Index

a
abrasion evaluation
– falling abrasive sand test 455–456
– Taber abraser procedure 454–455
absorption heat exchanger 268
abstraction bionics 23
accelerated outdoor corrosion test using salt spray 413
accelerated weathering tests 134
acetaldimine 71
acetone process 235–236
acid etch phenomenon 198–199
acrylic resin 3, see also polyacrylic resins, as coating materials
activation process 69–70, 84, 316–317
additives
– in plastic coatings 319–320
– in primer surfacer
 – defoaming and deaerating agents 148
 – for substrate wetting 149
 – for the resins or resins’ mixture like cross-linkers 147–148
 – in waterborne primer surfacers 147
– pigment wetting and dispersion 148
– rheology 149–150
adhesion and flexibility examinations
– bending 445–446
– cross-cut test 441–443
– cupping test 446–447
– electrocoat primer 133
– falling-weight test 448–449
– pull-off test 441
– steam jet tests 444–445
adhesive bonding
– adhesives as process materials 355–356
– advantages 356–359
– application 357
– body shop 367–370
– in car production 366–374
– paint shop 370–371
– principles of bonding and materials 351–359
– surface preparation 359–366
– trim shop 371–374
alkaline cleaners 65
alkaline degreasers 65
alkyd-based monocoats 180–181
alkylphenolethoxylates (APEOs) 69
aluminum
– alloys 38–39
– application potential of 36
– extraction 34–35
– as light-construction material 38–40
– pretreatment process 75–76
– properties 35
– texturing of surface methods 36–37
– Ti/Zr-oxide/hydroxide layers on 64
– treatments 35–37
aluminum or sheet molding compounds (SMCs) 5
analogy bionics 23
anodic deposition coatings 3
anodic electrodeposition coating 99
antiflutter adhesives 367–368
appearance measurement techniques 381–393
applied coatings 1
araliphatic isocyanates 233
Arizona, outdoor weathering in 406, 408
atomizer 272–274
atom transfer radical polymerization (ATRP) 219
attributes, of color 176

Automotive Paints and Coatings. Edited by H.-J. Streitberger and K.-F. Dössel
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-30971-9
Audi space frame (ASF) 18
Audí–Volkswagen 207
Austin Martin car 18
autoclave test, for stresses 134
automated quality assurance 293–297
automatic cleaning, of the body surface 266
automation, in paint application 269–271, 298
azeotrope-forming solvents, for water removal 230
azeotropic process 230

