INDEX

Absolute delay, for reference/direct modulation point injection, 109
AC-coupling, in direct conversion receivers, 36
Accumulator, in DDS architecture, 51
ACLR degradation, 94–95. See also Adjacent channel power/leakage ratio (ACPR/ACLR)
Active charge-sampling integrator, 211–212
Active core, losses in oscillator tank, 7
Active-Gm-RC cells, 19
Active integrator configuration, for transform-domain receivers, 193
Adaptive equalization, 315
Adaptive equalization algorithm, 311 least mean squares as, 312
Adaptive equalizer, 330–331
Adaptive feedforward error cancellation, 311–313 advantages of, 312 prior art related to, 313
Adaptive feedforward IM3 cancellation scheme, architectural concepts in, 313–320
Adaptive filtering, in calibrating SDR front ends, 26
Adaptive interference canceler (AIC), 478
Adaptive low-noise amplifier (LNA), in adaptive low-power RF circuit design, 67
Adaptive low-noise amplifiers/mixers, power consumption in, 68
Adaptive low-power RF circuit design, 66–67
Adaptively linearized UMTS receiver. See also Universal Mobile Telecommunications System (UMTS) experimental design of, 331–336 experimental results of, 336–341
Adaptive mixer, in adaptive low-power RF circuit design, 67
Adaptive multi-mode front-end circuits, 65–83 for image-reject down-converter, 76–80 multi-mode receiver concept for, 68–70 operation of, 65, 80 in RF front end design, 70–76 wireless RFIC design and, 66–68
Adaptive multi-mode RF circuit design, 67–68
Adaptive predistortion, 366–367, 420
Adaptive quadrature down-converter, experimental results for, 76–80
Adaptive voltage-controlled oscillators (VCOs) in adaptive low-power RF circuit design, 67 in multi-mode adaptive quadrature signal generation, 70
Adaptivity, 65
ADC closed-loop bandwidth, 266. See also Analog-to-digital conversion (ADC)
ADC comparator, in SDR transceiver example, 57
Additive white Gaussian noise (AWGN) in frequency-offset estimation, 203 in TD receiver simulation, 208
Adjacent channel filtering, 335
Adjacent channel power/leakage ratio (ACPR/ACLR), 85. See also ACLR degradation in feedback-based transmitter measurements, 152–153
Adjacent channel power ratio (ACPR), 351–352 in transmitter linearization, 46, 47
Adjacent channel selectivity test, 290–292
Adjustment factor [Adj(N)], 288–289
Advanced television systems committee (ATSC) signal, 541
Alignment. See Amplitude/phase modulation path alignments; Delay alignment; High-speed clock alignment; Multi-rate direct reference/point data modulation injection alignment; Reference/direct modulation point injection alignment; Subnanosecond amplitude/phase modulation path alignments; Time alignment effects; Time misalignment

Multi-Mode/Multi-Band RF Transceivers for Wireless Communications, Edited by Gernot Hueber and Robert Bogdan Staszewski
Copyright © 2011 John Wiley & Sons, Inc.

557
INDEX

Alignment accuracy
 between amplitude and phase modulation paths, 91–96
 between integer and fractional bits of amplitude and phase modulation, 93–94, 94–95, 95–96
All-digital phase-locked loop (ADPLL), 85–86
 high-speed clock alignment in, 101
 precise multi-rate direct/reference point data modulation injection alignment in, 101–109
 for RF polar transmitters, 90, 91
 for subnanosecond amplitude/phase modulation path alignments, 99
All-IP network, 534
Alternate channel power ratio (AltCPR), 351
Alternate feedforward path, error sources in, 316–320
 block design, 320–331
 path analog baseband circuitry, 330
 path baseband circuitry, 336
 path circuit design, 336
 path cubic term generator, 322–329
 path enhancement, 322
 path measurement results, 341
 path mixer, 330
Alternative VCO-based quantizer structures, 250–251
AM/AM (AM-AM) distortion, 363, 366, 390–391
 describing functions to treat, 445–446
 measurement of, 402–403
Amplification
 for analog-to-digital conversion, 21
 in signal processing, 220–221
 in software-defined transceivers, 42–49
Amplifier frequency response, in feedforward receiver circuits, 129–131, 132, 133
Amplifier linearization, 364
Amplifier modeling, 476–477
Amplifiers, signal quality of, 46–47
Amplitude control word (ACW), 90
Amplitude distortion
 for higher-order-hold DACs, 179
 of parallel-path converters, 182, 183
 SDR DACs and, 173
Amplitude-encoded quadrature signals, for direct launch transmitters, 37
Amplitude feedback loop, 397
Amplitude feedback loop
 in calibrating SDR front ends, 26
Amplitude modulation (AM), 382–383, 408, 467
 alignment accuracy between phase modulation and, 93–94, 94–95, 95–96
 with RF polar transmitters, 89, 90–96
 subnanosecond alignment between phase modulation and, 96–101
Amplitude modulation paths
 alignment accuracy between phase modulation paths and, 91–96
 delay alignment between phase/frequency modulation paths and, 85–111
Amplitude modulator
 closed-loop output impedance of, 400–401
 linearity of, 389
 output voltage of, 399
 supply voltage of, 401
Amplitude/phase modulation path alignments
 fractional bits in, 93–94, 94–95, 95–96
 subnanosecond, 96–101
Amplitude-to-amplitude modulation (AM/AM), 445
Amplitude-to-phase modulation (AM/PM), 445
AM-PM delay, WCDMA modulation and, 92, 93
AM-PM distortion, 90, 366, 390–392, 445
 measurement of, 402–403
AM-PM effects, 356
AM-PM predistortion, 403, 404
Analog baseband circuitry, 335
Analog baseband/IF/RF parts, 454–456
Analog baseband signal processing, in adaptive low-power RF circuit design, 67
Analog circuits
 with delay-locked loop-based multipliers, 54
 for flexible-baseband, 17–21
 architecture of, 551–552
 delays, in alignment accuracy between amplitude and phase modulation paths, 91
Analog–digital solutions, 454
Analog filter bank
 in TD receiver complexity analysis, 207–208
 for TD receivers, 204–205
Analog filtering, 283
Analog filters
 classes of, 220
 in signal processing, 219, 220
Analog front-end complexity, in TD receivers, 204–205
Analog front-end components, optimizing, 469
Analog mixers, 427
Analog multiplier core, 428
Analog multipliers, 427–442
 challenges associated with, 428–429
Analog path differences, 315
Analog postfilter, 335
Analog power, current-steering DAC reconfigurability and, 176
Analog selectivity filtering, 469
Analog signal processing, 536–537 shortcomings of, 416–417
Analog-to-digital conversion (ADC). See also Analog-to-digital converters (ADCs)
digital baseband estimators for multi-carrier signals and, 195–196
multi-mode, 68
for receivers, 35
for software-defined radio front ends, 21–23
for software-defined transceivers, 34
in TD receiver applications, 214–215
using VCO-based quantizers, 247–277
Analog-to-digital converters (ADCs), 411–412, 455–456. See also Analog-to-digital conversion (ADC) architecture for, 167–169
design requirements for, 159–160, 160–162
in digital deep-submicron CMOS, 189
in down-sampling, 231, 243
evaluating feasibility of, 161
high-dynamic-range, 282
hybrid, 172
in modern communications systems, 159
operating ranges of, 167
oscillator-based, 249–250
oversampled, 247–277
power and area overhead for, 166
in signal processing, 219
slope-based, 250
for software-defined radio, 159–186
topologies of, 166–167
VCO-based, 248–249
Analog varactors, implementing in circuits, 9–10
Antenna impedance, changes in, 420, 423–424
Antennas, advances in, xiii
Anti-aliasing, down-sampling and, 231
Anti-aliasing filter
first-order, 254
in transconductor design, 239
Anti-aliasing prefilter, in single-balanced current-switching mixer, 224, 225
Application-level adaptability, in adaptive low-power RF circuit design, 67
Architecture. See also ΔΣ architecture; Digital IF multi-step architecture; Pipelined architecture; Successive approximation architecture
charge redistribution, 21
of direct-conversion transmitters, 165
of direct digital synthesizers, 50–51
discrete-time, 86, 89–90
implementing wideband VCO, 9–10
multi-standard transceiver, 162–165, 184
SAR, 21–22
for software-defined radio front ends, 4–5
for software-defined transceivers, 34
wideband VCO, 7
Area overhead, 166
for ADCs in dual-mode GSM–WLAN transceivers, 166
ARM family processor, for single-chip polar transceiver radio, 86
Arrays, in Miller op-amp, 18–19. See also Capacitor arrays
Asbeck, Peter, xi, 349
Asymmetric digital subscriber lines (ADSLs),
digital baseband estimators for multi-carrier signals and, 196
ATSC standard, 548
Attenuation. See also Nyquist image attenuation (NIA)
in feedforward receiver circuits, 130–131
filtering path and, 122
of RX band noise, 155–156
Autocorrelation coefficient simulation, 519–520
Autocorrelation function, 461
Automatic gain control (AGC) flexible baseband analog circuits and, 21
for software radio, 163
Average efficiency, 384–385
Average ET (AET), 357
Average output power, 403–405
Back-end circuits, in parallel transceivers, 162–163
Balun, 333–334
Balun negative terminal, 326
Band II transmitters, feedback-based measurements of, 151–152
Bandlimited transfer function, 324
Bandpass delta-sigma (ΔΣ) modulator, 361
Bandpass-filtered RF signal, 539–540
Bandpass filters (BPFs), 154
feedforward notch filtering and, 133–134
phase noise and, 146, 147
quadrature phase and gain errors and, 144–145, 154
in transmitter stability analysis, 138–141
type I, 136–138, 138–141
type II, 136–138, 140, 141
INDEX

Bands, SDR power amplification and, 42
Band-split filtering, 478
Bandwidth
for analog-to-digital conversion, 21
current-steering DAC reconfigurability and, 176
for direct launch transmitters, 40–41
of the envelope signal, 392–394
phase misalignment and, 414
Bandwidth expansion effects, 368
Bandwidth improvement
in pipelined ADCs, 170–171
in successive approximation ADCs, 171–172
Bandwidth limitation, of the class S amplifier, 390
Bandwidth requirements, for ADCs and DACs, 159–160
Bang-bang PLLs (BBPLLs), 498. See also BBPLL entries; Digital bang-bang PLLs (BBPLLs)
complete linear model of, 515–516
linearization of, 508–526
linear model for noise analysis, 516–518
Markov chain model of, 505–507
nonlinear dynamics of, 499–503
in the presence of noise, 503
simplified linear model for, 517
trajectory comparison for, 503
Barrel-shift DEM, using the VCO-based quantizer, 257–261
Baseband (BB) amplitude encoding, for direct launch transmitters, 37
Baseband amplitude signal, distortionless transmission of, 394
Baseband circuitry, selecting specifications for, 74
Baseband filter gain control, in SDR transceiver example, 57
Baseband signal processing, in adaptive low-power RF circuit design, 67
Baseband signal processing capability, improvement in, 536
Baseband signals, for direct launch transmitters, 36–37
Baseband transmitter block, in SDR transceiver example, 58–59
Base bias voltage, in LC-VCOs, 72
Bias current, in LC-VCOs, 72
Bias-current sources, in LC-VCOs, 71
Bias voltages, 296
Binary-phase detector (BPD), 498, 510–511. See also BPD entries
linearized model of, 509–513
Binary search algorithm, for successive approximation ADCs, 171
Binary-weighted cascade transistors, for pre-power amplifier, 24–25
Binary weighted DACs, topologies for, 173
BiQuad filter, in SDR transceiver example, 57
Biquadratic sections, 19, 20
in Miller op-amp, 18
Bit error rate (BER), in TD receiver simulation, 209
Blind imbalance compensators, 473
Blocker cancellation, RF front ends with, 285
Blocker detection, 285
Blockers, 153
in feedforward receiver circuit implementation, 127, 129, 130–131, 132, 133
gain mismatch and, 122
I–Q imbalance and, 125
passive integration of front-end RF into systems-on-a-chip and, 114, 117
receiver translational loop and, 119–120
in signal processing, 219
in transconductor design, 240
Bluetooth
adaptive multi-mode RF circuit design for, 67, 68
extended-data-rate, 85
with first-generation DRP, 103
Bluetooth receivers, 220
Bluetooth standard
digital deep-submicron CMOS architecture and, 189
for input to low-noise amplifiers, 69
for TD receiver applications, 214
Bode plots, in transmitter stability analysis, 138–139, 139–140
Boltzmann’s constant, 235
Bondwires, for receivers, 13–14
BPD gain computation, for a first-order BBPLL in a closed loop, 511–513. See also Binary-phase detector (BPD)
BPD noise, power spectral density expression of, 519–521
Branch filtering effects, 458
Brick-wall filter, 394
Broadband LO generation, in software-defined transceivers, 49–54
INDEX

Broadband power amplification technologies, in SDR power amplification, 43–44
Broadcasting, software-defined radio front ends for, 3
Broad operating range, for software-defined radio, 33–34
Brownian motion, 461
Buffer delays, high-speed clock alignment using, 100–101
Buffer design, 297–298
Buffer driver, 303
Building blocks in filter synthesis, 226
for software-defined radio front ends, 3
for software-defined transceivers, 34–54
transmitter, 148–150
Built-in self-test (BIST) for reference/direct modulation point injection, 109
for single-chip polar transceiver radio, 86
Butterworth-like selectivity, in lowpass filters, 19–20
Cadence SpectreRF circuit-simulation suite, noise analysis with, 236–237
Cafaro, Gio, xi, 33
Calibration, for direct conversion receivers, 36
Calibration algorithm, for TD receivers, 199–200
Calibration techniques, for software-defined radio front ends, 25–27
Candy structure, 265–266
Capacitance losses in oscillator tank and, 6–7
in transconductor design, 238
VCO sensitivity variations and, 8
Capacitance value, in wideband LC-VCO frequency tuning, 6
Capacitor arrays. See also Programmable capacitance array in Miller op-amp, 18–19
in transmitters, 150
Capacitor banks, in FIR filter synthesis, 230–231
Capacitors. See also LC entries
in adaptive quadrature down-converter, 78
in analog-to-digital conversion, 22
in down-sampling, 231, 232–234
in FIR filter synthesis, 230–231
in IIR filter synthesis, 226–227, 228–229, 230
in Miller op-amp, 18–19
noise and, 235–236
in pipelined ADCs, 170
for receivers, 14
sampling, 417
in signal processing, 220
in wideband LC-VCO frequency tuning, 6
Carrier feedthrough, in direct launch transmitters, 37–38
Carrier phase modulation, 382
Cartesian baseband signals, for direct launch transmitters, 36–37, 40–41
Cartesian feedback, 365, 412–416
advantage of digital assistance to, 422
digital assistance for, 416–427
Cartesian-feedback-for-predistortion concept, design issues for applications of, 418–426
Cartesian feedback mixers, in SDR transceiver example, 54, 55
Cartesian feedback systems for quadrature modulator, 58–59
stability analysis for, 436–447
Cartesian format, in transmitter linearization, 47
Cascaded discrete-time integrators, in IIR filter synthesis, 227–229
Cascade gain stages, in transmitter stability, 49
Cascading integrators, for ΔΣ ADCs, 167–168
Cascode low-voltage transistors, 380
Cascode solution, 408
Cascode structure, 381
Cascode transistors in feedforward receiver circuit implementation, 126, 127, 128
for pre-power amplifier, 24–25
in transconductor design, 241
for wideband VCOs, 11, 14
CDMA-based systems, 351
CDMA power amplifier, AM-AM response of, 369
CDMA systems, power control in, 382
Cellular functionalities, software-defined radio front ends for, 3
Cellular organized systems, coverage design for, 38–39
Cellular telephones, as software-defined radios, 33
Channel estimation, 475–476
Channel filtering, for analog-to-digital conversion, 21
Channel interference, 468
Chapman–Kolmogorov (C-K) equation, 504, 507
Characterization, in calibrating SDR front ends, 25, 26
INDEX

