infrared Photodetector Based on Asymmetrically Doped Double Quantum Wells for Multicolor and Remote Temperature Sensing 327
X. Zhang, V. Mitin, G. Thomain, T. Yore, Y. Li, J. K. Choi, K. Sablon, and A. Sergeev
1. Introduction 327
2. Fabrication of DQWIP with asymmetrical doping 328
3. Optoelectronic characterization of DQWIPs 329
4. Temperature sensing 333
5. Conclusion 334
Acknowledgments 335
References 335

3.7 Tunable Photonic Molecules for Spectral Engineering in Dense Photonic Integration 337
1. Introduction 337
2. Photonic molecules and their spectral features 338
3. Coupling-controlled mode-splitting: GHz-operation on a tight footprint 340
4. Reconfigurable spectral control 341
5. Toward reconfigurable mode-splitting control 343
6. Conclusion 346
Acknowledgments 346
References 347
INDEX 349