b
base coats 3, 4, 181–184, 263, 323
– drying of 189
– high solid 186
– low and medium solid 185–186
– rheology 184–185
– waterborne 186–188
batch and semibatch processes 224
bead patterning 21
‘Bell–Bell’ application, of base coat 300–301
benzoguanamines 246
bionics 23–26
bis(4-hydroxycyclohexyl)propane 226
black box 412
black standard thermometers 407
blocked isocyanates 100, 250
blow molding compounds (BMC) 5
body construction, of automobile, see also manufacturing methods, of automobile bodies
– functions of body structure 13
– joining methods
 – bonding 53–54
 – clinching 55–56
 – evaluation 53
 – laser welding 54–55
 – riveting 56
 – roller hemming 56–57
– manufacturing methods
 – hydroforming 49–50
 – metal foam 50–51
 – press hardening 50
 – roll forming to shape 52
 – sandwich structures 51
 – tailored products 47–49
– materials
 – aluminum 34–40
 – magnesium 40–42
 – nonmetallic parts 43–47
 – sandwich structures 51
 – sheet 61–63
 – steel 26–34
– titanium 42–43
– materials and manufacturing methods for advanced 14
– methods
 – hybrid type of construction 19
 – modular way of construction 19–20
 – monocoque design 15–17
 – space-frame concept 18–19
– milestones 14
– principles of design
 – bionics 23–26
 – conventional 20–21
 – light-weight vehicles 22–23
– requirements in 13–14
– studies and concepts on light construction 57–59
– substrates used for 62
– surface protection
 – corrosion prevention in design phase 59–60
 – precoating of sheets 59
body-in-white 13, 20, 63
body on frame (BOF), mode of construction 13
body shop bonding 367–370
bonding technique 53–54
Buchholz penetration hardness 133
2-butyl-2 ethyl propane 1.3-diol 226
c
car body pretreatment lines
– continuous horizontal spray/dip 80
– cycle box spray 82
– cycle dip 82
– cycle immersion 82
– RoDip3 80–81
– schematic outline 79
– sequence of treatment
 – for continuous conveyorized line for plastic cleaning 78
 – in a spray/dip 78
 – spray 80
 – vario shuttle 81
car painting industry
– evolution 1–7
– legislative acts 7–9
– market 9–13
Carrozzeria Touring Company 18
car wash simulation test 458–459
Cataplasma testing 362
cathodic electrodeposition paints 6, 99–101
– design of
 – baking oven 118–119
– general functions and equipment 107–108
– integration process 106–107
– pretreatment 107
– replenishment and anode cells 111–114
– tanks, filters, heat exchanger, and power supply for 108–111
– ultrafiltration and rinsing zones 114–117
– film performance of 101–106
cationogenic polyurethanes 233
cavity preservation 265
Chromic-6 5
circulation line system 282
clarity preservation 263–264
clear coats 3, 4, 323
– durability 198–203
– epoxy acid chemistry 192
– liquid
– acrylic melamine silane 192
– carbamate-melamine-based 1K coat 192
– one- (and two-) component epoxy acid coat 192
– one-component (1K) acrylic melamine 190–192
– one-component polyurethane (PUR) coat 192
– scratch resistance 201
– two-component (2K) polyurethane coat 193–194
– UV curving 206
– waterborne coat 194–195
– market 189–190
– powder 195–198, 264
clinching technique 55–56
color changes 275
color control, in the automotive industry 402–403
color flop 177
color of cars 6
color perception of a surface 390–392
cold check test 134
colorchanger 275
coating processes, see also specification and testing, for paint finishes; surface protection
– automotive specifications for exterior appearance 391
– business trends 481–482
– customer expectations 478–479
– film performances 7
– innovative equipments and processes 479–481
– milestones and driving forces in 2, 6
– for plastic parts
– exterior, see exterior plastic part coating
– interior plastics, see interior plastic coating
– quality standards 6
– regulatory trends 476–478
– status and public awareness of the automotive 473–474
– of the twentieth century 1
ccoat performance, requirements for
– application conditions 204–206
– durability 199–201
– environmental etch resistance 198–199
– integrated paint processes
– primerless coating process 209–210
– wet-on-wet application 208–209
– scratch resistance 201–204
– UV-curing technology 206–208
congenital color blindness 276
computer aided design (CAD) systems 267
computer aided optimization (CAO) method, of body construction 24
Concentrated Radiation Using Fresnel Mirrors (Q-Track or EMMAQUA) 412
construction methods, of automobiles, see body construction, of automobile
contrast sensitivity, of the human eye 387–388
convection ovens 288
conventional design, in body construction 20–21
conveyor systems 287–288
copper accelerated salt spray test (CASS) 74
corona discharge method 317
corrosion prevention 59
corrosion protection 2–3, 5, 358
 – oils 63
 – primer 62
 – tests for edge, contact and inner part protection 432–433
 – tests for surface protection 429–432
 – total body testing 433–434
 – types 428–429
 – use of zinc-coated steel 61
crash-management systems 40
crash-resistant adhesives/bonding 369
craters, in amorphous films 120–121
Cr-containing conversion treatment 77–78
crockmeter test 456–457
cross-cut test 156, 441–444
cross-linking agents 211–212, 214, 222, 227
 – for liquid coating materials
 – melamine and benzoguanamine resins 245–248
 – other 252
 – polyisocyanates and blocked polysisocyanates 249–252
 – tris(alkoxycarbonylamino)-1,1,5-triazine (TACT) 248
 – for powder coatings 252–254
crosslinking of paints 1
cupping test 446–448
cyclic corrosion tests (CCT) 421–422
cycloaliphatic disiocyanates 233
defects, in electrocoating coatings
 – craters 120–121
 – dirt 119–120
 – film thickness/throwing power 122–123
 – hash marks 123
 – pinholes 123–124
 – surface roughness 121–122
 – water spotting 123
degreasing process 65–69
deposition process 92
 – coulomb-efficiency 94
 – voltage effects 96
dibutyl tin laurate (DBTL) 153
diffusion and migration of dispersion particle, in deposition process 92
dimeric fatty acids 226
dimethylolpropionic acid (DMPA) 322
dip coating 1
dip degreasing 83–84
diphenylethene (DPE) 219
direct glazing adhesives 371–372
dirt cleaning 267
distinctness-of-image (DOI) measurement 385–386
dosing technology 277–278
dry film lubricants 64
dullness measurement 383–384
EcoConcept 210, 263, 480
elastic bonding 353
elasticity, of primer surfacer coat 133
electrocoating process 261–262
electrodeposition coatings 2
 – in automotive supply industry 124
 – defects during application and their prevention
 – craters 120–121
 – dirt 119–120
 – film thickness/throwing power 122–123
 – hash marks 123
 – pinholes 123–124
 – surface roughness 121–122
 – water spotting 123
 – design of cathodic electrocoating process 261
 – anolyte system 111
 – baking oven 118–119
 – general functions and equipment 107–108
 – integration process 106–107
 – pretreatment 107
 – replenishment and anode cells 111–114
 – tanks, filters, heat exchanger, and power supply for 108–111
 – ultrafiltration and rinsing zones 114–117
 – film performance of cathodic electrocoatings
 – chip resistance 104–105
 – corrosion protection 102–104
 – physical film data 101–102
 – surface smoothness and appearance 105–106
 – history 89–90
Index