Charge injection, in MOS switch scaling, 222
Charge packets, 224, 225
in FIR filter synthesis, 230–231
noise and, 236
in transconductor design, 239
Charge pump-based PLL, 497
Charge redistribution architecture, for analog-to-digital conversion, 21
Charge sampling
op-amp gain–bandwidth product requirement and, 211–212
with transform-domain receivers, 191–192
Charge sharing, in analog-to-digital conversion, 22–23
Chebyshev filter, 335
Cherry–Hooper LO buffer, 334
Chopper stabilization, 429–430
as digital assistance, 430
for multipliers, 430–431
nested, 432–433
in SDR transceiver example, 57, 58
Chopper-stabilized multiplier
output from, 431
performance limits of, 431–432
Chopper-stabilized multiplier prototype, measurement results from, 433–435
Chopping mixers, in SDR transceiver example, 55–56, 57–58
Chopping waveforms, with dc content, 431
Circuit design, for input transconductors, 237–241. See also Design requirements
Circuit implementation, 550–555
for VCO-based quantizer, 267–275
for wideband VCOs, 9–10
Circuit-level challenges, for RF power amplifier integration, 378
Circular complex communications waveforms, 473–474
Circular random signal, 483
CKVD clock rates, 94, 97–100
with first-generation DRP, 103
in high-speed clock alignment, 101
with reference/direct modulation point injection alignment, 106–107, 108, 109
in subnanosecond amplitude/phase modulation path alignments, 97–100
Class AB amplifier, low-power, 408
Class E amplifier, 402
Class S amplifier, 389–390
Clipping amplifier, 464
Clock buffers, phase noise and, 146
Clock domains, for reference/direct modulation point injection, 109
Clock jitter, in transform-domain receivers, 193–194
Clocks. See also CKVD clock rates; Digital variable clock (CKV); DWG internal clock frequency; Frequency reference (FREF) clock; Retimed clock (CKR) for ADCs, 166
aligning high-speed, 100–101
in alignment accuracy between amplitude and phase modulation paths, 91, 92, 94
current-steering DAC reconfigurability and, 176
with digitally controlled oscillator, 85
in feedback-based transmitter measurements, 151
with parallel-path converters, 182
in RF polar transmitters, 88
in SDR transceiver example, 59
for single-chip polar transceiver radio, 86–87
in subnanosecond amplitude/phase modulation path alignments, 97–100
in successive approximation ADCs, 171–172
Clock tree delay, in alignment accuracy between amplitude and phase modulation paths, 91
Closed-loop poles determining, 440
in transmitter stability analysis, 140–141
CMOS architecture, digital deep-submicron, 189
CMOS DAC implementations, for wideband communication, 173, 179–181
CMOS logic levels, 268, 269
CMOS power amplifier (PA), pre-power amplifier and, 23
CMOS processes advanced, 247
circuit topologies and, 323
passive integration of front-end RF into systems-on-a-chip and, 113
in phase-locked loop design, 50
in SDR transceiver example, 54
CMOS RF power amplifiers, for mobile communications, 377–410
CMOS scaling, of MOS switches, 222. See also CMOS supply voltage scaling
CMOS solution, 397
CMOS supply voltage, 408
CMOS supply voltage scaling, 378
CMOS (complementary metal-oxide semiconductor) technologies, 242, 243.
See also High-speed CMOS
in analog-to-digital conversion, 21, 22
class S amplifier and, 390
deep-submicron, 435–436
INDEX

for ΔΣ ADCs, 168
digital circuits in, 411
in direct launch transmitters, 37
for feedforward receiver circuits, 129
flicker noise and, 36
low supply voltage and, 378–381
for receivers, 12–14
RF polar transmitters with, 87–90
in signal processing, 219, 220
SNDR limitations for VCO-based quantization and, 252
for software-defined radio front ends, 3
in software radio, 163, 164
for successive approximation ADCs, 171
CMOS transmission gates, in SDR transceiver example, 56, 57
Coarse carrier synchronization, 455
Coarse frequency tuning, for wideband VCOs, 9, 10
Code division multiple access (CDMA). See CDMA entries
Cognitive radio(s) (CR)
defined, 33
low-power spectrum processors for, 533–556
shift to, 534–535
Cognitive radio technology, 533
Cognitive radio wireless communication applications, 534
Common-gate amplifier, 153
Common-gate configuration in transconductor design, 241
for transform-domain receivers, 193
Common-gate design, in feedforward receiver circuit implementation, 126
Common-mode output voltage, 301
Common-mode phase fluctuations, 146–147
Common-mode rejection ratio (CMRR), 326
Common phase error (CPE), 468, 475
Communication devices, adaptive low-power RF circuit design for, 66–67
Communications systems, nonlinear distortion in, 463–466
Communication standards, for ADCs and DACs, 160–162
Comparator-based multi-level quantizers, metastability behavior of, 259
Comparator-based quantizer, VCO-based quantizer versus, 257
Comparator offset, 260–261
Comparators in analog-to-digital conversion, 21–22
in successive approximation ADCs, 171
threshold voltages for, 259
Compensation principle, 472–473
in calibrating SDR front ends, 25
Complementary cumulative distribution function (CCDF), 351, 352
Complete linear model, of the BBPLL, 515–516
Complex carrier, 460
Complexity analysis, for TD receivers, 206–208
Complex modulated signal, 358
Component arrays, in Miller op-amp, 18–19
Computationally intensive technologies, 536
Conductance, in MOS switch scaling, 221
Conjugate interference model, 471
Constant-envelope measurements, 402
Constant-envelope signals, efficiency versus output power for, 402
Continuous operation, of software-defined radio, 33
Continuous-time analog filters, in signal processing, 220
Continuous-time (CT) integration, VCO, 253, 254
Continuous-time ΣΔ ADCs, 247. See also High-speed CT ΣΔ ADC
Continuous-time voltage-to-phase integrator, 248
Continuous wave (CW) signal, 541
Control bits, for wideband VCOs, 9
Controlled inductor designs, in wideband LC-VCO frequency tuning, 6
Convergent trajectory, 500
Conversion gain in multi-mode adaptive down-converter, 75
in transconductor design, 240
Converter output impedance, in current-steering DACs, 175
Converters, parallel-path, 182, 183
CORDIC algorithm, 87
with DRP ADPLL, 101
with RF polar transmitters, 90–91
in subnanosecond amplitude/phase modulation path alignments, 99
WCDMA modulation and, 92
Cornelissens, Koen, xi, 159
Corner frequencies control of, 242
in signal processing, 219, 220
Correctly distorted signals, 416
Cost-efficiency issues, for future radio systems, 453
Coupled-resonator filters, 283
Coverage, by cellular organized systems, 38–39
C++ simulator (CppSim), 263
Craninckx, Jan, xi, 3
Cross-correlation coefficient simulation, 520–521
INDEX

Cross-correlation computation, for reference/direct modulation point injection, 109
Cross-coupling, in delay-locked loop-based multipliers, 54
Crossover frequency, 438–440
Cross-point switches, in transmitter stability analysis, 138
Crosstalk attenuation, 457–458
Cubic predistortion circuits, 322–323
Cubic term generator(s), 323
block design for, 323–324
multi-stage receiver, 325–326
prior art in, 322–323
Cumulative distribution function (cdf), 506
Current-commutating mixer, in signal processing, 220
Current feedback control, 359
Current mirrors, in wideband down-conversion mixers, 17
Current-steering DACs. See also Digital-to-analog converters (DACs)
performance limits of, 174–176
reconfigurability of, 176–177
topologies for, 173–174
Current steering technique, in LNAs, 14
Current-voltage characteristics, 354
Custom analog circuits, with delay-locked loop-based multipliers, 54
CW blocker amplitude, 338
CW signal, 548
D/A converters. See Digital-to-analog converters (DACs)
DAC update rate, Nyquist images and, 178.
See also Digital-to-analog converters (DACs)
Da Dalt, Nicola, xi, 497
Darabi, Hooman, xi, 113
Data converters, with RFIC transceiver, 60
Dawson, Joel L., xi, 411
Dc content, chopping waveforms with, 431
Dc/dc converter, 359
Dc level feedback (DCFB) circuit, for pre-power amplifier, 24
Dc offset, 396
in calibrating SDR front ends, 26
in direct-conversion receivers, 315–316
Dc offset compensation loop, flexible baseband analog circuits and, 21
Dc offset correction circuitry (DCOC), in SDR transceiver example, 57
Dc offsets, in direct conversion receivers, 35–36
DCO noise model, 518
DCO period jitter, 518
DC power consumption, 388
DCS1800 standards, for input to low-noise amplifiers, 69, 70
DCS band, 281
DCS band transmitter leakage, 303
Decimation filter, 232, 233
DECT standards, for input to low-noise amplifiers, 69
Delay. See also Buffer delays; Delays
excess, 269
phase mismatch and, 123
in the RF signal path, 441–445
WCDMA modulation and AM-PM, 92, 93
Delay alignment, between amplitude and phase/frequency modulation paths, 85–111
Delay alignment scheme
with multiple clock domains, 97–100
for reference/direct modulation point injection, 108–109
Delay cells, 53
current drive level in, 268
in filter synthesis, 226
VCO, 251
Delay compensation, 396, 404, 405–407
Delay line
for delay-locked loop-based multipliers, 53–54
in digital-to-time converter, 51, 52
Delay-locked loop (DLL)-based multipliers, for broadband LO generation, 53–54
Delays, in alignment accuracy between amplitude and phase modulation paths, 91, 92
ΔΣ architecture, 168, 181, 184. See also ΔΣ entries
for ADCs, 167–169
for hybrid ADCs, 172
ΔΣ modulators, 359, 361
Demanding mode
adaptive quadrature down-converter in, 79–80
standards for, 69, 76
Derived phase error probability density function (pdf), 504. See also Probability density function (pdf, PDF)
Describing functions, 445–446
Design requirements. See also Circuit design
for ADCs and DACs, 159–160, 160–162
calibrating SDR front ends and, 25
Detect-and-avoidance (DAA) function, 533
Device selection, in linearization technology, 48
Differential baseband inputs, in SDR transceiver example, 55
Differential broadband neutralized RF power amplifier, 49
Differential delay, 392
Differential inductors, 398
Differential-mode phase fluctuations, 146, 147–148
Differential output currents, in transmitters, 149
Differential-to-single-sided conversion, in transmitters, 150
Digital assistance
 for analog multipliers, 429–435
 for Cartesian feedback, 416–427
 chopper stabilization as, 430
 effectiveness of, 433
Digital audio broadcasting (DAB), digital baseband estimators for multi-carrier signals and, 195–196
Digital bang-bang PLLs (BBPLLs) analysis techniques for, 497–532
 measurement and model comparisons related to, 526–531
Digital baseband (DBB) circuitry, 335
Digital baseband design, for transform-domain receivers, 195–204
Digital baseband estimators, for multi-carrier signals, 195–196
Digital baseband/IF parts, 454–456
Digital baseband predistorters, 476
Digital baseband processor, for single-chip polar transceiver radio, 87
Digital baseband signal processing, in adaptive low-power RF circuit design, 67
Digital calibration, 429
Digital complexity analysis, for TD receivers, 206–208
Digital deep-submicron CMOS architecture, for receivers, 189
Digital delay adjust (DDA) block, 97, 98
 reference/direct modulation point injection alignment and, 106
Digital frequency synthesizer, in SDR transceiver example, 59
Digital IF multi-step architecture, for DACs, 181–182
Digital integration, of front-end RF into systems-on-a-chip, 113–158
Digital-intensive RF front ends, advantages of, 189
Digitally assisted Cartesian feedback, strengths and weakness of, 426–427
Digitally assisted Cartesian feedback system, architecture for, 417–418
Digitally controlled crystal oscillator (DCXO) with RF polar transmitters, 89–90
 for single-chip polar transceiver radio, 86
Digitally controlled oscillator (DCO), 85, 498–499
 with DRP ADPLL, 102
 with first-generation DRP, 104
 in high-speed clock alignment, 101
 impulse response of, 514
 operation of, 85–86
 with reference/direct modulation point injection alignment, 107
 RF polar transmitter with, 88, 89–90
 with second-generation DRP, 104
 in subnanosecond amplitude/phase modulation path alignments, 99–100
 with third-generation DRP, 105–106
Digitally controlled oscillator linear model, 513–514
Digitally controlled power amplifier (PA) circuit, in RF polar transmitter, 88
Digitally controlled pre-power amplifier (DPA) with DRP ADPLL, 102
 in high-speed clock alignment, 101
 operation of, 85–86
 in RF polar transmitters, 88–90, 90–91
Digitally enhanced alternate path linearization, of RF receivers, 309–342
Digitally modulated signals, 548
Digital phase-locked loops (PLLs), 497–498
 Markov chains in analyzing, 504–505
Digital polar transmitters
 envelope modulation schemes for, 85
 precise delay alignment between amplitude and phase/frequency modulation paths in, 85–111
Digital postprocessing, 478
Digital power, current-steering DAC reconfigurability and, 176
Digital predistortion, 357
 limitations of, 366–367
Digital processing technology, for direct launch transmitters, 37
Digital registers, for reference/direct modulation point injection, 109
Digital RF processor (DRP) ADPLL of, 101–109
 phase modulation in first-generation, 103–104
 phase modulation in second-generation, 104–105
 phase modulation in third-generation, 105–106
Digital signal enhancement, 469–470
Digital signal processing (DSP)-based solutions, 454
Digital signal processing chips, 411
Digital signal processors (DSPs)
ADCs and DACs and, 159
current-steering DAC reconfigurability and, 176
in parallel transceivers, 162–163
powerful, 536–537
in software-defined radio, 164–165
Digital signal processing capabilities, integrating, xiii
Digital subband tuning, 484
Digital television (DTV) spectrum, 533
Digital-to-analog conversion (DAC)
in DDS architecture, 50, 51
in SDR transceiver example, 55, 57, 59
Digital-to-analog converters (DACs), 243, 269–270, 455
advanced techniques and implementation for, 181–184
connecting VCO-based quantizer outputs to, 258
ΔΣ ADCs and, 169
design requirements for, 159–160, 160–162
evaluating feasibility of, 161–162
in modern communications systems, 159
Nyquist images and, 177–178
pulse-shape-induced amplitude distortion and, 178–179
for software-defined radio, 159–186
successive approximation ADCs and, 171
topologies for high-speed CMOS, 173–177
Digital-to-frequency conversion (DFC), in RF polar transmitters, 88
Digital-to-RF-amplitude conversion (DRAC), in RF polar transmitters, 88–89
Digital-to-time converter (DTC), in DDS architecture, 51–52
Digital up-mixing, 181–182
Digital variable clock (CKV)
with DRP ADPLL, 102–103
with first-generation DRP, 103
with third-generation DRP, 105–106
Digital video broadcasting-terrestrial (DVB-T) signal, 541
Digital video broadcasting–handhelds (DVB-H), adaptive multi-mode RF circuit design for, 67
Digital baseband estimators for multi-carrier signals and, 195–196
Digital window generator (DWG), 540, 551.
See also DWG entries
Direct conversion-based WCDMA, 279
Direct-conversion radio architectures, 468
statistical techniques for, 473
Direct conversion receivers, 34, 35–36, 550
DC offset in, 315–316
in SDR transceiver example, 55–58
Direct-conversion transceivers, 471
Direct-conversion transmitters, architecture of, 165
Direct digital frequency synthesizer, in SDR transceiver example, 59
Direct digital synthesis (DDS)
in broadband LO generation in, 50–53
for direct launch transmitters, 40
Direct digital synthesizers (DDSs)
arithmetic of, 50–51
in broadband LO generation in, 50–53
delay-locked loop-based multipliers for, 53–54
in SDR transceiver example, 54, 55, 59
Direct-launch transmitters
in SDR transceiver example, 58–59
in software-defined transceivers, 36–42
Direct modulation, in direct launch transmitters, 42
Direct reference/point data modulation injection alignment, in ADPLL, 101–109
Direct-to-RF modulators, 182–184
“Dirty-RF” issues, 454
Discrete/continuous tuning scheme, in wideband LC-VCO frequency tuning, 6
Discrete-time architecture
with RF polar transmitters, 89–90
for single-chip polar transceiver radio, 86
Discrete-time (DT) differentiation, VCO, 253, 254
Discrete-time, discrete-variable Markov chain theory, 504
Discrete-time filters, 242
synthesis of, 226–234
Discrete-time integrator
in filter synthesis, 226
in IIR filter synthesis, 226–230
Discrete-time linear system, 513
Discrete-time noise process, 235–236
Discrete-time processing, of RF signals, 219–245
Distortion. See also Amplitude distortion;
AM-PM distortion; Intermodulation distortion; Predistortion entries;
Pulse-shape-induced amplitude distortion;
Signal-to-noise-plus-distortion ratio (SNDR)
AM-AM and AM-PM, 390–391
in current-steering DACs, 175–176
IM2 and IM3, 313
in a polar-modulated power amplifier, 390–397
reducing, 48
signal, 471
in signal processing, 219
in TD receiver simulation, 209, 211
in transmitter linearization, 47
Distortion components, in-band and out-of-band, 464
Distortion curve, 397
Distortion products, 309
Distributed active transformer approach, 381
Distributed network, in SDR power amplification, 44
Distributed power amplifier, in SDR power amplification, 44
Distributed sensor relay, transform-domain, 215, 216
Dithering, in digital-to-time converter, 53
Divergent trajectory, 500
Divide-by-2 dividers
in feedback-based transmitter measurements, 150–151
phase noise and, 146
Divide/multiply quadrature (DMQ), for wideband VCOs, 10–12
Dividers
in feedback-based transmitter measurements, 150–151
phase noise and, 146
Doherty amplifier techniques, 355–357
Doherty power combiner, 356
Double-balanced mixer, for down-converter, 74–75
Double-sideband mixer, 386
Down-chop operation, 430
Down-conversion sample-rate, 231–234
with transform-domain receivers, 192–193
Down-conversion mixers. See also Harmonic down-conversion (HD)
feedback-based transmitter noise and, 141–142
feedforward notch filtering and, 135
in feedforward receiver circuit implementation, 125, 127–128, 129
filtering path and, 122
gain mismatch and, 122
LNA noise figure degradation and, 124
phase mismatch and, 123
in RX band noise attenuation, 155–156
for transmitters, 148, 149
wideband, 16–17
Down-converted baseband signal, 550–551
Down-converted spectrum, 486
Down-converter circuits
image-reject, 76–80
in multi-mode adaptive quadrature signal generation, 70, 73
receiver translational loop and, 119–120
selecting specifications for multi-mode adaptive, 73–76
standards for, 69, 70, 73–76
Down-mixer, in SDR transceiver example, 58–59
Down-sampling, 231–234, 243
Drain efficiency, 384
Drain–gate capacitance, losses in oscillator tank and, 8
Drain voltage, 392
Driver stage supply voltage, 388
DS-CDMA transmission, TD receivers and, 215
Dual-band low-noise amplifier (LNA), in receivers, 12–14
Dual-mode GSM–WLAN transceivers, power and area overhead for, 166. See also GSM (Global System for Mobile Communications); Wireless local area networks (WLANs)
Dual-stage spectrum-sensing scheme, 538
Dummy squaring circuit, 326
Duplexer isolation, in passive integration of front-end RF into systems-on-a-chip, 117–118
Duplexers, 153
DWG block diagrams, 552. See also Digital window generator (DWG)
DWG internal clock frequency, 553
DWG output, 553
Dynamic accuracy, in current-steering DACs, 175–176
Dynamic element matching (DEM). See also Implicit barrel-shift DEM for RF polar transmitters, 91
VCO-based quantizers and, 257
Dynamic matching mixers, in SDR transceiver example, 55–56
Dynamic power supply variation, 357–361
Dynamic range (DR)
in ADC specifications, 161
in DAC specifications, 162
of signals, 34, 35
for software radio, 163
Dynamics, in the RF signal path, 441–445
Dynamic spectrum resource management concept, 533
568 INDEX

