Contents

Acknowledgments xv

1 Basic Memory Device Trends Toward the Vertical 1
1.1 Overview of 3D Vertical Memory Book 1
1.2 Moore’s Law and Scaling 2
1.3 Early RAM 3D Memory 3
 1.3.1 SRAM as the First 3D Memory 3
 1.3.2 An Early 3D Memory—The FinFET SRAM 6
 1.3.3 Early Progress in 3D DRAM Trench and Stack Capacitors 6
 1.3.4 3D as the Next Step for Embedded RAM 11
1.4 Early Nonvolatile Memories Evolve to 3D 13
 1.4.1 NOR Flash Memory—Both Standalone and Embedded 13
 1.4.2 The Charge-Trapping EEPROM 14
 1.4.3 Thin-Film Transistor Takes Nonvolatile Memory into 3D 15
 1.4.4 3D Microcontroller Stacks with Embedded SRAM and EEPROM 17
 1.4.5 NAND Flash Memory as an Ideal 3D Memory 17
1.5 3D Cross-Point Arrays with Resistance RAM 20
1.6 STT-MTJ Resistance Switches in 3D 21
1.7 The Role of Emerging Memories in 3D Vertical Memories 22
References 23

2 3D Memory Using Double-Gate, Folded, TFT, and Stacked Crystal Silicon 25
2.1 Introduction 25
2.2 FinFET—Early Vertical Memories 26
 2.2.1 Early FD-SOI FinFET Charge-Trapping Flash Memory 26
 2.2.2 FinFET Charge-Trapping Memory on Bulk Silicon 28
 2.2.3 Doubling Memory Density Using a Paired FinFET Bit-Line Structure 32
 2.2.4 Other Folded Gate Memory Structures and Characteristics 34
2.3 Double-Gate and Tri-Gate Flash 37
 2.3.1 Vertical Channel Double Floating Gate Flash Memory 37
2.3.2 Early Double- and Tri-Gate FinFET Charge-Trapping Flash Memories

2.3.3 Double-Gate Dopant-Segregated Schottky Barrier CT FinFET Flash

2.3.4 Independent Double-Gate FinFET CT Flash Memory

2.4 Thin-Film Transistor (TFT) Nonvolatile Memory with Polysilicon Channels

2.4.1 Independent Double-Gate Memory with TFT and Polysilicon Channels

2.4.2 TFT Polysilicon Channel NV Memory Using Silicon Protrusions to Enhance Performance

2.4.3 An Improved Polysilicon Channel TFT for Vertical Transistor NAND Flash

2.4.4 Polysilicon TFT CT Memory with Vacuum Tunneling and Al₂O₃ Blocking Oxide

2.4.5 Graphene Channel NV Memory with Al₂O₃–HfOₓ–Al₂O₃ Storage Layer

2.5 Double-Gate Vertical Channel Flash Memory with Engineered Tunnel Layer

2.5.1 Double-Gate Vertical Single-Crystal Silicon Channel with Engineered Tunnel Layer

2.5.2 Polysilicon Substrate TFT CT NAND with Engineered Tunnel Layer

2.5.3 Polysilicon Channel Double-Layer Stacked TFT NAND Bandgap-Engineered Flash

2.5.4 Eight-Layer 3D Vertical DG TFT NAND Flash with Junctionless Buried Channel

2.5.5 Variability in Polysilicon TFT for 3D Vertical Gate NAND Flash

2.6 Stacked Gated Twin-Bit (SGTB) CT Flash

2.7 Crystalline Silicon and Epitaxial Stacked Layers

2.7.1 Stacked Crystalline Silicon Layer TFT for Six-Transistor SRAM Cell Technology

2.7.2 Stacked Silicon Layer S³ Process for Production SRAM

2.7.3 NAND Flash Memory Development Using Double-Stacked S³ Technology

2.7.4 4Gb NAND Flash Memory in 45 nm 3D Double-Stacked S³ Technology

References

3 Gate-All-Around (GAA) Nanowire for Vertical Memory

3.1 Overview of GAA Nanowire Memories

3.2 Single-Crystal Silicon GAA Nanowire CT Memories

3.2.1 Overview of Single-Crystal Silicon GAA CT Memories

3.2.2 An Early GAA Nanowire Single-Crystal Silicon CT Memory

3.2.3 Vertically Stacked Single-Crystal Silicon Twin Nanowire GAA CT Memories

3.2.4 GAA CT NAND Flash String Using One Single-Crystal SiNW
4 Vertical NAND Flash

4.1 Overview of 3D Vertical NAND Trends

1. **3D Nonvolatile Memory Overview**
2. **Architectures of Various 3D NAND Flash Arrays**
3. **Scaling Trends for 2D and 3D NAND Cells**

