Contents

Contributors, xi

1. What is Geobiology?, 1
 ANDREW H. KNOLL, DONALD E. CANFIELD, AND KURT O. KONHAUSER
 1.1 Introduction, 1
 1.2 Life interacting with the Earth, 2
 1.3 Pattern and process in geobiology, 2
 1.4 New horizons in geobiology, 3
 References, 3

2. The Global Carbon Cycle: Biological Processes, 5
 PAUL G. FALKOWSKI
 2.1 Introduction, 5
 2.2 A brief primer on redox reactions, 5
 2.3 Carbon as a substrate for biological reactions, 5
 2.4 The evolution of photosynthesis, 8
 2.5 The evolution of oxygenic phototrophs, 11
 2.6 Net primary production, 13
 2.7 What limits NPP on land and in the ocean?, 15
 2.8 Is NPP in balance with respiration?, 16
 2.9 Conclusions and extensions, 17
 References, 18

 KLAUS WALLMANN AND GIOVANNI ALOISI
 3.1 Introduction, 20
 3.2 Organic carbon cycling, 20
 3.3 Carbonate cycling, 22
 3.4 Mantle degassing, 23
 3.5 Metamorphism, 24
 3.6 Silicate weathering, 24
 3.7 Feedbacks, 25
 3.8 Balancing the geological carbon cycle, 26
 3.9 Evolution of the geological carbon cycle through Earth’s history: proxies and models, 27
 3.10 The geological C cycle through time, 30
 3.11 Limitations and perspectives, 32
 References, 32

4. The Global Nitrogen Cycle, 36
 BESS WARD
 4.1 Introduction, 36
 4.2 Geological nitrogen cycle, 36
 4.3 Components of the global nitrogen cycle, 38
 4.4 Nitrogen redox chemistry, 40
 4.5 Biological reactions of the nitrogen cycle, 40
4.6 Atmospheric nitrogen chemistry, 45
4.7 Summary and areas for future research, 46
References, 47

5. The Global Sulfur Cycle, 49
DONALD E. CANFIELD AND JAMES FARQUHAR
5.1 Introduction, 49
5.2 The global sulfur cycle from two perspectives, 49
5.3 The evolution of S metabolisms, 53
5.4 The interaction of S with other biogeochemical cycles, 55
5.5 The evolution of the S cycle, 59
5.6 Closing remarks, 61
Acknowledgements, 62
References, 62

6. The Global Iron Cycle, 65
BRIAN KENDALL, ARIEL D. ANBAR, ANDREAS KAPPLER AND KURT O. KONHAUSER
6.1 Overview, 65
6.2 The inorganic geochemistry of iron: redox and reservoirs, 65
6.3 Iron in modern biology and biogeochemical cycles, 69
6.4 Iron through time, 73
6.5 Summary, 83
Acknowledgements, 84
References, 84

7. The Global Oxygen Cycle, 93
JAMES F. KASTING AND DONALD E. CANFIELD
7.1 Introduction, 93
7.2 The chemistry and biochemistry of oxygen, 93
7.3 The concept of redox balance, 94
7.4 The modern O₂ cycle, 94
7.5 Cycling of O₂ and H₂ on the early Earth, 98
7.6 Synthesis: speculations about the timing and cause of the rise of atmospheric O₂, 102
References, 102

8. Bacterial Biomineralization, 105
KURT KONHAUSER AND ROBERT RIDING
8.1 Introduction, 105
8.2 Mineral nucleation and growth, 105
8.3 How bacteria facilitate biomineralization, 106
8.4 Iron oxyhydroxides, 111
8.5 Calcium carbonates, 116
Acknowledgements, 125
References, 125

DAVID J. VAUGHAN AND JONATHAN R. LLOYD
9.1 Introduction, 131
9.2 The mineral surface (and mineral–bio interface) and techniques for its study, 131
9.3 Mineral-organic-microbe interfacial processes: some key examples, 140
Acknowledgements, 147
References, 147
10. **Eukaryotic Skeletal Formation, 150**
 Adam F. Wallace, Dongbo Wang, Laura M. Hamm, Andrew H. Knoll
 and Patricia M. Dove
 10.1 Introduction, 150
 10.2 Mineralization by unicellular organisms, 151
 10.3 Mineralization by multicellular organisms, 164
 10.4 A brief history of skeletons, 173
 10.5 Summary, 175
 Acknowledgements, 176
 References, 176

11. **Plants and Animals as Geobiological Agents, 188**
 David J. Beerling and Nicholas J. Butterfield
 11.1 Introduction, 188
 11.2 Land plants as geobiological agents, 188
 11.3 Animals as geobiological agents, 195
 11.4 Conclusions, 200
 Acknowledgements, 200
 References, 200

12. **A Geobiological View of Weathering and Erosion, 205**
 Susan L. Brantley, Marina Lebedeva and Elisabeth M. Hausrath
 12.1 Introduction, 205
 12.2 Effects of biota on weathering, 207
 12.3 Effects of organic molecules on weathering, 209
 12.4 Organomarkers in weathering solutions, 211
 12.5 Elemental profiles in regolith, 213
 12.6 Time evolution of profile development, 217
 12.7 Investigating chemical, physical, and biological weathering with simple models, 218
 12.8 Conclusions, 222
 Acknowledgements, 223
 References, 223

13. **Molecular Biology’s Contributions to Geobiology, 228**
 Dianne K. Newman, Victoria J. Orphan and Anna-Louise Reysenbach
 13.1 Introduction, 228
 13.2 Molecular approaches used in geobiology, 229
 13.3 Case study: anaerobic oxidation of methane, 238
 13.4 Challenges and opportunities for the next generation, 242
 Acknowledgements, 243
 References, 243