Edge combining method, with delay-locked loop-based multipliers, 54
EDGE measurements, 403–407. See also Enhanced data rates for global evolution (EDGE)
EDGE modulation scheme, 85, 89, 91
for alignment accuracy between amplitude and phase modulation paths, 91–92, 93
with DRP ADPLL, 101
with reference/direct modulation point injection alignment, 106
EDGE output spectra, 403–404
EDGE PA, linearized, 401. See also Power amplifiers (PAs)
EDGE receivers, passive integration of front-end RF into systems-on-a-chip and and, 113, 114
EDGE signal, dynamic range of, 403
EER architecture, 387. See also Envelope elimination and restoration (EER)
Effective loop transmission, 414, 437–438
system for determining, 442
Effective number of bits (ENOB), in analog-to-digital conversion, 22–23
Effective phase detector characteristic, 510–511
Efficiency enhancement, 385–386
power-amplifier, 354–362
Efficiency–linearity conflict, 387
Efficiency strategies, for next-generation wireless communications, 349–375
Encoding, for direct launch transmitters, 36–37, 40–41
Energy detection method, 537–538
Enhanced data rates for global evolution (EDGE), 279. See also EDGE entries
Envelope amplifier bandwidth, 358
Envelope bandwidth, 405–407
Envelope detector, 397
Envelope dynamics, 465
Envelope elimination and restoration (EER), 355, 357–361. See also EER architecture
transmitter efficiency and, 46
Envelope filter delay, 395
Envelope filtering, 392–396
Envelope following, transmitter efficiency and, 46
Envelope modulation schemes, 85
Envelope modulator, implementation of, 387–389
Envelope path bandwidth, 395
Envelope signal, 387
frequency components of, 394
Envelope tracking (ET), 355, 357–361, 385
Envelope tracking split-band amplifier, 360
Envelope voltage, 543
signal processing of, 544
Equivalent dc load resistance, 399
Equivalent input-referred jitter, 517, 518
Equivalent noise bandwidth, 544, 548
Error, in transmitter linearization, 47. See also Errors
Error cancellation, adaptive-feedforward, 311–313
Error expressions, 437, 438
Error figure (EF), 321
Error-generating mechanism, 311
Error producer-to-noise ratio, 313
Error-producing signals, 311
Errors, in MOS switch scaling, 222
Error-to-noise ratio, 312–313
Error vector magnitude (EVM), 85. See also EVM degradation
in transmitter linearization, 46–47
Error vector magnitude measurement, 353
ESD devices, for receivers, 13–14
Essential spectral width, 461
Estimators
to multi-carrier signals, 195–196
transform-domain receivers and, 191
ETSI specifications, 406
Euler–Mascheroni constant, 543
EVM degradation, WCDMA modulation and, 92, 93, 94–95. See also Error vector magnitude (EVM)
Exception handling, in subnanosecond amplitude/phase modulation path alignments, 99–100
Extended-data-rate Bluetooth (BT-EDR), 85
False alarm rate, 543
simulation of, 546
Far-out sideband noise, in direct launch transmitters, 38
Fast Fourier transform (FFT), 541. See also Fourier entries
digital baseband estimators for multi-carrier signals and, 195–196
in TD receiver complexity analysis, 207, 216
FDD-based WCDMA, 286. See also Frequency-division duplex (FDD)
FDD standards, 310
FDD systems, 282
Feature detection method, 537, 538
Federal Communications Commission (FCC), 533
in radio spectrum management, 33
Feedback
in linearization technology, 48
in transmitters, 48–49
Feedback-based transmission
 effects of nonidealities in, 141–148
 linearity requirements in, 143–144
 noise requirements in, 141–143
 phase noise requirements in, 145–148
 quadrature phase and gain errors in, 144–145
 RX-LO feedthrough and leakage in, 145
Feedback-based transmitter measurements, 150–153
Feedback-based transmitter stability analysis, 138–141
Feedback capacitor value, 552
Feedback divider, linear model of, 515
Feedback loops, 413
Feedback network, in SDR transceiver example, 55
Feedback path
 in feedback-based transmitter measurements, 151
 linearity requirements of, 143–144
 noise requirements of, 141–143
 phase noise requirements in, 145–148
 quadrature phase and gain errors in, 144–145
 in transmitters, 149
Feedback system, for quadrature modulator, 58–59
Feed/forward, in linearization technology, 48
Feedforward approach, 365–366
Feedforward blocker, receiver translational loop and, 119
Feedforward blocker technique, 285
Feedforward current, 390–392
Feedforward distortion, 396
Feedforward error-canceling loop, 322
Feedforward linearization, 476
Feedforward loop
 choice of, 314–315
 nonideal effects of, 122–125
Feedforward notch filtering, for WCDMA transmitter, 133–138
Feedforward receiver circuits
 experimental results from, 129–133
 implementing, 125–129
Feedthrough, in direct launch transmitters, 37–38
Figure of merit (FOM)
 in ADC specifications, 161
 in analog-to-digital conversion, 22–23
 in DAC specifications, 162
 software radio and, 163
Filter banks
 in TD receiver complexity analysis, 207–208
 for TD receivers, 204–205
 with transform-domain receivers, 191
Filtered complex envelope signal, 383
Filter gain control, in SDR transceiver example, 57
Filtering
 ADCs and DACs and, 159–160
 for analog-to-digital conversion, 21
 in calibrating SDR front ends, 26
 in feedforward receiver circuits, 131–132
 gain mismatch and, 122–123
 of Nyquist images, 177–178
 by receivers, 34–35
 for WCDMA transmitter, 133–138
Filtering devices, 153–154. See also Filters
Filtering requirements, for heterodyne transmitter, 165
Filters
 for ΔΣ ADCs, 168, 169
 SDR DACs and, 172–173
 in signal processing, 219, 220
Filter synthesis, of discrete-time filters, 226–234
Fine frequency tuning, for wideband VCOs, 10
Finite impulse response (FIR) filters, 242–243, 312, 515
 digital deep-submicron CMOS architecture and, 189
 in down-sampling, 231–232, 234
 noise generated in, 234, 236, 237
 synthesis of, 226, 230–231
 in transconductor design, 238
Finite OTA gain, in pipelined ADCs, 170
First-generation DRP, phase modulation in, 103–104. See also Digital RF processor (DRP)
First-order antialiasing filter, 254
First-order BBPLL, BPD gain computation for, 511–513. See also Bang-bang PLLs (BBPLLs)
First-order lowpass filter, 394, 395
First-order lowpass transfer function, 514
First-order noise-shaping, in VCO-based ADCs, 248–249
First-order ZC-DPLL, 504
Fixed-base station equipment, SDR power amplification for, 42
Fixed equalization, 315
Fixed-point oscillator tuning word (OTW) format, with reference/direct modulation point injection alignment, 107–108
FLASH ADC, 259, 260–261. See also
 Analog-to-digital conversion (ADC) multi-bit, 260
INDEX

FLASH quantizer
multi-bit, 261
for \(\Sigma \Delta \) ADC, 257–261
Flat gain, in TD receivers, 198
Flexible baseband analog circuits, for
software-defined radio front ends, 17–21
Flexible lowpass filters (LPFs), 19–20
Flexible op-amps, flexible baseband analog
circuits for, 18–19
Flexible spectrum use, 484
Flicker noise. See also \(1/f \) noise
in direct conversion receivers, 36
in SDR transceiver example, 57
with transform-domain receivers, 192–193
Flip-flops (FFs)
in subnanosecond amplitude/phase modulation
path alignments, 97, 98
for wideband VCOs, 10–11
Fokker–Planck (F-P) equation, 505
Folding/folded transistors, in wideband
down-conversion mixers, 16–17
Forward RF chain, in SDR transceiver example,
58, 59
Forward transfer function, in transmitter
linearization, 47–48
Fourier series coefficients, 190–191. See also Fast
Fourier transform (FFT)
Fourier spectra, for transform-domain receivers,
195
Four-tap FIR filter, 230, 231
Fourth-order loop filter, 264
Fractional bits, of amplitude and phase
modulation, 93–94, 94–95, 95–96
Fractional part of OTW (OTF), with
reference/direct modulation point injection
alignment, 107–108
Free-running oscillators, 460–461
Free-running oscillator spectrum, 462
Frequency-agile RF components, for mass-market
applications, xiii
Frequency-band-adjustable down-converter,
313
Frequency bands, of VCOs, 6
Frequency command word (FCW) format, 90
with reference/direct modulation point injection
alignment, 107
with third-generation DRP, 105
Frequency-dependent I/Q imbalances, 471–472
Frequency-division duplex (FDD), 280. See also
FDD entries; Frequency-domain duplex
(FDD) operation
Frequency-domain (FD) estimators,
transform-domain receivers and, 191
Frequency-domain duplex (FDD) operation
passive integration of front-end RF into
systems-on-a-chip and, 115, 116
SDR power amplification and, 42, 43
of software-defined radio front ends, 4
Frequency domain model, of VCO, 253
Frequency-domain multiplication, for direct
launch transmitters, 36–37
Frequency-domain PSD, 521. See also Power
spectral density (PSD)
Frequency-domain sampling, transform-domain
receivers and, 190–191
Frequency extension, in broadband LO generation,
53–54
Frequency-independent imbalance, 474
Frequency-independent I/Q imbalances, 470–471
Frequency modulation (FM), for RF polar
transmitters, 91. See also Phase/frequency
(FM/PM) modulation paths
Frequency offset, 268–269
in TD receiver simulation, 209, 210, 211
Frequency-offset estimation, for TD receivers,
199, 201–204
Frequency reference (FREF), for single-chip polar
transceiver radio, 86
Frequency reference clock
with DRP ADPLL, 102–103
with first-generation DRP, 103
with reference/direct modulation point injection
alignment, 106, 107
Frequency response. See also Amplifier frequency
response in down-sampling, 234
for wideband VCOs, 9–10
Frequency signal, VCO, 253
Frequency synthesizer, in SDR transceiver
example, 59
Frequency tuning
of VCOs, 6
of wideband LC-VCOs, 6
of wideband VCOs, 9
Front-end analog complexity, in TD receivers,
204–205
Front-end circuits
adaptive multi-mode, 65–83
digital-intensive, 189
in parallel transceivers, 162–163
passive integration into systems-on-a-chip,
113–158
in software-defined radio, 164–165
Front-end passive filter, 266, 271
Full SDR implementation, front ends in, 27–29
Fully differential RF amplifier, 398
INDEX

Fully integrated linear amplitude modulator,
circuit implementation of, 400
Future radio systems, RF impairment
compensation for, 453–496