4.2 Vertical Channel (Pipe) CT NAND Flash Technology

1. **BiCS CT Pipe NAND Flash Technology**
2. **Pipe-Shaped BiCS (P-BiCS) NAND Flash Technology**
3. **Vertical CT Vertical Recess Array Transistor (VRAT) Technology**
4. **Z-VRAT CT Memory Technology**
5. **Vertical NAND Chains—VSAT with “PIPE” Process**
6. **Vertical CT PIPE NAND Flash with Damascene Metal Gate TCAT/VNAND**

4.3 3D FG NAND Flash Cell Arrays

1. **3D FG NAND with Extended Sidewall Control Gate**
2. **3D FG NAND with Separated-Sidewall Control Gate**
3. **3D FG NAND Flash Cell with Dual CGs and Surrounding FG (DC-SF)**
4. **3D Vertical FG NAND with Sidewall Control Pillar**
5. **Trap Characterization in 3D Vertical Channel NAND Flash**
6. **Program Disturb Characteristics of 3D Vertical NAND Flash**

4.4 3D Stacked NAND Flash with Lateral BL Layers and Vertical Gate

1. **Introduction to Horizontal BL and Vertical Gate NAND Flash**
2. **A 3D Vertical Gate NAND Flash Process and Device Considerations**
3. **Vertical Gate NAND Flash Integration with Eight Active Layers**
4. **3D Stacked CT TFT Bandgap-Engineered SONOS NAND Flash Memory**
5. **Horizontal Channel Vertical Gate 3D NAND Flash with PN Diode Decoding**
6. **3D Vertical Gate BE-SONOS NAND Program Inhibit with Multiple Island Gate Decoding**
7. **3D Vertical Gate NAND Flash BL Decoding and Page Operation**
8. **An Eight-Layer Vertical Gate 3D NAND Architecture with Split-Page BL**
9. **Various Innovations for 3D Stackable Vertical Gate**
10. **Variability Considerations in 2D Vertical Gate 3D NAND Flash**
11. **An Etching Technology for Vertical Multilayers for 3D Vertical Gate NAND Flash**
12. **Interference, Disturb, and Programming Algorithms for MLC Vertical Gate NAND**
13. **3D Vertical Gate NAND Flash Program and Read and Fail-Bit Detection**
4.4.14 3D p-Channel Stackable NAND Flash with Band-to-Band Tunnel Programming

4.4.15 A Bit-Alterable 3D NAND Flash with n-Channel and p-Channel NAND

References

5 3D Cross-Point Array Memory

5.1 Overview of Cross-Point Array Memory

5.2 A Brief Background of Cross-Point Array Memories

5.2.1 Construction of a Basic Cross-Point Array

5.2.2 Stacking Multibit Cross-Point Arrays

5.2.3 Methods of Stacking Cross-Point Arrays

5.2.4 Stacking Cross-Point Layers for High Density

5.2.5 An Example of Unipolar ReRAM

5.2.6 An Example of a Bipolar ReRAM

5.2.7 Basic Cross-Point Array Operation with a Diode Selector

5.2.8 Early Test Chip Using a ReRAM Cross-Point Array with Diode Selector

5.3 Low-Resistance Interconnects for Cross-Point Arrays

5.3.1 Model of Low Resistance Interconnects for Cross-Point Arrays

5.3.2 A Cross-Point Array Grid with Low-Resistivity Nanowires

5.3.3 A Cross-Point Array Using Two Nickel Core Nanowires

5.3.4 Resistive Memory Using Single-Wall Carbon Nanotubes

5.4 Cross-Point Array Memories Without Cell Selectors

5.4.1 Early Model of Bipolar Resistive Switch in Selectorless Cross-Point Array

5.4.2 Sneak Path Leakage in a Selectorless Cross-Point Array

5.4.3 Effect of Parasitic Resistance on Maximum Size of a Selectorless Cross-Point Array

5.4.4 Effect of Nonlinearity on I–V Characteristics of Selectorless Memory Element

5.4.5 Self-Rectifying ReRAM Requirements in Cross-Point Arrays

5.4.6 A Cross-Point Array Model for Line Resistance and Nonlinear Devices

5.5 Examples of Selectorless Cross-Point Arrays

5.5.1 Example of Nonlinearity in a Selectorless Cross-Point Array

5.5.2 Example of High-Resistive Memory Element in Selectorless Cross-Point Array

5.5.3 Design Techniques for Nonlinear Selectorless Cross-Point Arrays Using ReRAMs

5.5.4 Film Thickness and Scaling Effects in Cross-Point Selectorless ReRAM

5.5.5 Vertical HfOx ReRAM 3D Cross-Point Array Without Cell Selector

5.5.6 Dopant Selection Rules for Tuning HfOx ReRAM Characteristics

5.5.7 High-Resistance CB-ReRAM Memory Element to Avoid Sneak Current
5.5.8 Electromechanical Diode Cell for a Cross-Point Nonvolatile Memory Array