– physico-chemical basics of the 90–95
– quality control
 – solid content, solvent content and pH 97–98
 – voltage, current density, bath temperature and bath conductivity 96
 – wet film conductivity 96–97
– resins and formulation principles
 – anodic electrodeposition coating 99
 – cathodic electrodeposition coating 99–101
 – nature of resins 98
– electro-discharge texturing (EDT) method 36

ElectroStatic Application (ESTA) 308
 – powder 166

emulsion polymerization process 216, 222–224, 241

environmental legislation 7
 – pretreatment 86
 – primer surfaces 132
 – topcoats 187

epoxy resins, see resins
 – esterizing process 139
etching tests 422–424, 439

ethylenediaminetetraacetic acid (EDTA) 69
ethylene–propylene–diene–monomer (EPDM) 310

Euro-New Car Assessment Programme (NCAP) 22

European Integrated Pollution and Prevention Control Bureau (EIPPCB) 132

extender, in primer surfacers
 – barium sulfate 144
 – carbon blacks 146
 – feldspar (China clay) 146
 – silicon dioxide 144–145
 – talc 144

exterior plastic coating
 – car body color 320–324
 – ecological aspects 305–306
 – economical aspects 307
 – plastic coating materials 316–318
 – pretreatment 315–318
 – process definitions
 – offline, inline, and online painting 307
 – process-related issues, advantages, and disadvantages 307–310
 – substrates and parts
 – overview 310–311
 – physical characteristics 311–315
 – technical and design aspects 306–307
 – technical demands and testing 324–329
 – trends, challenges and limitations
 – materials 330–332
 – processes 332–334
 – substrates and parts 329–330

falling abrasive sand test 455–456
falling-weight test 448–449
Federal Motor Vehicle Safety Standards (FMVSS-214) 22
Federal Motor Vehicle Safety Standards (FMVSS) 212/208 regulations 371

fiber composites, in body construction
 – applications 46–47
 – forming behavior 45
 – molding processes of reinforced plastic parts 46
 – polyester resins 45
 – pretreatment process of plastic parts 77
 – share of plastics in motor vehicles 43
 – thermoplastics 45