Gain
filtering path and, 122
in SDR power amplification, 45
in wideband down-conversion mixers, 17
Gain and phase mismatch, 330–331. See also Gain
mismatch
Gain–bandwidth (GBW) product
in Miller op-amp, 18
requirement for op-amp in charge-sampling
circuit, 211–212
in TD receivers, 205
Gain blocks, in SDR power amplification, 43–44
Gain compression, 445
Gain control, variable, 243
Gain control block, 540
Gain error, 154
in feedback path, 144–145
in TD receivers, 198
Gain imbalance, $I\!Q$, 125
Gain mismatch
feedforward loops and, 122–123
in TD receiver simulation, 209
Gain settings
for pre-power amplifier, 23
for wideband VCOs, 9–10
Gain stages
in SDR power amplification, 44
in transmitter stability, 49
Gain switching, in LNAs, 14
Gate-drain capacitance, feedforward current
through, 391
Gate electrode, in MOS switch scaling, 221
Gate length, in MOS switch scaling, 222
Gate-oxide transistor, 398
Gaussian minimum shift keying (GMSK)
for RF polar transmitters, 91
for waveforms, 36
Gaussian noise. See Additive white Gaussian noise
(AWGN); Wideband white Gaussian noise
Gaussian reference jitter, 512
Gaussian window, 536
Gene’s law, 536
$(G^H G)^{-1}$ matrix
sparsity of, 206, 207, 213–214
in TD receiver calibration, 200
in TD receiver complexity analysis, 206–208
Gilbert cell, in wideband down-conversion mixers,
16, 17
Gilbert cell multiplier, 326
Gilbert mixer
RF-DAC and direct-to-RF modulators and, 183,
184
for transmitters, 149
Givens rotation, 319, 330
Global positioning system (GPS), adaptive
multi-mode RF circuit design for, 67
Global positioning system receiver, 279
G matrix
in TD receiver calibration, 200
in TD receiver complexity analysis, 207
Gold codes, 432
Grounding, for direct launch transmitters, 39
Group delays, 415, 441, 444
GSM (Global System for Mobile
Communications). See also Dual-mode
GSM–WLAN transceivers
adaptive multi-mode RF circuit design for, 67
digital deep-submicron CMOS architecture and,
189, 190
direct launch transmitters for, 37–38
passive integration of front-end RF into
systems-on-a-chip and, 113
SDR power amplification and, 45
software radio and, 163
GSM-EDGE, polar-modulated power amplifier
for, 397–408
GSM-EDGE standard, 407
GSM/GPRS/EDGE (GGE) dual-mode system,
286
GSM receivers, FIR filters in, 232–234
GSM RF receivers, 220
GSM standard
with first-generation DRP, 104
LNA noise figure degradation and, 124
with second-generation DRP, 104
for TD receiver applications, 214
GSM transmitter, passive integration of front-end
RF into systems-on-a-chip and, 115
Hajimiri, Ali, xi, 309
Half-frequency FDD (HFDD), 280, 282. See also
Frequency-domain duplex (FDD) operation
Hammerstein model, 465
Hann window, 538, 539
Harmonic content, in SDR power amplification,
44–45, 45–46
Harmonic distortion, 463
Harmonic distortion products, 310, 478
Harmonic down-conversion (HD), feedback-based
transmitter noise and, 142–143
Hessian jitter, 512
INDEX

Heterodyne receivers, 34–35
Heterodyne transmitter, filtering requirements for, 165
Heterodyne wireless handset transmitter, 350
Heterojunction bipolar transistor (HBT), 356
High-density capacitors, in signal processing, 220
High-dynamic-range RF ADC, 283. See also Analog-to-digital conversion (ADC)
High efficiency, techniques to achieve, 385–386
High-efficiency envelope amplifier, 358, 359
Higher-order-hold DACs, 179. See also Digital-to-analog converters (DACs)
Higher-order statistics-based techniques, 473
High frequencies, with delay-locked loop-based multipliers, 54
High-frequency component delay, 394
High-impedance transformation ratio, 379
High-order QAM alphabet, single-carrier modulation with, 466. See also Quadrature amplitude modulation (QAM)
Highpass filter (HPF)
gain mismatch and, 122
LNA noise figure degradation and, 125
phase mismatch and, 123, 124
receiver translational loop and, 119–120
High-pass filtering, 316
High peak-to-minimum signals, 358
High-Q bandpass filtering, for software-defined radio front ends, 4
High-Q bandpass filters
feedforward notch filtering and, 134, 136, 137
phase noise and, 147
in transmitter stability analysis, 138–141
High-Q band-select filters, 284
High-resolution ADC, 261. See also Analog-to-digital conversion (ADC)
Power supply considerations for, 261
High-speed clock alignment, using buffer delays, 100–101
High-speed CMOS. See also CMOS technologies
software radio and, 163
topologies for DACs with, 173–177
High-speed CT ΣΔ ADC, advantages of, 257–258. See also Continuous-time (CT) integration
High-speed DAC, architecture for, 181–182. See also Digital-to-analog conversion (DAC)
High-speed multi-bit ΣΔ ADC, design challenges of, 258
High-speed multi-phase VCO frequency measurement, 251
High-speed ΣΔ ADC design, metastability of, 258–260
High-speed VCO quantizer structure, 251
Hold phase, of output voltage, 223–224
Hoyos, Sebastian, xi, 189
HPF time constants, 316
Hueber, Gernot, xiii
Hybrid ADCs, 172
Hysteresis, 360
Hysteretic current feedback control, 359
ICI profile, 475–476. See also Intercarrier interference (ICI)
Ideal linear-phase detector, 510
IIP2 performance summary, 304
IIP3 enhancement, 322. See also Third-order input intercept point (IIP3)
IIP3 performance summary, 304
IIP3 specifications, 310
IIP3 test, 340
IIP3 turning range (IIP3TR), for down-converter, 74
IM2 distortion, 313
IM2-error-canceling alternate path, 313
IM2 products, 324
IM3 distortion, 313. See also Third-order (IM3) distortion
IM3 distortion interference, 314
IM3 interference products, 313–314
IM3-producing signals, 313
in transmitter stability analysis, 138–141
Intercarrier interference (ICI)
Impairments, RF, 454–480
Impedance transformation network, 378–380
Imperfections, in TD receivers, 198–199
Implicit barrel-shift DEM, using VCO-based quantizer, 257–258. See also Dynamic element matching (DEM)
Impulse responses, 458–459
feedforward notch filtering and, 135
of RF filtering path, 121
Impulse sensitivity function (ISF), losses in oscillator tank and, 7
IMS-producing blocker signals, 317
IMT-Advance wireless standard, 534
In-band blockers, passive integration of front-end RF into systems-on-a-chip and, 114
In-band blocking test, 289–290
In-band distortion components, 464
“In-band” mitigating techniques, 477
In-band noise, in current-steering DACs, 174–175. See also INR (in-band noise ratio)
“In-band” problem, 459
Inductive degeneration, 296
Inductor quality, in broadband LO generation, 50
Inductors. See also LC entries
in implementing VCO architecture, 9
in LC-VCOs, 71, 72–73
in phase-locked loop design, 50
in wideband LC-VCO frequency tuning, 6
Infinite impulse response (IIR), 315
Infinite impulse response filters, 242–243, 315
in down-sampling, 232–234
noise generated in, 234, 236, 237
synthesis of, 226–230
in TD receiver applications, 214–215
in transconductor design, 238
In-phase inputs, in SDR transceiver example, 55
In-phase signal component, 197
Input amplitude, SNR/SNDR versus, 273–274
Input impedance, 296–297
Input–output voltage conversion gain, in IIR filter synthesis, 227
Input-referred error, 337, 340
Input-referred error specification, 322
Input-referred noise power (PN+I), 287–288
Inputs, for LNAs, 14
Input signal, “error-free” amplification of, 365
Input transconductor circuits, design of, 237–241
INR (in-band noise ratio), 317, 323, 326–327. See also In-band noise
INR performance, 341
Instability
due to dynamics in the RF path, 414–416
due to phase misalignment, 413–414
Instantaneous nonlinear distortion, 464–465
Integer bits, of amplitude and phase modulation, 93–94, 94–95, 95–96
Integer part of OTW (OTI), with reference/direct modulation point injection alignment, 107–108
Integral non-linearity/differential non-linearity (INL/DNL) ratio, in analog-to-digital conversion, 22–23
Integrated inductors, in phase-locked loop design, 50
Integrated on-chip inductors, 398–399
Integrated transceivers, 377
Integration
in charge-sampling circuit, 211–212
of front-end RF into systems-on-a-chip, 113–158
in TD receiver complexity analysis, 207
in TD receiver simulation, 208
for transform-domain receivers, 192–195
windowed, 191–192
Integrator cascade, for ΔΣ ADCs, 167–168
Integrators
continuous-time voltage-to-phase, 248
in IIR filter synthesis, 226–230
in transconductor design, 238
Intercarrier interference (ICI), 463, 475
Intercarrier interference distortion, 468
Interference
in direct launch transmitters, 37, 38–39
due to nonlinear distortion products, 309–311
in band and out-of-band, 461
self-generated, 309
Interference power, 549–550
Interference robustness, of receivers, 12
Interleaving
in pipelined ADCs, 171
for transform-domain receivers, 194
Intermediate frequency (IF) filtering, 154. See also Digital IF multi-step architecture
feedforward notch filtering and, 134–135, 136
receiver translational loop and, 119–120
Intermediate frequency signal
for receivers, 34–35
standards for, 70, 74
Intermodulating blockers, power level of, 304
Intermodulation, 466
Intermodulation distortion, 394, 463–464
in transmitter linearization, 47
INDEX 573
INDEX

Intermodulation distortion products, 478
Intermodulation intercept point (IPx), in transmitter linearization, 47
Interpolation methods, polynomial-based, 479
Interstage external filter, 286
Interstage gain, in IIR filter synthesis, 229–230
Interstage noise, 327
Intersymbol interference (ISI), 383, 419
I/Q calibration, transmitter, 480
IQ mixer design, 301–303
I/Q mixing, 456–457
I/Q mixing stages, 458
I/Q model, 471
I/Q operation of pipelined ADCs, 170 of quadrature modulator, 58 in SDR transceiver example, 59 in TD receiver simulation, 208 I/Q statistics techniques, 473
ISM band, 281–282

Jitter
BBPLL, 503 equivalent input-referred, 517, 518
Hessian, 512
output, 522–526
sampling, 466–467
Jittered time instants, extracting, 479
Jitter mitigation, 479–480
Jitter noise, as white noise, 467
Jitter requirements, 467

Kahn transmitter, 387
Keehr, Edward A., xi, 309
Kimball, Donald, xi, 349

Laplace transform, 212
Large-constellation signals, 419
Laskar, Joy, xi, 533
LC-matched common-source (CS) LNAs, in receivers, 14, 15, See also Low-noise amplifiers (LNAs)
LC (inductor-capacitor) tank, in VCOs, 71–72
LC-tuned oscillators, in broadband LO generation, 50
LC-VCOs. See also Voltage-controlled oscillators (VCOs) design of adaptive, 71 in integrated circuits, 6
Least-mean-squares (LMS) algorithm, in TD receiver calibration, 199–200, 208–211. See also LMS entries
Least mean squares (LMS)-based adaptive equalizers, 312
Least significant bit (LSB), 171
in current steering DACs, 173, 174
Least-squares (LS) estimator in TD receiver calibration, 199–200 in TD receiver complexity analysis, 207 transform-domain receivers and, 191, 196–197
Least-squares model fitting, 472
Lat function, 438
License-based spectrum policy, 533
Lim, Kyutae, xi, 533
Limit, 397
Linear amplifier, 540–541
Linear amplitude modulator, design and implementation of, 399–401
Linear and time-invariant (LTI) system feedforward notch filtering as, 135 receiver translational loop and, 121
Linear control of delta modulation (LCDM), 359
Linear feedback, 363–365
Linear feedback shift registers (LFSRs), 432
Linearity degradation, avoiding, 393–394
Linearity enhancement techniques, 362–371
Linearity improvement techniques, for polar-modulated power amplifiers, 396–397
Linearity limits, on current-steering DACs, 175–176
Linearity performance of adaptive quadrature down-converter, 78, 79 of flexible baseband analog circuits, 20–21 of multi-mode adaptive down-converter, 75–76
Linearity requirements, 390 of feedback path, 143–144
Linearity strategies, for next-generation wireless communications, 349–375
Linearization, 385–386 of the BBPLL, 508–526 transmitter, 46–48
Linearization bandwidth, 415
Linearization improvement, 420–422
Linearization strategies, power savings from, 425–426
Linearization techniques, 412
Linearized BPD gain, 511
Linearized model, of the binary-phase detector, 509–513
Linearly modulated signals, 471
Linear model of the digitally controlled oscillator, 513–514
of the feedback divider, 515
for noise analysis, 516–518
Linear modeling, of the VCO-based quantizer, 252–254
Linear power amplifier, 349. See also Power amplifiers (PAs)
Linear RF driver stages, 385
Linear term feedthrough, 316–317
Linear time-variant circuit analysis, losses in oscillator tank and, 7
Linear voltage regulator, transmitter efficiency and, 46
L-match impedance transformation network, 398
L-match network, 378–380
LMS-based adaptive equalizers, 331. See also Least mean squares entries
LMS-based algorithm, 318
LMS equalization, 318–320
LNA design, 294–295, 300. See also Low-noise amplifiers (LNAs)
LNA frequency response, in feedforward receiver circuits, 129–131, 132, 133
LNA gain settings, 295
LNA input matching, in feedforward receiver circuit implementation, 126, 127, 128
LNA input return loss, in feedforward receiver circuit implementation, 126, 127, 128
LNA noise figure degradation, feedforward loops and, 124–125
LNA to VGA measured performance, 299
Load, in transconductor design, 240
LO buffers, 330, 334–335, 336. See also Local oscillator entries
Local area networks (LANs), software-defined radio and, 33
Local oscillator (LO), 542. See also LO entries
Local oscillator feedthrough, 154. See also RX-LO feedthrough
in direct launch transmitters, 37
Local oscillator generation, in software-defined transceivers, 49–54
Local oscillator phase noise, passive integration of front-end RF into systems-on-a-chip and, 114
Local oscillator signals, 458
for direct launch transmitters, 36–37
in feedback-based transmitter measurements, 151
feedback-based transmitter noise and, 143
feedforward notch filtering and, 134–135
for receivers, 34–35
receiver translational loop and, 120–121
for TD receivers, 196–197, 198–199
in TD receiver simulation, 209
in transconductor design, 240
Local oscillator synthesis, 3
for software-defined radio front ends, 5–12, 30
LO clocks, in feedback-based transmitter measurements, 151. See also Local oscillator entries
LO divider, 297–298, 303
LO frequency, 542
for wideband VCOs, 11
Long term evolution (LTE). See LTE entries
Look-up table (LUT) predistortion, 420–425
Look-up table training, 417, 420
Loop bandwidth, 412
Loop delay, 263–264
Loop filter, 272, 441
Loop filter op-amp, 271
Loop gain
in RX band noise attenuation, 156
RX-LO feedthrough and leakage and, 145
in transmitter stability analysis, 140–141
Loop gain drops, in feedback-based transmitter measurements, 152
Loop transmission, 440–441, 443
effective, 437–438
LO signal feeding, 436
Loss factor
in IIR filter synthesis, 227
interstage gain versus, 229–230
in transconductor design, 238–239
Lossless discrete-time integrator, in IIR filter synthesis, 226–227
Loss variations, in oscillator tank, 6–8
Lossy discrete-time integrator, in IIR filter synthesis, 226–230
Low-bandwidth applications, Cartesian feedback and, 415
Low-dropout (LDO) voltage regulators, for single-chip polar transceiver radio, 86
Low-frequency delta-sigma modulator, 361
Low-frequency model, 461
Low-IF principle, 469. See also Intermediate frequency (IF) filtering
Low-IF radio architectures, statistical techniques for, 473
Low-IF transceivers, 471
Low-IF transmitter, 459
Low-jitter digitally controlled oscillator, 497
INDEX

