CONTENTS

Preface xi
Contributors xiii

1 In Vitro Evaluation of Metabolic Drug–Drug Interactions: Concepts and Practice 1
Albert P. Li

1.1 Introduction, 2
1.2 Mechanisms of Adverse Drug–Drug Interactions, 4
 1.2.1 Pharmacological Interactions, 4
 1.2.2 Pharmacokinetic Interactions, 5
1.3 Drug Metabolism, 5
 1.3.1 Phase I Oxidation, 5
 1.3.2 Phase II Conjugation, 5
1.4 CYP Isoforms, 7
1.5 Human In Vitro Experimental Systems for Drug Metabolism, 7
 1.5.1 Hepatocytes, 8
 1.5.2 Liver Postmitochondrial Supernatant (PMS), 9
 1.5.3 Human Liver Microsomes, 9
 1.5.4 Recombinant P450 Isoforms (rCYP), 9
 1.5.5 Cytosol, 9
1.6 Mechanisms of Metabolic Drug–Drug Interactions, 9
1.7 Mechanism-Based Approach for Evaluation of Drug–Drug Interaction Potential, 10
1.7.1 Metabolic Phenotyping, 11
1.7.2 Evaluation of Inhibitory Potential for Drug-Metabolizing Enzymes, 11
1.7.3 Induction Potential for Drug-Metabolizing Enzymes, 11
1.8 Experimental Approaches for \textit{In Vitro} Evaluation of Drug–Drug Interaction Potential, 11
1.8.1 Study 1: Metabolic Phenotyping 1—Metabolite Identification, 11
1.8.2 Study 2: Metabolic Phenotyping 2—Identification of Major Metabolic Pathways, 12
1.8.3 Study 3: Metabolic Phenotyping 3—Identification of P450 Isoform Pathways (P450 Phenotyping), 13
1.8.4 Study 4: CYP Inhibitory Potential, 16
1.8.5 Study 5: Enzyme Induction Potential, 19
1.8.6 Study 6: \textit{In Vitro} Empirical Drug–Drug Interactions, 22
1.9 Data Interpretation, 22
1.9.1 Pathway Evaluation, 22
1.9.2 P450 Inhibition, 23
1.9.3 P450 Induction, 24
1.10 Conclusion, 25
References, 26

2 \textit{In Vitro} Approaches to Anticipating Clinical Drug Interactions 31
\textit{Laurie P. Volak, David J. Greenblatt, and Lisa L. von Moltke}

2.1 \textit{In Vitro} Systems for Human CYP450 Metabolism, 32
2.1.1 Incubation Buffer (pH and Ionic Strength), 33
2.1.2 \textit{MgCl}_2 and Cytochrome \textit{b}5, 34
2.1.3 Nonspecific Binding, 34
2.1.4 Organic Solvents and Excipients, 35
2.2 Analysis of Data from \textit{In Vitro} Systems, 36
2.2.1 Linear Transformation of Michaelis–Menten Equation (Lineweaver–Burk and Eadie–Hofstee), 36
2.2.2 Nonlinear Regression Analysis of Hyperbolic Kinetic Data, 37
2.2.3 Consideration of Non-Michaelis–Menten Kinetics, 37
2.3 Use of \textit{In Vitro} Kinetic Data to Predict \textit{In Vivo} Clearance, 39
2.3.1 Calculation of \textit{In Vitro} (Predicted) Hepatic Clearance, 40
2.3.2 Comparison of \textit{In Vitro} (Predicted) with \textit{In Vivo} Hepatic Clearance, 41
2.4 Use of \textit{In Vitro} Kinetic Data to Predict Drug–Drug Interactions, 43
2.4.1 Choice of Probe Substrates for Inhibition Studies, 43
2.4.2 Determining the Mechanism of CYP450 Inhibition, 46
2.4.3 Prediction of In Vivo Drug–Drug Inhibition Interactions from In Vitro Data, 53
2.5 Consideration of Non-CYP Enzymatic Systems, 58
2.5.1 Flavin-Containing Monooxygenase (FMO), 58
2.5.2 UDP-glucuronosyltransferase (UGT), 59
2.5.3 Sulfotransferase (SULT), 61
2.5.4 N-Acetyltransferase (NAT), 61
2.5.5 Methyltransferase, 62
2.5.6 Epoxidase Hydrolase, 62
2.5.7 Aldehyde Oxidase and Dehydrogenase, 63
2.5.8 Glutathione-S-transferase (GST), 63
2.6 Summary, 63
2.7 Acknowledgments, 64
References, 64