14. **Stable Isotope Geobiology, 250**
 D.T. Johnston and W.W. Fischer
 14.1 Introduction, 250
 14.2 Isotopic notation and the biogeochemical elements, 253
 14.3 Tracking fractionation in a system, 255
 14.4 Applications, 258
 14.5 Using isotopes to ask a geobiological question in deep time, 261
 14.6 Conclusions, 265
 Acknowledgements, 266
 References, 266
15. **Biomarkers: Informative Molecules for Studies in Geobiology, 269**
Roger E. Summons and Sara A. Lincoln
15.1 Introduction, 269
15.2 Origins of biomarkers, 269
15.3 Diagenesis, 269
15.4 Isotopic compositions, 270
15.5 Stereochemical considerations, 272
15.6 Lipid biosynthetic pathways, 273
15.7 Classification of lipids, 273
15.8 Lipids diagnostic of Archaea, 277
15.9 Lipids diagnostic of Bacteria, 280
15.10 Lipids of Eukarya, 283
15.11 Preservable cores, 283
15.12 Outlook, 287
Acknowledgements, 288
References, 288

16. **The Fossil Record of Microbial Life, 297**
Andrew H. Knoll
16.1 Introduction, 297
16.2 The nature of Earth’s early microbial record, 297
16.3 Paleobiological inferences from microfossil morphology, 299
16.4 Inferences from microfossil chemistry and ultrastructure (new technologies), 302
16.5 Inferences from microbialites, 306
16.6 A brief history, with questions, 308
16.7 Conclusions, 311
Acknowledgements, 311
References, 311

17. **Geochemical Origins of Life, 315**
Robert M. Hazen
17.1 Introduction, 315
17.2 Emergence as a unifying concept in origins research, 315
17.3 The emergence of biomolecules, 317
17.4 The emergence of macromolecules, 320
17.5 The emergence of self-replicating systems, 323
17.6 The emergence of natural selection, 326
17.7 Three scenarios for the origins of life, 327
Acknowledgements, 328
References, 328

18. **Mineralogical Co-evolution of the Geosphere and Biosphere, 333**
Robert M. Hazen and Dominic Papineau
18.1 Introduction, 333
18.2 Prebiotic mineral evolution I – evidence from meteorites, 334
18.3 Prebiotic mineral evolution II – crust and mantle reworking, 335
18.4 The anoxic Archean biosphere, 336
18.5 The Great Oxidation Event, 340
18.6 A billion years of stasis, 341
18.7 The snowball Earth, 341
18.8 The rise of skeletal mineralization, 342
18.9 Summary, 343
Acknowledgements, 344
References, 344
19. **Geobiology of the Archean Eon, 351**

RogEr Buick

19.1 Introduction, 351
19.2 Carbon cycle, 351
19.3 Sulfur cycle, 354
19.4 Iron cycle, 355
19.5 Oxygen cycle, 357
19.6 Nitrogen cycle, 359
19.7 Phosphorus cycle, 360
19.8 Bioaccretion of sediment, 360
19.9 Bioalteration, 365
19.10 Conclusions, 366

References, 367

20. **Geobiology of the Proterozoic Eon, 371**

TimOthy W. lyons, ChrisToPher T. reinhard, Gordan D. love

And sHuHai xiao

20.1 Introduction, 371
20.2 The Great Oxidation Event, 371
20.3 The early Proterozoic: Era geobiology in the wake of the GOE, 372
20.4 The mid-Proterozoic: a last gasp of iron formations, deep ocean anoxia, the ‘boring’ billion, and a mid-life crisis, 375
20.5 The history of Proterozoic life: biomarker records, 381
20.6 The history of Proterozoic life: mid-Proterozoic fossil record, 383
20.7 The late Proterozoic: a supercontinent, oxygen, ice, and the emergence of animals, 384
20.8 Summary, 392

Acknowledgements, 393

References, 393

21. **Geobiology of the Phanerozoic, 403**

sTeVen M. stanley

21.1 The beginning of the Phanerozoic Eon, 403
21.2 Cambrian mass extinctions, 405
21.3 The terminal Ordovician mass extinction, 405
21.4 The impact of early land plants, 406
21.5 Silurian biotic crises, 406
21.6 Devonian mass extinctions, 406
21.7 Major changes of the global ecosystem in Carboniferous time, 406
21.8 Low-elevation glaciation near the equator, 407
21.9 Drying of climates, 408
21.10 A double mass extinction in the Permian, 408
21.11 The absence of recovery in the early Triassic, 409
21.12 The terminal Triassic crisis, 409
21.13 The rise of atmospheric oxygen since early in Triassic time, 410
21.14 The Toarcian anoxic event, 410
21.15 Phytoplankton, planktonic foraminifera, and the carbon cycle, 411
21.16 Diatoms and the silica cycle, 411
21.17 Cretaceous climates, 411
21.18 The sudden Paleocene–Eocene climatic shift, 414
21.19 The cause of the Eocene–Oligocene climatic shift, 415
21.20 The re-expansion of reefs during Oligocene time, 416
21.21 Drier climates and cascading evolutionary radiations on the land, 416

References, 420
22. Geobiology of the Anthropocene, 425

Daniel P. Schrag

22.1 Introduction, 425
22.2 The Anthropocene, 425
22.3 When did the Anthropocene begin?, 426
22.4 Geobiology and human population, 427
22.5 Human appropriation of the Earth, 428
22.6 The carbon cycle and climate of the Anthropocene, 430
22.7 The future of geobiology, 433

Acknowledgements, 434
References, 435

Index, 437

Colour plate pages fall between pp. 228 and 229

COMPANION WEBSITE

This book has a companion website:
www.wiley.com/go/knoll/geobiology

with Figures and Tables from the book for downloading.