Low-loss lowpass filter, 389
Mirror-frequency components, cross-correlations of, 473–474
Mirror-frequency crosstalk, 459
Mirror-frequency interference, 472, 482
Misalignment, probability of, 547–548
Mismatch. See also Amplitude mismatch (ε); Gain mismatch; Phase mismatch (Δϕ); Static mismatches; Transistor mismatch in TD receivers, 198–199
in TD receiver simulation, 208–209, 210
Mismatch-induced errors, in current-steering DACs, 175
Mismatch limitations, ADCs and DACs and, 159–160
Mitigation processing, receiver-side, 477
Mixed discrete/continuous tuning scheme, in wideband LC-VCO frequency tuning, 6
Mixed-signal dc offset compensation loop, flexible baseband analog circuits and, 21
Mixer circuits, for down-converter, 74–75, 76
Mixers, 334, 456
alternate path, 330
analog multipliers in, 427
design of, 295–297, 301–303
feedforward notch filtering and, 134–135
in feedforward receiver circuit implementation, 125, 127–129
in feedforward receiver circuits, 130–132
filtering path and, 122
gain mismatch and, 122
LNA noise figure degradation and, 124–125
phase mismatch and, 123
in RX band noise attenuation, 155–156
RX-LO feedthrough and leakage and, 145
in signal processing, 220
for transform-domain receivers, 192–195
Mobile communications, CMOS RF power amplifiers for, 377–410
Mobile terminals, increasing complexity of, xiii
Mobile wireless equipment, user and application demands of, 66
Moderate mode, standards for, 69
Modes, SDR power amplification and, 42
Modulated signal, 429
accuracy of, 352
Modulation, role of, 467–468
Modulation schemes, 85. See also Amplitude modulation entries; Direct modulation; EDGE modulation scheme; Envelope modulation schemes; Frequency modulation (FM); Multi-rate direct reference/point data modulation injection alignment;
Phase/frequency (PM/FM) modulation paths;
Phase modulation entries; Polar modulation format; Quadrature amplitude modulation (QAM); Reference/direct modulation point injection alignment; Remodulation entries; Second-order intermodulation (IM2) performance; ΣΔ modulation; Subnanosecond amplitude/phase modulation path alignments; TETRA narrowband digital modulation; WCDMA modulation scheme; WiMAX modulation scheme; WLAN modulation schemes
Modulator output, 262
Modulator unit cell, in transmitters, 150
MOM capacitors, in analog-to-digital conversion, 22
Monotonicity, 260–261
MOS (metal-oxide semiconductor) switches, 242
in analog-to-digital conversion, 22
in FIR filter synthesis, 230–231
in Miller op-amp, 18
noise generated in, 234–236
scaling of, 221–223
in signal processing, 220
MOS device transconductance, 323
MOSFETs, 411, 429, 430
MOS sampling switch, in transconductor design, 240
MOS squaring transductor, 325–326
MOS transistors, 301
flicker noise and, 36
Most significant bit (MSB), 171, 172
in current steering DACs, 173
M-QAM systems, pulse shaping in, 419
MRSS detection characteristics, phase noise effect on, 549. See also Multi-resolution spectrum-sensing (MRSS) technique
MRSS histogram, 545
MRSS performance, 542–555
MRSS receiver block diagram, 550–551
MRSS resolution, 542
MRSS system, functional block diagram of, 540
Multi-antenna waveforms, 468
Multi-band challenge, 281
Multi-band filtering blocks, in receivers, 12
“Multi-band, multi-mode” capability, 279, 280–283
Multi-band/multi-mode functionality, achieving, xiii
Multi-band products, SDR power amplification for, 42
Multi-band receiver, research directions toward, 282–286
INDEX

Multi-band RF receiver, without preselect filters, 285–286
Multi-bit quantizers, $\Delta \Sigma$ ADCs and, 169
Multi-bit VCO quantizer, 258
Multi-carrier modulations, 468
Multi-carrier OFDM signals, for TD receivers, 196–197, 203
Multi-carrier receivers, TD receivers versus, 204–208
Multicarrier waveform, 465
Multi-channel analog filter bank in TD receiver complexity analysis, 207–208 for TD receivers, 204–205
Multi-channel sinc filter bank in TD receiver complexity analysis, 207–208 for TD receivers, 204–205
Multi-channel transceiver, 469
Multifunctional receiver blocks, for software-defined radio front ends, 3
Multifunctional transmitter blocks, for software-defined radio front ends, 3
Multifunctional wireless devices, adaptive multi-mode RF circuit design for, 67
Multi-mode adaptive quadrature down-converter, selecting specifications for, 73–76
Multi-mode adaptive quadrature signals, generation of, 70–73
Multi-mode adaptive RF circuit design, 67–68
Multi-mode analog-to-digital converters, 68
Multi-mode challenge, 281–282
Multi-mode front-end circuits, adaptive, 65–83
Multi-mode/multi-band mobile terminals, 349
Multi-mode oscillator design, 70–73
Multi-mode products, SDR power amplification for, 42
Multi-mode receivers, 68–70
Multi-mode RF front-end circuits, adaptivity to, 69
Multiple circuits, implementing multi-standard modules as, 68
Multiple clock domain delay alignment scheme, 97–100
Multiple input and multiple output (MIMO) technology, 534. See also MIMO-OFDM systems
Multiple-input, multiple-output (MIMO) transmission schemes, 468
Multiplexers, in wideband VCOs, 11
Multipliers, 427–429
chopper stabilization for, 430–431
delay-locked loop-based, 53–54
digital assistance for, 429–435
Multi-rate direct reference/point data modulation injection alignment, in ADPLL, 101–109
Multi-resolution spectrum-sensing (MRSS) technique, 538–542. See also MRSS entries
advantages of, 541
basic theory of, 539–542
multi-resolution property of, 541–542
required time in performing, 542
statistical distribution of, 543–544
Multi-section gain stages, in SDR power amplification, 44
Multi-stage cubic term generator, 323
quantitative theoretical performance of, 326–329
Multi-stage receiver cubic term generator, implementation of, 325–326
Multi-standard communications, OFDM transform-domain receivers for, 189–217
Multi-standard modules, implementing, 67–68
Multi-standard receiver, software-defined radio, 214–215
Multi-standard transceivers ACD/DAC requirements for, 160–161 architectures of, 162–165, 184
Multi-tone input signals, 47
Nanoscale CMOS, RF polar transmitters in, 87–90. See also CMOS (complementary metal-oxide semiconductor) technologies
Narrowband approximation, 444–445
Near-Nyquist input, in analog-to-digital conversion, 22–23
Negative frequency rejection (NFR), in calibrating SDR front ends, 26
Negative resistance, losses in oscillator tank and, 6–7, 8
Nested chopper stabilization, 432–433
Neutralization, in transmitter stability, 49
Neutralized RF power amplifier, 49
Next-generation wireless communications, linearity and efficiency strategies for, 349–375
NF tuning range (NFTR), for down-converter, 74
Nikolić, Borivoje, xi, 219
900-MHz transmitter prototype, 420
90-nm CMOS cellular applications, highly integrated GPS front end for, 299–305
NLMS equalizers, 331. See also Normalized-LMS (NLMS) algorithm
NMOS gates, in Miller op-amp, 18, 19
NMOS input pairs, in wideband down-conversion mixers, 16–17
nMOS switch, gate-drain capacitance of, 396. See also nMOS transistor switches
nMOS transistor drain, 392
INDEX 579

NMOS transistors
 flicker noise and, 36
 losses in oscillator tank and, 8
 in low-band LNAs, 16, 17
NMOS transistor switches, in single-chip polar transceiver radio, 86
Noise, 154. See also Jitter noise; Quantization noise; White noise
 in adaptive quadrature down-converter, 78, 79
 ADCs and DACs and, 159–160
 BBPLL in the presence of, 503
 in current-steering DACs, 174–175
 in direct conversion receivers, 35–36
 in direct launch transmitters, 37–38
 in feedback-based transmitter measurements, 152
 flexible baseband lowpass filters and, 17–18
 in full SDR implementation, 27–28
 in LC-VCOs, 71–72
 multiplicative, 474
 passive integration of front-end RF into systems-on-a-chip and, 113–114, 118
 in pipelined ADCs, 170–171
 RX band, 155–156
 in signal processing, 219, 220–221
 in single-chip polar transceiver radio, 87
 in switched-capacitor filters, 234–237
 in TD receivers, 205
 in wideband down-conversion mixers, 17
Noise analysis
 linear model of the BBPLL for, 516–518
 in transform-domain receivers, 194–195
Noise-canceling approach, in receivers, 15
Noise figure (NF), 285, 286, 288
 standards for, 69, 74
 with transform-domain receivers, 192
Noise figure degradation, feedforward loops and, 124–125
Noise floor, 550
 estimation of, 544
Noise level, in SDR power amplification, 44–45
Noise power
 reducing variation on, 543–544
 statistical distribution of MRSS on, 543–544
Noise requirements, of feedback path, 141–143
Noise shaping
 in current-steering DACs, 175
 for \(\Delta \Sigma \) ADCs, 167–168, 169
 in VCO-based ADCs, 248–249
 techniques for, 361
Noise transfer function (NTF), 270
Noncausal filter, 415
Non-data-aided compensators, 473
Nonidealities
 in feedback-based transmitters, 141–148
 in feedforward loop, 122–125
 on quantizer output spectrum, 256
Nonlinear analysis techniques, 445
Nonlinear distortion, 463–466
 memory in, 465
 reducing, 48
Nonlinear distortion products, interference due to, 309–311
Nonlinearities. See also Nonlinearity
 in current-steering DACs, 175–176
 VCO, 255, 257
Nonlinearity
 in analog-to-digital conversion, 22–23
 from front-end small-signal components, 466
 suppression of, 261–263
Nonlinearity transfer function, 262
Nonlinear map, 499
Nonlinear memory effects, 419–420, 421
Nonlinear terms, higher-order, 318
Nonlinear transfer function, in transmitter linearization, 47–48
Normalization equation, 507, 508
Normalized-LMS (NLMS) algorithm, 315, 332, 336, 338. See also Least mean squares entries; NLMS equalizers
Notch filtering
 in passive integration of front-end RF into systems-on-a-chip, 119
 receiver translational loop and, 119–120, 121–122
 for WCDMA transmitter, 133–138
Notch filters
 feedback-based transmitter noise and, 141–142
 on-chip, 150–151
 in transmitters, 149, 150
NRZ structure, 270
Nyquist frequency, 167
Nyquist image attenuation (NIA), DACs and, 177–178, 179, 180, 181
Nyquist images
 DACs and, 177–178, 179, 180, 181, 184
 parallel-path converters and, 182
 RF-DAC and direct-to-RF modulators and, 182–183
Nyquist plots, 439, 443
Nyquist sampling theorem, 163
OFDMA transmission, linearization performance for, 424–425. See also Orthogonal frequency-division multiple access (OFDMA) technology
INDEX

580

OFDM-based standards, 349. See also Orthogonal frequency-division multiplexing (OFDM)
OFDM-based systems, 351
OFDM multicarrier waveforms, 459
OFDM signals, 471
OFDM systems, PAPR reduction in, 478
OFDM transform-domain receivers, 189–217
OFDM waveforms, 474–475
symbol error rate of, 463
Off-chip inductor quality, in phase-locked loop design, 50
Offset performance, for a chopper-stabilized multiplier, 433, 435
Offsets
in an analog multiplier, 427–429
in TD receivers, 198–199
in TD receiver simulation, 208–209, 210, 211
On-chip bandpass filters, feedforward notch filtering and, 134
On-chip capacitors, for receivers, 14
On-chip filters, in passive integration of front-end RF into systems-on-a-chip, 118–119
On-chip inductor quality, in broadband LO generation, 50
On-chip inductors, in LC-VCOs, 71, 72–73
On-chip notch filters, 150–151
feedforward notch filtering and, 136–138
On-chip RF filtering, 283–284
On-conductance, in MOS switch scaling, 221
1/f noise, in direct conversion receivers, 35–36. See also Flicker noise
Op-amps
for analog-to-digital conversion, 21
in charge-sampling circuit, 211–212
flexible baseband analog circuits for, 18–19
output from, 399
in SDR transceiver example, 57
Open-loop operation, of EER and ET, 371
Operating range, for software-defined radio, 33–34
Operational transconductance amplifiers (OTAs), in pipelined ADCs, 170, 171
Optimization
adaptive multi-mode RF circuits for, 65–83
in transmitter stability, 49
Optimum compensator coefficient, 472
Orthogonal frequency-division multiple access (OFDMA) technology, 484, 534. See also OFDMA transmission
Orthogonal frequency-division multiplexing (OFDM), 462–463, 468. See also OFDM entries
digital baseband estimators for multi-carrier signals and, 195–196
full SDR implementation and, 28–29
multi-antenna, 476
Orthogonal spreading codes, 431–432
Oscillator-based ADC, 249–250. See also VCO-based ADCs
Oscillator bias point, in LC-VCOs, 72
Oscillator frequency/phase instability, 459
Oscillator performance, of adaptive quadrature down-converter, 78
Oscillator phase noise, effects of, 463
Oscillators, 456
design of multi-mode, 70–73
feedback and, 48–49
Oscillator spectral width, 463
Oscillator tank loss variations in, 6–8
in wideband LC-VCO frequency tuning, 6
Oscillator tuning word (OTW), with reference/direct modulation point injection alignment, 107–108
OTA sharing, in pipelined ADCs, 170. See also Operational transconductance amplifiers (OTAs)
Out-of-band blockers
passive integration of front-end RF into systems-on-a-chip and, 114, 117
receiver translational loop and, 119, 121
Out-of-band blocking test, 290
Out-of-band distortion components, 464
Out-of-band signals, second-order intermodulation of, 466
Output impedance, in current-steering DAC converters, 175
Output jitter
standard deviation of, 522–526
variance of, 525
Output phase noise, power spectral density of, 521–522
Output power amplifier efficiency and, 384–385
current-steering DAC reconfigurability and, 176–177
PDF functions of, 384
Output resistance, in transistor design, 239–240
Outputs, for LNAs, 14
Output spectra, 403–405
of chopper-stabilized multipliers, 433, 435
Output voltage
in IIR filter synthesis, 227
from single-balanced current-switching mixer, 223–224, 225
Overlapping time, for transform-domain receivers, 193–194
Oversampled analog-to-digital converter (ADC), using VCO-based quantizers, 247–277

Oversampling ratio (OSR), 262–263, 283

in current-steering DACs, 176

for ΔΣ ADCs, 168, 169

in hybrid ADCs, 172

Nyquist images and, 178, 179, 180, 181

software radio and, 163

Oversized stages, in pipelined ADCs, 171

PA distortion compensation techniques, 476.