film thickness/throwing power, of body for cars and trucks 122–123

‘finger print’ methods 7, 204

flame orientation process 183–184

flash off 189, 288

flexible-structural bonding 354

flop index 182, 402

Florida, outdoor weathering in 406–408, 410

Florida exposure test 134

fluorination 317

foil technology 333–335

fusion welding methods 42

galvannealed sheets 59
glewing technology 5
gloss retention 3

GM SCAB-test 364
gravelometer test 133

hazardous air polluting substances (HAPS) 9

Health risk factors, to the painters 3

Heat exposure and weathering impact 407

Hem-flange bonding 368

1,6-hexamethylene diisocyanate (HDI) 232

hexmethoxymethylamine (HMMM) 139, 247

high solid base coats 181

hot-forming process 50
humidity exposure and weathering 408
hybrid method, of construction 19
hydroforming process 49–50
hydrogen peroxide 70
hydroprimers 322
N-beta-hydroxy alkyl diamides 252
hydroxy-functional polyacrylic 223
N-hydroxymethylol groups 238
hydroxylamine 70
hydroxypivalic acid neopentyl glycol ester 225
i
illuminant metamerism 397
integrated paint processes 263, 480
– primerless coating process 209–210
– wet-on-wet application 208–209
interior plastic coating
– adhesion 342
– concept 334–335
– laser coatings 337–339
– performances 341–346
– properties of different classes of paints 343
– raw materials for 346–347
– surfaces and effects 335–337
interpenetrating networks (IPN), of polymer classes 239
IR (infrared) radiators 289
isophorone diisocyanate (IPDI) 233, 249, 321
j
jacksonville etching 198
joining methods, in automobile body construction
– bonding 53–54
– clinching 55–56
– evaluation 53
– laser welding 54–55
– riveting 56
– roller hemming 56–57
k
ketazine and ketamine processes 237
Kroll process, of titanium 42
Kubelka–Munk theory 402
‘Kyoto’ protocol 8
l
laboratory weathering trial 419–421
Land Rover 39
laser coatings 5, 337–339
laser MIG hybrid welding 19
laser scanning confocal fluorescence microscopy 316
laser texturing (Lasertex) method 36
laser welding technique 54–55
Lateral Impact NewCar Assessment Program (LINCAP) 22
layout of coating lines 266, 298
legislations
– in coating processes 7–9
– for metal surface treatment chemicals 86
– for primers 132
– transportation and safety regulations for phosphate accelerators 74
– VOC restrictions 100, 175
Lewis acids 153, 230, 244, 251
light fastness test (aging from hot light) 421
lightness flop 176
light-weight vehicles, design principles 22–23
linear polymers 226
liquid clear coats, see clear coats
liquid primer surfacer
– application 158–160
– formula principles 152–156
– manufacturing process 156–157
low solid base coats 185
m
magnesium and body construction 40–42
– pretreatment process 76–77
maleinized polybutadiene resins 3
manufacturing methods, of automobile bodies, see also body construction, of automobile
– hydroforming 49–50
– metal foam 50–51
– press hardening 50
– roll forming to shape 52
– sandwich structures 51
– tailored products 47–49
manufacturing of resins (see also polyacrylic resins) 213–245
mass polymerization 224
mass production and coating process 1
medium solid base coats 185
melamine crosslinkers 3, 247
melamine resins 154
Melt process 223
Mercedes concept car 25
Metal foams 50–51
metallic and interference colors, visual evaluation of 397–398
metallic appearance 178, 180
methoxymethyl-functional melamines 246
N-methyl caprolactam 235
N-methylmorpholine-N-oxide (NMMO) 71
N-methyl pyrridolone 235
mica effect pigments 176–177
modular method, of construction 19–20
monocoats 180–181
monocoque design, of construction 15–17
Morgan 18

n
nanoscratch test 460–461
neopentyl glycol 225
nitrilo-triacetic acid (NTA) 69
nitroguanidine (CN4) 71
nonionic surfactants 66
Norrish–Trommsdorf effect 224

o
observer and color perceptions, see visual perception
OEM coating, of passenger cars 5
– market 10
Ohm’s law 94
online painting 307
Opel 194
‘Orange peel’, evaluation of 384–390
organic polyurethanes 154
organophosphates 180
outdoor weathering
– in Florida and Arizona 406–410
– procedures 411–413
oxidizing compounds 70–71