5.6 Unipolar Resistance RAMs with Diode Selectors in Cross-Point Arrays
5.6.1 Overview of Unipolar ReRAMs with Diode Selectors in Cross-Point Arrays
5.6.2 A Unipolar ReRAM with Silicon Diode for Cross-Point Array
5.6.3 CuOx–InZnOx Heterojunction Thin-Film Diode with NiO ReRAM
5.6.4 Unipolar NiO ReRAM \textit{I}_{\text{reset}} and SET–RESET Instability
5.6.5 HfOx–AlOy Unipolar ReRAM with Silicon Diode Selector in Cross-Point Array
5.6.6 TiN–TaOx–Pt MIM Selector for Pt–TaOx–Pt Unipolar ReRAM Cross-Point Array
5.6.7 Self-Rectifying Unipolar Ni–HfOx Schottky Barrier ReRAM
5.6.8 Schottky Barriers for Self-Rectifying Unidirectional Cross-Point Array
5.6.9 Thermally Induced Set Operation for Unipolar ReRAM with Diode Selector

5.7 Unipolar PCM with Two-Terminal Diodes for Cross-Point Array
5.7.1 Background of Phase-Change Memory in a Cross-Point Array
5.7.2 PCM in Cross-Point Arrays with Polysilicon Diodes
5.7.3 Cross-Point Array with PCM and Carbon Nanotube Electrode
5.7.4 Cross-Point Array with MIEC Access Devices and PCM Elements
5.7.5 Threshold Switching Access Devices for ReRAM Cross-Point Arrays
5.7.6 \textit{p–n} Diode Selection Devices for PCM
5.7.7 Epitaxial Diode Selector for PCM in Cross-Point Arrays
5.7.8 Dual-Trench Epitaxial Diode Array for High-Density PCM

5.8 Bipolar Resistance RAMs With Selector Devices in Cross-Point Arrays
5.8.1 VO\textsubscript{2} Select Device for Bipolar ReRAM in Cross-Point Array
5.8.2 Threshold Select Devices for Bipolar Memory Elements in Cross-Point Arrays
5.8.3 Vertical Bipolar Switching Polysilicon n–p–n Diode for Cross-Point Array
5.8.4 Two-Terminal Diode Steering Element for 3D Cross-Point ReRAM Array
5.8.5 Varistor-Type Bidirectional Switch for 3D Bipolar ReRAM Array
5.8.6 Bidirectional Threshold Vacuum Switch for 3D 4F2 Cross-Point Array
5.8.7 Bidirectional Schottky Diode Selector
5.8.8 Bipolar ReRAM with Schottky Self-Rectifying Behavior in the LRS
5.8.9 Self-Rectifying Bipolar ReRAM Using Schottky Barrier at Ta–TaOx Interface
5.8.10 Diode Effect of Pt–In\textsubscript{2}Ga\textsubscript{2}ZnO\textsubscript{7} Layer in TiO\textsubscript{2}-type ReRAM
5.8.11 Confined NbO\textsubscript{2} as a Selector in Bipolar ReRAMs

5.9 Complementary Switching Devices and Arrays
5.9.1 Complementary Resistive Switching for Dense Crossbar Arrays
5.9.2 CRS Memory Using Amorphous Carbon and CNTs 257
5.9.3 Complementary Switching in Metal–Oxide ReRAM for Crossbar Arrays 259
5.9.4 CRSs Using a Heterodevice 260
5.9.5 Self-Selective W–VO$_2$–Pt ReRAM to Reduce Sneak Current in ReRAM Arrays 261
5.9.6 Hybrid Nb$_2$O$_5$–NbO$_2$ ReRAM with Combined Memory and Selector 263
5.9.7 Analysis of Complementary ReRAM Switching 264
5.9.8 Complementary Stacked Bipolar ReRAM Cross-Point Arrays 266
5.9.9 Complementary Switching Oxide-Based Bipolar ReRAM 266

5.10 Toward Manufacturable ReRAM Cells and Cross-point Arrays 267
5.10.1 28 nm ReRAM and Diode Cross-Point Array in CMOS-Compatible Process 267
5.10.2 Double-Layer 3D Vertical ReRAM for High-Density Arrays 268
5.10.3 Study of Cell Performance for Different Stacked ReRAM Geometries 269

5.11 STT Magnetic Tunnel Junction Resistance Switches in Cross-Point Array Architecture 269
5.11.1 High-Density Cross-Point STT Magnetic Tunnel Junction Architecture 269