See also Power amplifiers (PAs)

Pad parasitics, for receivers, 13–14

PA drivers, 154. See also Power amplifier entries

feedback-based transmitter noise and, 142–143

feedforward notch filtering and, 133

RX-LO feedthrough and leakage and, 145

for transmitters, 148, 150

in transmitter stability analysis, 138

PA linearization, 412

Palmers, Pieter, xi, 159

PA memory effects, 436

PA nonlinearities

envelope dynamics and, 465

memoryless and quasi-memoryless, 445–446

PAPR values, high, 468. See also

Peak-to-average-power ratio (PAPR)

Parallel low-voltage power amplifiers, 380

Parallel-path converters

for DACs, 182, 183

with transform-domain receivers, 191

Parallel transceivers, architectures of, 162–163, 184

Parallel Wiener model, 446–447

Parasitics

losses in oscillator tank and, 7–8

in MOS switch scaling, 222

for receivers, 13–14

RX-LO feedthrough and leakage and, 145

in wideband down-conversion mixers, 17

Parseval’s theorem, 525

Passband gain, I–Q imbalance and, 125

Passive charge sharing

for analog-to-digital conversion, 21

in successive approximation ADCs, 172

Passive component technology, in transmitter stability, 49

Passive FET mixers, with transform-domain receivers, 192–193

Passive filter, 266

Passive filtering, in IIR filter synthesis, 229

Passive integration, of front-end RF into systems-on-a-chip, 113–158

Passive mixers

with transform-domain receivers, 191

for transmitters, 148

Passive off-chip matching, for receivers, 12

Passive quadrature mixers, in SDR transceiver example, 55–56, 57–58

Passive switched-capacitor filters

noise generated in, 234–237

perspective and outlook for, 242–243

Peak power output, transmitter efficiency and, 46

Peak-to-average-power ratio (PAPR), 465–466.

See also PAPR values

Peak-to-average power ratio reduction/mitigation, 477–478

Peak-to-average ratio (PAR), 280, 291, 351

Peak-to-minimum ratio (PMR), 351

Percentage power in-band, 85

Performance

of adaptive quadrature down-converter, 76–80

of multi-mode adaptive down-converter, 73–76

of SDR transceiver example, 59–60

of software-defined transceivers, 34

transmitter, 155

Performance improvement, of digital-to-time converter, 52–53

Performance limits, of current-steering DACs, 174–176

Performance parameters, in adaptive low-power RF circuit design, 67

Performance specifications, for software-defined radio front ends, 4–5, 28, 29

Periodic noise (PNOISE) analysis, 236–237

Periodic steady-state (PSS) analysis, of noise, 236–237

Perrott, Michael H., xi, 247

Personal area network (PAN) systems, 533

Personal communications service (PCS) band, passive integration of front-end RF into systems-on-a-chip and, 114

Phase, filtering path and, 122

Phase accumulator, in DDS architecture, 50, 51

Phase encoding, transmitter efficiency and, 46

Phase error performance, with reference/direct modulation point injection, 109

Phase exception handling, in subnanosecond amplitude/phase modulation path alignments, 99–100

Phase exponential, 461

Phase feedback loop, 397
Phase/frequency modulation (PM/FM) paths, delay alignment between amplitude modulation paths and, 85–111
Phase imbalance, I–Q, 125
Phase-locked loop (PLL)-based synthesizers, 460–461
Phase-locked loop (PLL) design
all-digital, 85–86
in broadband LO generation, 49–50
delay-locked loop-based multipliers for, 53–54
for direct launch transmitters, 39, 40
with hybrid ADCs, 172
passive integration of front-end RF into systems-on-a-chip and, 115
with reference/direct modulation point injection alignment, 107
in wideband LC-VCO frequency tuning, 6, 10
Phase margin (PM), 440
in transmitter stability analysis, 139
Phase misalignment
bounds on, 445
stability and, 436–441
Phase misalignment instability, 413–414
Phase mismatch (Δϕ), 330–331, 458
feedforward loops and, 123–124
in calibrating SDR front ends, 26
in TD receiver simulation, 209
Phase modulation (PM)
alignment accuracy between amplitude modulation and, 93–94, 94–95, 95–96
in first-generation DRP, 103–104
with RF polar transmitters, 88, 89, 90–96
in second-generation DRP, 104–105
subnanosecond alignment between amplitude modulation and, 96–101
in third-generation DRP, 105–106
Phase modulation paths, alignment accuracy between amplitude modulation paths and, 91–96
Phase noise (PN), 459–463
in adaptive quadrature down-converter, 79–80
impact of, 461
standards for, 69
in VCO, 253
VCO tuning range and, 6
in wideband LC-VCOs, 6
in wideband VCOs, 10, 11
Phase noise dynamics, 462
Phase noise effect, 548–550
Phase noise mitigation approaches, 474–476
Phase noise model, 475
Phase noise output expressions, validation of, 522–524
Phase noise power spectral density (PSD), 518
Phase noise PSD comparisons, 526–531
Phase noise requirements, in feedback path, 145–148
Phase noise theory, losses in oscillator tank and, 7
Phase noise tuning range (PNTR)
of adaptive quadrature down-converter, 78, 79
in LC-VCOs, 72
Phase plane trajectories, 499–500
Phase response, 444
Phase response approximation, 444
Phase rotation, 475
Phase shift, 365, 441
amplitude-dependent, 446
Phase signal injection, 396
Phase trajectory error (PTE), 85
Physical-layer technologies, cutting-edge, xiii
Physical resource block (PRB), 484
Pipelined architecture
for ADCs, 167, 170–171, 184
with hybrid ADCs, 172
PMOS gates, in Miller op-amp, 18, 19
PMOS transistors, 400
flicker noise and, 36
losses in oscillator tank and, 8
in low-band LNAs, 16, 17
pre-power amplifier and, 23–24
PN sequences, 432
Polar baseband signals, for direct launch transmitters, 40–41
Polar feedback, 397
Polar-modulated architecture, major benefit of, 390
Polar-modulated power amplifiers
distortion in, 390–397
for GSM-EDGE, 397–408
linearity improvement techniques for, 396–397
transmit architecture for, 387
Polar modulation, 370, 386–390
Polar modulation format, transmitter efficiency and, 46
Polar operation, of quadrature modulator, 58
Polar transmitters
envelope modulation schemes for, 85
in nanoscale CMOS, 87–90
precise delay alignment between amplitude and phase/frequency modulation paths in, 85–111
Polar transmitter with exception handling, in subnanosecond amplitude/phase modulation path alignments, 99–100
Polynomial mapping, 465
Polynomial predistorters, 323–324
Polyphase filters (PPFs) in LC-VCOs, 73 for wideband VCOs, 11–12
Portability, for software-defined radio, 33–34
Portable battery-operated equipment, SDR power amplification for, 42
Positioning systems, software-defined radio front ends for, 3
Positive feedback, in transmitters, 48–49
Post-mixer amplifier (PMA), in SDR transceiver example, 57
Postprocessing coefficients, 470 optimum solution for, 482
Power-added efficiency (PAE), high-speed clock alignment and maximizing, 101
Power amplification, in software-defined transceivers, 42–49
Power amplifier (PA) circuit. See also PA entries feedforward notch filtering and, 133 in RF polar transmitter, 88, 91
Power amplifier distortion compensation, 476–478
Power amplifier efficiencies, 351
Power amplifier efficiency enhancement, 354–362
Power amplifier function, 349–353
Power amplifiers (PAs), 445. See also PA entries AM-AM and AM-PM behavior of, 367 memory effects in, 419–420, 446–447 nonlinear distortion from, 464–465 waveform requirements for, 350–353
Power combining circuitry, 381
Power-combining techniques, 408
Power consumption in adaptive low-power RF circuit design, 66–67 of adaptive quadrature down-converter, 79–80 current-steering DAC reconfigurability and, 176–177 lowpass filters and, 20 in signal processing, 219 VCO tuning range and, 6
Power control, 382 Power control dynamic range (PCDR), 351
Power density function (pdf), 543, 545. See also Probability density function (pdf, PDF)
Power dissipation, in software-defined transceivers, 34
Power output, transmitter efficiency and, 46 Power overhead, 166 for ADCs in dual-mode GSM–WLAN transceivers, 166
PowerPC microprocessor, with RFIC transceiver, 60
Power spectral density (PSD), 467 of the output phase noise, 521–522
Power spectral density expression, of the BPD noise, 519–521
Power spectrum oscillator, 461 Power supply, VCO, 261 Power supply voltage, changing, 386
Predistorted spectrum, 426
Predistortion, 363, 396–397, 405, 408, 476 feedforward, 365 linearity advantage of, 423–424 in linearization technology, 48 piecewise linear, 404 real antennas and, 420
Predistortion approaches, problems associated with, 365
Predistortion filter, 480–481 Predistortion measurements, 417
Predistortion parameters, 470
Prefilter in single-balanced current-switching mixer, 224, 225 in transconductor design, 239
Pre-power amplifiers (PPAs) digitally controlled, 85–86 as transmitter building blocks, 23–25
Printed-circuit boards (PCBs) passive integration of front-end RF into systems-on-a-chip and, 113 for receivers, 13
Probability density function (pdf, PDF), 384, 510. See also Power density function (pdf)
Process, voltage, and temperature (PVT) in high-speed clock alignment, 101 transmitters and, 148
Programmable capacitance array, in feedforward receiver circuit implementation, 126. See also Capacitor arrays
Programmable elements, SDR power amplification and, 42–43, 44
Programmable gain settings, for pre-power amplifier, 23
Propagation delay, VCO, 251
Prototype, measurement results from, 420–426
Prototype ΣΔ ADC example with VCO quantizer, 265–275
Pseudodifferential configuration, in transconductor design, 241
Pseudo-random sequences, 433
Pseudo-random waveforms, 430 correlation properties of, 432 Pulse shape, with RF-DAC and direct-to-RF modulators, 183–184
Pulse-shape-induced amplitude distortion, DACs and, 178–179
INDEX

Pulse shaping, 419
Pulse-shaping filters, with RF polar transmitters, 90, 91
Pulse-width modulation (PWM) modulators, 359
Pure delay, 443–444
Q branch signal, filtering, 457
Q-enhancement, feedforward notch filtering and, 134
Quad-band GSM/EDGE transceiver, passive integration of front-end RF into systems-on-a-chip and, 114, 115, 116, 117
Quadrature amplitude modulation (QAM), RF polar transmitter with, 88
Quadrature baseband signals, in feedback-based transmitter measurements, 151
Quadrature mixers, for transmitters, 149
Quadrature generation, 303. See also Multi-mode adaptive quadrature signals divide/multiply quadrature for, 10–12
Quadrature imbalance, in calibrating SDR front ends, 25–26
Quadrature inputs, in SDR transceiver example, 55, 56
Quadrature local oscillator signals, for direct launch transmitters, 36–37
Quadrature LO clocks, in feedback-based transmitter measurements, 151
Quadrature mismatch, 318–320
Quadrature mixers feedforward notch filtering and, 135 second-order intermodulation performance of, 74
Quadrature modulator, in SDR transceiver example, 58–59
Quadrature oscillator (QOSC), phase noise and, 146
Quadrature phase error, 154 in feedback path, 144–145
Quadrature signal component, 197
Quadrature signals, phase noise and, 146
Quadrature square waves, 432
Quality monitors, for reference/direct modulation point injection, 109
Quantization error signal, in VCO-based ADCs, 249
Quantization noise, 361 in current-steering DACs, 174–175 for ΔΣ ADCs, 167–168 in VCO, 253
VCO SNDR and, 256
Quantization performance, of digital-to-time converter, 52–53
Quantizer output spectrum, key nonidealities on, 256
Quantizers multi-bit, 169 VCO-based, 247–277
Quasi-memoryless PA nonlinearity, 445–446
Radio architecture, 468–469
RF impairments and, 468 for software-defined radio front ends, 4–5 for software-defined transceivers, 34
Radio equipment, cost-efficiency of, 453
Radio-frequency (RF) analog electronics, impairments in, 453–454. See also RF entries
Radio-frequency band support, 280
Radio-frequency front end technology, 534, 535
Radio frequency integrated circuit (RFIC). See also RFIC interface adaptive multi-mode low-power design of, 66–68 feedforward notch filtering and, 133 integration into SDR transceiver, 55, 60 passive integration of front-end RF into systems-on-a-chip and, 113
Radio frequency transmitters envelope modulation schemes for, 85 in nanoscale CMOS, 87–90
Radio front ends, software-defined, 3–32
Radio receivers, 454–456
Radio resource management (RRM), 484
Radio spectrum management of, 33 for software-defined transceivers, 34
Radio transceiver functionalities, 456
Radio transmitters, 454–456
RAM addressing increments, 552
Random phase fluctuations, 460
Rauch biquadratic sections, 19
Rauch cells, 19
Rayleigh distribution, log-compressed, 543, 545
Real antennas, predistortion and, 420
Real-time time-alignment technique, 371
Receiver (RX) amplification stages, 456. See also RX entries
Receiver-based processing, 477
Receiver blocks, for software-defined radio front ends, 3
Receiver budget/performance, in full SDR implementation, 27, 28–29
Receiver desensitization, in passive integration of front-end RF into systems-on-a-chip, 118
Receiver front end, WCDMA, GSM/GPRS/EDGE, 292–299. See also RX front end entries
Receiver IIP3 measurement results, 336–339
Receiver inputs, in SDR transceiver example, 55–56
Receiver IQ imbalance compensation, 482–483
Receiver noise figure, feedforward loops and, 124–125
Receiver nonlinearities, 468
Receiver quadrature imbalance, in calibrating SDR front ends, 25–26
Receivers (RXs). See also RX entries in adaptive low-power RF circuit design, 66
building blocks for, 12–23
feedforward notch filtering and, 133
multi-mode, 68–70
OFDM transform-domain, 189–217
SAW-less, 310
in SDR transceiver example, 58–59
in single-chip polar transceiver radio, 85, 86–87
in software-defined transceivers, 34–36
Receiver sensitivity measurement results, 340
Receiver signal strength indicators (RSSIs), in SDR transceiver example, 54
Receiver translational loop, 119–122
Receiving (RX) path, of transceiver, 159
Recirculating method, with delay-locked loop-based multipliers, 54
Reconfigurability, 408
of current-steering DACs, 176–177
of ΔΣ ADCs, 168–169
of pipelined ADCs, 170–171
of SDR transceiver hardware, 165–166
of software-defined radio front ends, 3
of successive approximation ADCs, 171–172
Reconstruction filters, SDR DACs and, 172–173
Reconstruction matrix, 197
Reference/direct modulation point injection alignment, 106–109
Reference sensitivity test, 287–289
Relative output power, 406, 407
Relaxed mode, standards for, 69
Remodulation, within direct launch transmitters, 39–40
Remodulation rejection system, for direct launch transmitters, 39–40
Reset operation, VCO, 250–251
Residual chopping tones, 430
Residue feedback, in pipelined ADCs, 170–171
Resistance, in transconductor design, 238, 239–240
Resistive feedback LNAs, 15, 16
Resistor arrays, in Miller op-amp, 18–19
Resistors, in multi-mode adaptive down-converter, 75
Resonant-inductive noise-reduction method, for LC-VCOs, 73
Resonant tank losses in oscillator tank and, 6–7
in wideband LC-VCO frequency tuning, 6
Retimed clock (CKR)
with DRP ADPLL, 103
with first-generation DRP, 103
with reference/direct modulation point injection alignment, 106, 107, 108, 109
with second-generation DRP, 104, 105
with third-generation DRP, 105
Reynaert, Patrick, xi, 377
RF ADC, high-dynamic-range, 283. See also Analog-to-digital conversion (ADC); Radio frequency entries
RF amplifier, design and implementation of, 398–399
RF architectures, digitally assisted, 411–449
RF band down-conversion, 481–482
RF carrier envelope variations, 382–383
RF class BE amplifier, 398
RF components, for mass-market applications, xiii
RF-DAC design, 182–184. See also Digital-to-analog conversion (DAC)
RF devices, user and application demands of, 66
RF filtering
MEMS-based, 284–285
tunable on-chip, 283–284
RF filtering path, impulse response of, 121
RF filter passband, receiver translational loop and, 120
RF filters, 283
passive integration of front-end RF into systems-on-a-chip and, 113–114
passive integration of front-end RF into systems-on-a-chip and, 115
RF frequency bands, of VCOs, 6
RF front-end design, high-dynamic-range, 286
RF front end measurement results, 303–305
RF front end, multi-mode, 279
RF front ends (RFEs), 535, 555
with blocker cancellation, 285
RFIC interface, passive integration of front-end RF into systems-on-a-chip and, 116. See also Radio frequency integrated circuit (RFIC)
RFIC/system, challenge and trends in, 535–536
RF impairment compensation, for future radio systems, 453–496
INDEX