3 Inhibition of Drug-Metabolizing Enzymes and Drug–Drug Interactions in Drug Discovery and Development 75
R. Scott Obach
3.1 Introduction, 76
3.2 Laboratory Approaches Inhibiting Drug-Metabolizing Enzymes, 76
3.2.1 Analytical Method, 77
3.2.2 Determination of Linearity of Velocity, 77
3.2.3 Substrate Saturation Experiment, 80
3.2.4 Reversible Inhibition Experiments: K_i, 81
3.2.5 Reversible Inhibition Experiments: IC_{50}, 84
3.3 Selection of Substrates for Inhibition Experiments in Drug Metabolism, 85
3.4 Inhibition of Drug-Metabolizing Enzymes in Drug Discovery and Development, 87
3.4.1 Inhibition Experiments in Early Drug Discovery, 87
3.4.2 Inhibition Experiments in Late Drug Discovery, 89
3.4.3 Inhibition Experiments During Drug Development, 90
3.5 Summary, 90
References, 91

4 Mechanism-Based CYP Inhibition: Enzyme Kinetics, Assays, and Prediction of Human Drug–Drug Interactions 95
Magang Shou
4.1 Kinetic Model for Mechanism-Based Inhibition, 97
4.2 Methodological Measurements of Kinetic Parameters, 99
4.3 Incubation, 100
4.3.1 CYP Isoform-Specific Assays, 100
4.3.2 General Incubation Procedure and Sample Preparation, 100
7 Transporter-Mediated Drug Interactions: Molecular Mechanisms and Clinical Implications

Jiunn H. Lin

7.1 Introduction, 159
7.2 Tissue Distribution and Cellular Location of Transporters, 161
 7.2.1 Small Intestine, 161
 7.2.2 Liver, 165
 7.2.3 Kidney, 167
 7.2.4 Brain, 170
7.3 Molecular Mechanisms for Transporter Inhibition and Induction, 172
 7.3.1 Inhibition of Transporters, 173
 7.3.2 Induction of Transporters, 174
7.4 Drug Interactions Caused by Transporter Inhibition and Induction, 176
 7.4.1 Direct Evidence, 176
 7.4.2 Circumstantial Evidence, 178
7.5 Clinical Significance of Transporter-Mediated Drug Interactions, 183
7.6 Conclusion, 184
References, 185

8 Recent Case Studies of Clinically Significant Drug–Drug Interactions and the Limits of In Vitro Prediction Methodology

René H. Levy, Isabelle Ragueneau-Majlessi, and Carol Collins

8.1 Introduction, 195
8.2 Case Studies, 196
 8.2.1 Interaction Between Repaglinide and Gemfibrozil + Itraconazole, 196
 8.2.2 Interaction Between Ramelteon and Fluvoxamine, 198
References, 199

9 U.S. Regulatory Perspective: Drug–Drug Interactions

John Strong and Shiew-Mei Huang

9.1 Introduction, 202
9.2 An Integrated Approach, 202
9.3 Methods for Evaluating Metabolic Clearance In Vitro, 204
 9.3.1 CYP Reaction Phenotyping, 204
 9.3.2 CYP Inhibition, 206
 9.3.3 CYP Induction, 208
 9.3.4 Other Metabolic Enzymes, 209
 9.3.5 Transporters, 209
 9.3.6 GLP Versus Non-GLP Studies, 210