References 271

6 3D Stacking of RAM–Processor Chips Using TSV 275
6.1 Overview of 3D Stacking of RAM–Processor Chips with TSV 275
6.2 Architecture and Design of TSV RAM–Processor Chips 280
6.2.1 Overview of Architecture and Design of Vertical TSV Connected Chips 280
6.2.2 Repartitioning For Performance by Increasing the Number of Memory Banks 280
6.2.3 Using a Global Clock Distribution Technique to Improve Performance 282
6.2.4 Stacking eDRAM Cache and Processor for Improved Performance 282
6.2.5 Using Decoupling Scheduling of the Memory Controller to Improve Performance 283
6.2.6 Repartitioning Multicore Processors and Stacked RAM for Improved Performance 283
6.2.7 Increasing Performance and Lowering Power in Low-Power Mobile Systems 287
6.2.8 Increasing Performance of Memory Hierarchies with 3D TSV Integration 287
6.2.9 Adding Storage-Class Memory to the Memory Hierarchy 289
6.2.10 Improving Performance Using 3D Stacked RAM Modeling 290

6.3 Process and Fabrication of Vertical TSV for Memory and Logic 292
6.3.1 Passive TSV Interposers for Stacked Memory–Logic Integration 292
6.3.2 Process Fabrication Methods and Foundries for Early 2.5D and 3D Integration 295
6.3.3 Integration with TSV Using a High-κ–Metal Gate CMOS Process

6.3.4 Processor with Deep Trench DRAM TSV Stacks and High-κ–Metal Gate

6.4 Process and Fabrication Issues of TSV 3D Stacking Technology

6.4.1 Using Copper TSV for 3D Stacking

6.4.2 Air Gaps for High-Performance TSV Interconnects for 3D ICs

6.5 Fabrication of TSVs

6.5.1 Using TSVs at Various Stages in the Process

6.5.2 Stacked Chips using Via-Middle Technology

6.6 Energy Efficiency Considerations of 3D Stacked Memory–Logic Chip Systems

6.6.1 Overview of Energy Efficiency in 3D Stacked Memory–Logic Chip Systems

6.6.2 Energy Efficiency for a 3D TSV Integrated DRAM–Controller System

6.6.3 Adding an SRAM Row Cache to Stacked 3D DRAM to Minimize Energy

6.6.4 Power Delivery Networks in 3D ICs

6.6.5 Using Near-Threshold Computing for Power Reduction in a 3D TSV System

6.7 Thermal Characterization Analysis and Modeling of RAM–Logic Stacks

6.7.1 Thermal Management of Hot Spots in 3D Chips

6.7.2 Thermal Management in 3D Chips Using an Interposer with Embedded TSV

6.7.3 Thermal Management of TSV DRAM Stacks with Logic

6.7.4 Thermal Management of a 3D TSV SRAM on Logic Stack

6.8 Testing of 3D Stacked TSV System Chips

6.8.1 Using BIST to Reduce Testing for a Logic and DRAM System Stack

6.8.2 Efficient BISR and Redundancy Allocation in 3D RAM–Logic Stacks

6.8.3 Direct Testing of Early SDRAM Stacks

6.9 Reliability Considerations with 3D TSV RAM–Processor Chips

6.9.1 Overview of Reliability Issues in 3D TSV Stacked RAM–Processor Chips

6.9.2 Variation Issues in Stacked 3D TSV RAM–Processor Chips

6.9.3 Switching and Decoupling Noise in a 3D TSV-Based System

6.9.4 TSV-Induced Mechanical Stress in CMOS

6.10 Reconfiguring Stacked TSV Memory Architectures for Improved Performance

6.10.1 Overview of Potential for Reconfigured Stacked Architectures

6.10.2 3D TSV-based 3D SRAM for High-Performance Platforms

6.10.3 Waveform Capture with 100 GB/s I/O, 4096 TSVs and an Active Si Interposer

6.10.4 3D Stacked FPGA and ReRAM Configuration Memory

6.10.5 Cache Architecture to Configure Stacked DRAM to Specific Applications

6.10.6 Network Platform for Stacked Memory–Processor Architectures

6.10.7 Multiplexing Signals to Reduce Number of TSVs in IC Die Stacking
6.10.8 3D Hybrid Cache with MRAM and SRAM Stacked on Processor Cores
6.10.9 CMOS FPGA and Routing Switches Made with ReRAM Devices
6.10.10 Dynamic Configurable SRAM Stacked with Various Logic Chips

6.11 Stacking Memories Using Noncontact Connections with Inductive Coupling
6.11.1 Overview of Noncontact Inductive Coupling of Stacked Memory
6.11.2 Early Concepts of Inductive-Coupling Connections of Stacked Memory Chips
6.11.3 Evolution of Inductive-Coupling Connections of NAND Flash Stacks
6.11.4 TCI for Replacing Stacking with TSV Connections
6.11.5 Processor–SRAM 3D Integration Using Inductive Coupling
6.11.6 Optical Interface for Future 3D Stacked Chip Connections

References

Index