RF impairments, 454–480
- impact of, 468
- sensitivity to, 468
RF imperfections, controlling, 469–470
RF-LO leakage, 468
RF multistage cubic term generator, 342
RF PA efficiency, 399
RF path, 436
RF path dynamics instability, 414–416
RF phase signal injection, 396
RF polar transmitters
 - amplitude and phase modulation with, 88, 89, 90–96
 - in nanoscale CMOS, 87–90
RF power amplification, in software-defined transceivers, 42–49
RF power amplifiers
 - CMOS, 377–410
 - component values of, 399
 - integration of, 377
 - in SDR power amplification, 43, 45–46, 49
RF power transistor, collector-drain supply of, 358
RF preselect filter, 279
RF receivers
 - digitally enhanced alternate path linearization of, 309–342
 - signal processing in, 219–221
RF signal path, dynamics and delay in, 441–445
RF signals
 - discrete-time processing of, 219–245
 - for receivers, 34–35
RF spectrum, See Radio spectrum
RF system analysis, summary of, 292
RF systems, development direction for, 555
RF transceivers, 411
Ring oscillator-based dividers, phase noise and, 146
Ring oscillators, in broadband LO generation, 50
Ring-oscillator structure, 250
RMS output jitter, 525
ROM lookup table, in DDS architecture, 50, 51
Root-locus plots, in transmitter stability analysis, 140–141
RX-band noise. See also Receivers (RXs)
 - attenuation of, 155–156
 - in feedback-based transmitter measurements, 152
RX bands, passive integration of front-end RF into systems-on-a-chip and, 115, 116, 118
RX frequency, feedforward notch filtering and, 133
RX front end. See also Receiver front end
 - performance of, 305
 - in software-defined radio, 164–165
 - with transform-domain receivers, 192
RX-induced effects, 470
RX-induced imbalances, 472
RX-LO feedthrough. See also Local oscillator feedthrough
 - feedback-based transmitter noise and, 143
 - in feedback path, 145
 - in transmitters, 149
RX-LO leakage
 - in feedback path, 145
 - phase noise and, 147
RX-LO signals, phase noise requirements for, 145–148
RX quadrature LO clocks, in feedback-based transmitter measurements, 151
RX signal enhancement, 470
RX signal level, 337
RZ DAC element core, 269
RZ DAC switching waveforms, 269–270
RZ topology, 269
Sample-and-hold circuit, control of, 242
Sampled data, in TD receivers, 196–197
Sampled signal spectrum, DACs and, 177
Sample phase, of output voltage, 223–224
Sample-rate conversion block, 231–232
Sample rate converter (SRC), in subnanosecond amplitude/phase modulation path alignments, 97, 98
Sample-rate down-conversion, 231–234
Samplers, 455–456
Sampling bandpass signals, 467
Sampling capacitor, 417
Sampling frequency, for ΔΣ ADCs, 167
Sampling jitter, 466–467
 - in bandpass sampling, 479–480
Sampling mixers, operation of, 223–225
Sampling receivers, 34, 35
Sampling speeds, for analog-to-digital conversion, 21
SAR architecture, for analog-to-digital conversion, 21–22
SAW filter elimination, 287. See also Surface acoustic wave (SAW) filter
SAW-less receivers, 321
SAW-less UMTS receivers, 310, 342. See also Universal mobile telecommunications system (UMTS)
Scalability, flexible baseband lowpass filters and, 17–18
Scaling, of MOS switches, 221–223
Scattering parameters, in transmitter stability, 49
SDR application signal set, encoding format for, 40–41. See also Software-defined radio (SDR)
SDR chip, microphotograph of, 27
SDR implementation, front ends in, 27–29
SDR transceiver front end, schematic of, 4
SDR transceivers. See Software-defined transceivers
Second-generation DRP, phase modulation in, 104–105. See also Digital RF processor (DRP)
Second-generation (2G) receivers, receiver translational loop and, 121
Second-order input intercept point (IIP2). See IIP2 performance summary
Second-order intermodulation (IM2) performance, of quadrature mixers, 74
Second-order loop filter, 264
Second-order nonlinear distortion, 466
Second-order statistics-based techniques, 473
Second-order ZC-DPLL, 504
Segmented weighted DACs, topologies for, 173, 174. See also Digital-to-analog converters (DACs)
Self-generated interference, 309
in direct launch transmitters, 37
issues in, 311
Self-mixing, 466
Sensitivity variations, among VCOs, 8–9
Sensor networks, TD receivers in, 215, 216
Sensor relay, transform-domain distributed, 215, 216
Serial latch block, 552
Series loss resistance, 379
Series regulator, 388
Sharp bandpass filter, feedforward notch filtering and, 133–134
Shielding, for direct launch transmitters, 39–40
Sideband fall-off, 539
Sideband noise level
in direct launch transmitters, 37, 38
in SDR power amplification, 44–45
ΣΔ ADC, VCO quantizer versus comparator-based FLASH quantizer for, 257–261. See also Analog-to-digital conversion (ADC)
ΣΔ ADC architecture, 265–267
for VCO-based quantizer, 257–265
ΣΔ ADC design, metastability of high-speed, 258–260
ΣΔ feedback loop, 257
ΣΔ modulation, 94, 243. See also Continuous-time ΣΔ ADCs; ΔΣ architecture
for RF polar transmitters, 90–91
in TD receiver applications, 214
Signal bandwidth
for analog-to-digital conversion, 21
current-steering DAC reconfigurability and, 176
for direct launch transmitters, 40–41
Nyquist images and, 178
Signal-dependent nonuniform sampling schemes, 479
Signal distortion, 471
spectral illustrations of, 462
Signal enhancement, 469–470
Signal estimation blind imbalance compensation schemes, 473
Signal expansion coefficients, transform-domain receivers and, 190
Signal-flow-graph diagram, IIR filter synthesis and, 229
Signal power, 547–548
Signal processing, in RF receivers, 219–221
Signal processing capabilities
future of, 555–556
integrating digital, xiii
Signal quality, amplifier, 46–47
Signals
nonlinear relationship between, 392
transform-domain receivers and, 190
Signal selection, by receivers, 34
Signal-to-interference coverage, by cellular organized systems, 38–39
Signal-to-noise coverage, by cellular organized systems, 38
Signal-to-noise-plus-distortion ratio (SNDR), 317. See also SNDR limitations
in ADC specifications, 161
in analog-to-digital conversion, 22–23
in full SDR implementation, 27
VCO quantization noise and, 256
Signal-to-noise ratio (SNR), 317, 504. See also SNR/SNDR
for analog-to-digital conversion, 21
current-steering DAC reconfigurability and, 176
of current-steering DACs, 174–175
for ΔΣ ADCs, 168, 169
in direct launch transmitters, 37
flexible baseband lowpass filters and, 18
LNA noise figure degradation and, 124
in SDR power amplification, 45
for software-defined transceivers, 34
in transform-domain receivers, 194
INDEX 587
INDEX

Signal-to-quantization noise ratio (SQNR)
- theoretical, 254–255
- VCO, 254–255

Simple charge integration circuit, for
transform-domain receivers, 194
Simulated threshold level, 545–546, 547
Sinc filter bank
- in TD receiver complexity analysis, 207–208
- for TD receivers, 204–205
Single-balanced current-switching mixer,
operation of, 223–225
Single-carrier frequency-division multiple access
(SC-FDMA), 484
Single-carrier modulation methods, 467
Single-channel direct-conversion transceiver, I/Q
imbalances in, 468
Single-ended output, from single-balanced
current-switching mixer, 223–225
Single-pole dual-throw (SPDT) MEMS switches,
for receivers, 12–13
Single RF power amplifier, in SDR power
amplification, 43
Single-side band (SSB) mixers, for wideband
VCOs, 11–12
Sinusoids, in the baseband signal, 414
Sinusoid signal processing, transmitter efficiency
and, 46
Slope-based ADC, 250. See also Analog-to-digital
conversion (ADC)
Small-signal loop gain, in LC-VCOs, 72
Small-signal polar transmitters (TXs), 91
SNDR limitations, for VCO-based quantization,
252–257
SNR/SNDR, versus input amplitude, 273–274.
See also Signal-to-noise-plus-distortion ratio
(SNDR); Signal-to-noise ratio (SNR)
Software-defined radio (SDR), 279, 411. See also
SDR entries; Software-defined transceivers;
Software radio (SR)
ADCs and DACs for, 159–186
ADCs for, 166–172
DACs for, 172–179
defined, 33
low-noise amplifiers for, 12–14, 14–16
in modern communications systems, 159
multi-standard receiver with, 214–215
reconfigurable hardware for, 165–166
shift to cognitive radio, 534–535
in signal processing, 220
standard compliance by, 3
transceiver architecture of, 164–165
Software-defined radio front ends, 3–32
- adaptive multi-mode RF circuits for, 65–83
- analog-to-digital conversion for, 21–23
- calibration techniques for, 25–27
- in full SDR implementation, 27–29
- receiver building blocks in, 12–23
- reconfigurability of, 3
- system-level considerations for, 4–5
- transmitter building blocks in, 23–25
- wideband LO synthesis and, 5–12, 30
Software-defined transceivers, 33–63. See also
Software-defined radio (SDR); Software radio (SR)
- broadband LO generation in, 49–54
- building blocks for, 34–54
- direct launch transmitters in, 36–42
- example of, 54–60
- operating principles of, 33–34
- radio architectures for, 34
- receivers in, 34–36
- reconfigurable hardware for, 165–166
- RF power amplification in, 42–49
Software radio (SR), transceiver architecture of,
163–164
Solid-state amplifier (SSA) model, 464
Source follower, for transmitters, 148, 149
Source–gate capacitance, losses in oscillator tank
and, 8
s-parameters, in transmitter stability, 49
Spectral behavior, of lowpass filters, 26–27
Spectral broadening, 461–462
Spectral efficiency, 412
Spectral leakage, 463
- noise-induced, 468
Spectral mask, 404
- spectral mask margin, 405
Spectral regrowth, 352, 464, 468
Spectral replicas, for RF polar transmitters, 89–90
SpectreRF circuit-simulation suite, noise analysis
with, 236–237
Spectrum analyzer output, versus MRSS output,
554–555
Spectrum sensing, 537–538
- goal of, 542
Spectrum-sensing energy detector, 555
Spectrum signal processor demand, 537–538
Spectrum use, improving the efficiency of, 533
Split-band envelope amplifier, 359
Spurious free dynamic range (SFDR), in DAC
specifications, 162
Spurious performance, reducing in digital-to-time
converter, 52–53
SQNR$_{\text{peak}}$, of VCO-based quantizer, 255
Squarers, 427
Square waves, 433
SRAM memory, for single-chip polar transceiver radio, 86
Stability
of Cartesian feedback systems, 412–416
phase misalignment and, 436–441
transmitter, 48–49
Stability analysis, 447. See also Transmitter
stability analysis
for Cartesian feedback systems, 436–447
for feedforward notch filtering, 136–138
Stability potential, 49
Stacked device solution, 381
Stage bypass, in pipelined ADCs, 170–171
Stages
in pipelined ADCs, 170–171
in transform-domain receivers, 194
Stand-alone adaptive circuits, implementing
multi-standard modules as, 68
Stand-alone circuits, implementing multi-standard modules as, 67
Stand-alone flexible lowpass filters (LPFs), 19–20
Standards
for ADCs, 167
for ADCs and DACs, 160–162
for calibrating SDR front ends, 25
compliance with, 3
for input to low-noise amplifiers, 69
Staple design technique, 309
Staszewski, Robert Bogdan, xi, xiii, 85
Static accuracy, in current-steering DACs, 175
Static mismatches, in TD receiver simulation, 209, 210
Stationary-phase error probability density function
(pdf), 504. See also Probability density function (pdf, PDF)
Stationary probability distribution, 507–508
Steady-state pdf, 510. See also Power density function (pdf)
Stengel, Bob, xi, 33
Steyaert, Michiel, xi, 159
Stochastic differential equation (SDE), 505
Stopband filtering, gain mismatch and, 122–123
Stopband rejection
in feedforward receiver circuits, 129–130
I–Q imbalance versus, 125
phase mismatch and, 123, 124
Straayer, Matthew Z., xi, 247
Subband control, 484
Subcarriers
for TD receivers, 197
in TD receiver simulation, 208–209
Subcarrier spacing, 462–463, 484
Subnanosecond amplitude/phase modulation path alignments, 96–101
Successive approximation architecture, for ADCs, 167, 171–172, 184
Superposition principle, 521
Supply voltage, 407–408
in LC-VCOs, 72
Surface acoustic wave (SAW) filter, 154, 292, 310, 412, 415, 424–425, 441, 443. See also SAW
entries
feedback notch filtering versus, 133, 134
in feedforward receiver circuits, 130–131
passive integration of front-end RF into systems-on-a-chip and, 114, 115, 116, 117–119, 153
receiver translational loop and, 119, 120, 121–122
in software-defined radio, 165
Switchable gain, in wideband down-conversion mixers, 17
Switchable Miller op-amp, flexible baseband analog circuits for, 18–19
Switched-capacitor analog filters, in signal processing, 220
Switched-capacitor filters
advantages and disadvantages of, 242
in down-sampling, 231, 232–234
noise generated in, 234–237
perspective and outlook for, 242–243
in transconductor design, 240
Switched-capacitor networks, 226
Switched capacitors, in pipelined ADCs, 170
Switched inductor designs, in wideband LC-VCO frequency tuning, 6
Switches
losses in oscillator tank and, 7
in Miller op-amp, 18
Switching amplitude modulator, 389–390
Switching frequency, 360, 390
Switching gain, gain mismatch and, 122
Switching mixers, for transmitters, 148
Switching-mode power amplifiers, digital modulation of, 361–362
Switching-mode RF power amplifiers, 361, 362
Switching waveforms, 269–270
Switch stage, 361
Switch transistors
losses in oscillator tank and, 8
for transmitters, 149
System analysis, MRSS, 542–543
INDEX

System-level analysis, for software-defined radio front ends, 4–5
System-level analysis tool, for software-defined radio front ends, 5
System offsets, in TD receivers, 198–199
System requirements, translation of specification to, 320–322
Systems-on-a-chip (SoCs), passive integration of front-end RF into, 113–158
Tank capacitance, VCO sensitivity variations and, 8
Tapped delay line (TDL) for delay-locked loop-based multipliers, 53–54
in digital-to-time converter, 51, 52
with DRP ADPLL, 102
in high-speed clock alignment, 100–101
Tap selection process, in digital-to-time converter, 52–53
Tasic, Aleksandar, xii, 65
Taylor series, 318, 323
Taylor series expansion, 467
TDD systems, 282–283. See also Time-domain duplex (TDD) operation
TDMA systems, power control in, 382
Technology scaling, ADCs and DACs in, 159–160
TETRA narrowband digital modulation, in linearization technology, 48
Thermal memory effects, 396
Thermal noise, 422
in switched-capacitor filters, 234–235
in wideband down-conversion mixers, 17
Thermometer-code converter, current-steering DAC reconfigurability and, 176
Third-generation (3G) applications, 153
Third-generation cellular wireless services, 349
Third-generation DRP, phase modulation in, 105–106. See also Digital RF processor (DRP)
3rd Generation Partnership Project (3GPP), 281. See also 3GPP long-term evolution
Third-generation (3G) receivers, receiver translational loop and, 121–122
Third-order (IM3) distortion, 289, 290. See also IM3 entries
Third-order input intercept point (IIP3), standards for, 69, 74, 78. See also IIP3 entries
Third-order intercept point measurement, in analog circuit performance, 20–21
Third-order noise shaping, 265
Third-order nonlinearity, of feedback path, 143–144
3GPP long-term evolution, 484–485. See also 3rd Generation Partnership Project (3GPP)
Three-state Markov chain, 512
Three-tap predistortion filter, 485
Three-tone test, 324
Threshold level, phase noise effect on, 548–550
Threshold-level determination, 544–547
Threshold voltage, comparator, 259
Time alignment effects, in direct launch transmitters, 41
Time-confined windows, 538
Time delays, in alignment accuracy between amplitude and phase modulation paths, 91, 92
Time-domain duplex (TDD) operation. See also TDD systems
passive integration of front-end RF into systems-on-a-chip and, 113
SDR power amplification and, 42, 43
Time-domain multiplication, 539–540
Time misalignment, EDGE spectrum and, 92, 93
Time slot, 484
Time-switching, for direct launch transmitters, 36
Time-to-digital converter (TDC)
with DRP ADPLL, 103
with reference/direct modulation point injection alignment, 107
Total system efficiency, 358
Training, of a look-up table, 417, 420
Training data sequences, transmission of, 422–423
Trajectories, phase plane, 499
Transceiver concepts, developing novel, xiii
Transceivers. See also Software-defined transceivers
ACD/DAC requirements for, 160–161
ADCs and DACs in, 159
architectures of multi-standard, 162–165, 184
for software-defined radio front ends, 3
Transconductance losses in oscillator tank and, 7
in TD receivers, 205
Transconductance amplifier design, 295–297
Transconductance transistors, for transmitters, 149
Transconductor circuits, design of, 237–241
Transconductor phase, of output voltage, 223
Transfer functions in feedback-based transmitter measurements, 151, 152
in IIR filter synthesis, 226
of lowpass filters, 27
Transform-domain basis coefficients, computing, 191–192
Transform-domain distributed sensor relay, 215, 216
Transform-domain (TD) receivers, 189–217
advantages of, 215–216
applications of, 214–215
background/principles of, 190–191
block diagram of, 191
calibration algorithm for, 199–200
comparative study of, 204–208
digital baseband design for, 195–204
frequency-offset estimation for, 199, 201–204
gain/bandwidth requirement for, 211–212
with input OFDM signal, 196–197
sampling in, 191–195
simulations of, 208–211
sparsity of \((G^H G)^{-1}\) and, 206, 207, 213–214
Transformer balun, 333
Transformer independence, 381
Transistor mismatch, in direct conversion receivers, 36
Transistors
losses in oscillator tank and, 7, 8
in multi-mode adaptive down-converter, 75
for transmitters, 149
Transition probability matrix, 506–507
Transmission gate ring switching mixer, design of, 37–38
Transmitter blocks, for software-defined radio front ends, 3
Transmitter building blocks, in software-defined radio front ends, 23–25
Transmitter efficiency, SDR power amplification and, 46
Transmitter frequency-domain mask, 47
Transmitter imperfections, TX-based mitigation of, 470
Transmitter I/Q calibration, 480–482
Transmitter linearization, 476
SDR power amplification and, 46–48
Transmitter measurements, feedback-based, 150–153
Transmitter mixers, 150
Transmitter performance, 94–95, 95–96
in full SDR implementation, 28–29
Transmitter power amplifiers, 456
Transmitter quadrature imbalance, in calibrating SDR front ends, 25–26
Transmitters (TXs). See also Digital polar transmitters; Direct-launch transmitters; Polar transmitters; Radio frequency (RF) transmitters; TX entries building blocks for, 148–150
in close proximity, 38–39
in a digitally modulated wireless link, 417
envelope modulation schemes for, 85
feedforward notch filtering for, 133–138
in single-chip polar transceiver radio, 85, 87
small-signal polar, 91
in software-defined transceivers, 36–42
Transmitter stability, SDR power amplification and, 48–49
Transmitter stability analysis, feedback-based, 138–141
Transmitter transfer functions, in feedback-based transmitter measurements, 151, 152
Transmitting (TX) path, of transceiver, 159
Traveling-wave network, in SDR power amplification, 44
Traveling-wave tube amplifier (TWTA) model, 464
Tri-band WCDMA radio, passive integration of front-end RF into systems-on-a-chip and, 116
Triple-source configuration, 269–270
Tunability, in phase-locked loop design, 50
Tunable on-chip RF filtering, 283–284
Tuning ranges, for down-converter, 74
TV tuners, in broadband LO generation, 50
Two-tap FIR filter, 232
“Two-tone” blocker scenario, 320
Two-tone IIP3 test, 336–339
Two-tone signal, 392–395
time waveforms and spectra of, 395
Two-tone test, 314
TX bands, passive integration of front-end RF into systems-on-a-chip and, 115, 116, 117–118.
See also Transmitters (TXs)
TX calibration, 150
TX constellation, in full SDR implementation, 28–29
TX front end, in software-defined radio, 164–165
TX-induced effects, 470
TX-induced imbalances, 472
TX leakage, 153, 310, 336, 337, 338
phase noise and, 147
TX modulator, 150
TX notch filter, in passive integration of front-end RF into systems-on-a-chip, 119
TX output leakage, 314
TX power leakage, 286–287, 289
TX quadrature LO clocks
in feedback-based transmitter measurements, 151
in RX band noise attenuation, 155–156
TX signal, linearity requirements of feedback path and, 143–144
TX waveform baseband model, 480
Type I bandpass filters, 136–138
in transmitter stability analysis, 138–141
Type II bandpass filters, 136–138
in transmitter stability analysis, 138, 140, 141
Ultrasound clocks, in RF polar transmitters, 88
Ultraband-based personal area network (PAN) systems, 533
Ultraband (UWB) radio digital baseband estimators for multi-carrier signals and, 196
in TD receiver applications, 214–215
Ultraband RF receivers, transform-domain, 189–190
Ultraband standards, 444
UMTS blocker profile, 321. See also Universal mobile telecommunications system (UMTS)
UMTS FDD standard, 309–310
UMTS receiver, adaptively linearized, 331–336, 336–341
UMTS spreading gain, 340
Unary weighted DACs, topologies for, 173. See also Digital-to-analog converters (DACs)
Unfiltered complex envelope signal, 383
Unintended feedback, in transmitters, 48–49
Unity gain frequency, 415, 438–440
Universal mobile telecommunications system (UMTS), adaptive multi-mode RF circuit design for, 67. See also UMTS entries
Up-chop operation, 430
Up-chopping waveforms, 431, 432
Up-conversion mixers feedback-based transmitter noise and, 141–142, 143
feedforward notch filtering and, 135
in feedforward receiver circuit implementation, 125, 128–129
filtering path and, 122
gain mismatch and, 122
LNA noise figure degradation and, 125
in RX band noise attenuation, 155–156
RX-LO feedthrough and leakage and, 145
in transmitters, 149
Update rate limits, of current-steering DACs, 174
Up-mixing, digital, 181–182
Valkama, Mikko, xii, 453
Varactors implementing in circuits, 9–10
in LC-VCOs, 71, 72–73
losses in oscillator tank and, 8
VCO sensitivity variations and, 8–9
in wideband LC-VCO frequency tuning, 6
Variable-delay element, 267–268
Variable-gain amplifier (VGA), 293–294, 427
flexible baseband analog circuits and, 21
Variable-gain amplifier stage, for pre-power amplifier, 24
Variable gain control, 243
Variable phase shift, 365
VCO-based ADCs, 248–249. See also Analog-to-digital converters (ADCs);
Voltage-controlled oscillators (VCOs) measured performance of, 272–275
VCO-based quantization, SNDR limitations for, 252–257
VCO-based quantizer. See also VCO quantizer entries
alternative structures for, 250–251
background/operation of, 248–252
circuit implementation for, 267–272
comparator-based quantizers versus, 257
comparator offset effect on, 260
connecting outputs to DAC elements, 258
example design of, 255–256
high-speed structure for, 251
implicit barrel-shift DEM using, 257–258
linear modeling of, 252–254
metastability of, 260
multi-bit, 258
oversampled ADC using, 247–277
properties of, 266
VCO delay cells, 251
VCO frequency signal, 253
VCO nonlinearity, 255, 257
error in, 262
suppression of, 261–263
VCO output frequency, 248
VCO output signal changes, 248
VCO power supply, 261
VCO quantizer, monotonicity of, 260. See also VCO-based quantizer
VCO quantizer ΣΔ ADC architecture, 257–265
VCO-quantizer nonlinearity suppression modeling, 261–263
Vector combined signal processing elements, in transmitter stability, 49
Vector-distributed multi-section gain stages, in SDR power amplification, 44
Velocity saturation, 302
Very high speed digital subscriber lines (VDSLs),
digital baseband estimators for multi-carrier signals and, 196
VGA design, 298–299
VHDL simulation, validation of phase noise output expressions via, 522–524
Voltage, comparator threshold, 259. See also Voltages
Voltage-controlled oscillators (VCOs), 303. See also LC-VCOs; VCO entries in adaptive low-power RF circuit design, 67
in adaptive quadrature down-converter, 78
in broadband LO generation, 49–50
for direct launch transmitters, 39–40
divide/multiply quadrature for, 10–12
in multi-mode adaptive quadrature signal generation, 70
passive integration of front-end RF into systems-on-a-chip and, 115
reset operation for, 250–251
in SDR transceiver example, 59
sensitivity variations among, 8–9
3 to 5-GHz, 6–10
in wideband LO synthesis, 5–12, 30
Voltage-driven quadrature down-converter, performance of, 75
Voltage-gain amplifier (VGA)
in ADC specifications, 161
in SDR transceiver example, 57
Voltage regulators
for single-chip polar transceiver radio, 86
transmitter efficiency and, 46
Voltages, in LC-VCOs, 72. See also Voltage
Voltage sampling, in transform-domain receivers, 194–195
Voltage standing wave ratios (VSWRs), 423–424
Voltage-to-frequency relationship, 248
Voltage-to-frequency tuning, 268
Voltage-to-frequency tuning curve, VCO, 255
Voltage-to-phase relationship, 248
Waheed, Khurram, xii, 85
Walsh codes, 432
Waveform quality metric, 353
Waveforms
in analog-to-digital conversion, 21–22
Gaussian minimum shift keying for, 36
WCDMA, GSM/GPRS/EDGE receiver front end, minus interstage SAW filter, 292–299. See also Wideband code-division multiple access (WCDMA, W-CDMA)
WCDMA modulation scheme, 85, 91
for alignment accuracy between amplitude and phase modulation paths, 91, 92, 93–94
for alignment accuracy between integer and fractional bits of amplitude and phase modulation, 93–94, 94–95, 95–96
with DRP ADPLL, 101, 102
passive integration of front-end RF into systems-on-a-chip and, 115, 116, 117
with reference/direct modulation point injection alignment, 106, 108
with third-generation DRP, 105
WCDMA receiver, 281. See also WCDMA RX
multi-mode receiver principles and RF system analysis for, 286–292
WCDMA RF receiver system analysis, 287–289
WCDMA RX, 286. See also WCDMA receiver
WCDMA standards, for input to low-noise amplifiers, 69
WCDMA transmitters, 154
feedback-based measurements of, 151–152
feedforward notch filtering for, 133–138
in transmitter stability analysis, 141
WCDMA TX leakage, 292. See also WCDMA transmitters
White noise, jitter noise as, 467. See also Additive white Gaussian noise (AWGN); Wideband white Gaussian noise
White space, unlicensed use of, 533
Wide area networks (WANs), passive integration of front-end RF into systems-on-a-chip and, 114
Wideband (WB) RF receivers, transform-domain, 189–190
Wideband code-division multiple access (WCDMA, W-CDMA), 279. See also WCDMA entries
Wideband communication, CMOS DAC implementations for, 173, 179–181
Wideband communications systems, 436
Wideband down-conversion mixers, 16–17
Wideband ET techniques, 358
Wideband LC-VCOs, in integrated circuits, 6
Wideband LO synthesis, for software-defined radio front ends, 5–12, 30
Wideband low-noise amplifiers (LNAs), in receivers, 14–16
Wideband multicarrier, 469
Wideband resistive feedback LNAs, 15, 16
Wideband signal injection, 396
Wideband VCO architecture, 7
implementing, 9–10
Wideband white Gaussian noise, 545
Wide-bandwidth ET (WBET), 357
Wide-bandwidth telecommunication DACs, 173
Wide-dynamic-range signals, 358
Wiener–Hammerstein model, 465
Wiener model, 465
Wiener process, 461
INDEX

WiMAX modulation scheme, 85
digital baseband estimators for multi-carrier
signals and, 195–196
with reference/direct modulation point injection
alignment, 106
Windowed integration, with transform-domain
receivers, 191–192
Windowing
in charge-sampling circuit, 211–212
in TD receiver complexity analysis, 207
in transconductor design, 239
for transform-domain receivers, 192–195
Windowing effect, 538–539
Winoto, Renaldi, xii, 219
Wireless communication standards, 160–161
for ADCs, 167
Wireless communications
future of, 453
next-generation, 349–375
Wireless communication systems, this book and,
xiii
Wireless devices, multi-mode receivers in, 68–70
Wireless LAN standards, in broadband LO
generation, 50
Wireless local area networks (WLANs). See also
Dual-mode GSM–WLAN transceivers
adaptive multi-mode RF circuit design for, 67,
68
digital baseband estimators for multi-carrier
signals and, 195–196
software-defined radio front ends for, 3
software radio and, 163
Wireless mobile terminals
challenges related to, 280–282
reduced external hardware and reconfigurable
RF receiver front ends for, 279–308
Wireless regional area network (WRAN), 533
Wireless regional area network standard, 538
Wireless RFIC design, adaptive multi-mode
low-power, 66–68. See also Radio frequency
integrated circuit (RFIC)
Wireless standards
newer generations of, 353
signal characteristics of, 350
Wireless systems
ADC/DAC requirements in, 160–162
user and application demands of, 66
Wireless technology, advances in, 533
WLAN modulation schemes, 85
with third-generation DRP, 105
WPANs, software-defined radio front ends for, 3
Xilinx FPGA, with RFIC transceiver, 60
XOR gates, with delay-locked loop-based
multipliers, 54
Yanduru, Naveen K., xii, 279
Zero-crossing digital PLL (ZC-DPLL), 504
Zero-IF receivers, 34
Zero/low-IF TD receivers, 191
Zeroth-order-hold DAC, 178