p
paint color-changer 275
paint finishes, specification and testing of, see specification and testing, for paint finishes
painting process
– coating facilities
– automation in paint application 269–271
– process technology 268–269
– coating process steps
– cavity preservation 265–266
– electrocoating (EC) 261–262
– paint application 263–265
– pretreatment 261
– sealing and underbody protection 262–263
– conveyor equipment 287–288
– drying 288–290
– economic aspects
– full automation 296–297
– layout 296
– robot interior painting with high-speed rotation 299–300
– in a fully automated paint shop 259
– layout of paint shop 266–267
– quality aspects
– automated quality assurance 293–296
– control technology 290–292
– process monitoring and regulation 292–293
– process optimization 296–297
– supply system
– circulation line system 282–283
– container group 280–282
– for industrial sector 280
– paint-mix room 280
– for smaller circulation system 283–284
– for smaller consumption quantities 283
– for special colors 284–285
– voltage block systems 285–287
– technology
– atomizer 272–274
– dosing technique 277–279
– paint color changer 275–276
– pigging technique 275–276
– used by original equipment manufacturers (OEMs) 260
paint-mix room 275, 280
passenger safety standards 22
passivation mechanism 75, 85
patchwork blanks 48
pH of the solvent, defined 97
phosphating process 84–85
pigment technology 277–278
pigments 319
– and color 175
– aluminum 179
– aluminum flake effects 178
– attributes describing color 176
– classification 176
– global production data 176
– inorganic 177–178
– modern 180
– organic classes 179
– in primer surfacers
– factors affecting paint 141
– refractive index, impact of 141–143
– titanium dioxide 143–144
– technical properties 177
plasma treat process 360–361
plastic parts 43, 77, 310–315
polycrylic carboxylic acids 154
polycrylic microparticles 223
polycrylic resins, as coating materials
 – manufacturing 218–224
 – mass polymerization 224
 – property profile 214–218
polyamides 311
polyester, as coating materials
 – manufacturing 228–231
 – property profile 224–228
polyester modified epoxy chain 100
polyisocyanates 249–252
polymerization 222–224
 – aqueous 222–224
 – in solution 218
 – mass 224
polyurethane-based crosslinkers 3
polyurethane polycrylic polymers, in coating materials
 – manufacturing 240–241
 – property profile 239
polyurethane–reinforced-reaction-inmold (PUR–RRIM) 308
polyurethanes, as coating material
 – manufacturing 234–238
 – property profile 232–234
powder clear coats 195–198, 264
powder coatings 4, see also clear coats
powder primer surfacer 129, 261
 – application with powder material 264
 – cost and environmental aspects 172–173
 – film properties 133
 – liquid
 – application 158–160
 – formula principles 152–156
 – manufacturing process 156–157
 – market potential 129
 – polyester-epoxy 170
 – polyurethane-based resin 213
 – powder 130–131
 – application 166–170
 – formula primers 160–162
 – manufacturing process 162–166
 – process sequence 170–171
 – quality and process reliability 173
 – raw materials
 – additives 146–150
 – pigments and extenders 141–146
 – resin components 139–141
 – solvents 150–152
 – requirement profile
 – legislative 132
 – technological 133–138
 – solventborne 321
 – technical data for technologies 119
primerless coating process 130, 209–210, 263–264
primer surfacer 129, 261
 – application with powder material 264
 – cost and environmental aspects 172–173
 – film properties 133
 – liquid
 – application 158–160
 – formula principles 152–156
 – manufacturing process 156–157
 – market potential 129
 – polyester-epoxy 170
 – polyurethane-based resin 213
 – powder 130–131
 – application 166–170
 – formula primers 160–162
 – manufacturing process 162–166
 – process sequence 170–171
 – quality and process reliability 173
 – raw materials
 – additives 146–150
 – pigments and extenders 141–146
 – resin components 139–141
 – solvents 150–152
 – requirement profile
 – legislative 132
 – technological 133–138
 – solventborne 321
 – technical data for technologies 119
prelubes 63
press hardening process 50
pretreatment process 261
 – activation 69–70
 – aluminum 75–76
 – construction materials 82
 – degreasing 65–69
 – environmental legislations for metal surface treatment chemicals 86
 – of exterior plastic 315–318
 – lines 77–80
 – continuous horizontal spray/dip 80
 – cycle box spray 82
 – cycle dip 82
 – cycle immersion 82
 – RoDip3 80–81
 – spray 80
 – vario shuttle 81
 – magnesium 76–77
 – passivation 75
 – plastic parts 77
 – process
 – activation 84
 – deionized water rinsing 85
 – dip degrease 83–84
 – electrocoat line 85
 – passivation 85
 – phosphating 84–85
 – precleaning stage 82–83
 – rinsing 84, 85
 – spray degrease 83
 – zinc phosphating 70
 – requirements and specifications for zinc phosphate conversion layers 85–86
 – sequence 65
 – steel structures 75–76
 – surface conditions and contaminations, in body assembly 63–64
 – zinc phosphating 70–74
powder slurries, see water-dispersed powder clear coat systems
prehards 63
 – volatile organic compound (VOC) standards in the United States 130
 – waterborne 131–132
 pull-off test 441
 pyrogenic silicic acid 145
 q
 quality assurance 465
 quality control 288–293
 quantum leap 24
 QUV tester 417–419
 r
 radiation and weathering impact 406–407
 radical polymerization 214–215, 219–220, 241
 repairs
 – after pretreatment and electrocoat application 377
 – after primer surfacer 378
 – end-of-line 380
 – top-coat 378–379
 resins 318–319
 – benzoguanamine 212, 246
 – for the electrocoating process 98
 – epoxy 3, 213
 – manufacturing 243–244
 – property profile 242–243
 – hexamethoxyethylmelamine (HMMM) type melamine 186
 – maleinized polybutadiene 3
 – melamine 217
 – in primer surfacer 139–141
 reverse injection moldings (RIM) 318
 reversible addition fragmentation chain transfer (RAFT) 219
 rheology 149–150, 153–156
 – base coat 184–185
 – of solventborne base coat without rheology control 184
 – of waterborne and high solids base coats 185, 187
 rinsing process 84–85
 riveting technique 56
 robots 6, 270–271, 301–302
 roller hemming technique 56–57
 roll forming to shape process 52
 roughness, of primer coating 135
 s
 sandwich designs 23
 scanning electronic micrographs (SEMs), of the zinc phosphate coatings 71–72
 scratch resistance
 – car wash simulation test 458–459
 – crockmeter test 456–457
 – nanoscratch test 460–461
 – of clear coats 201
 – wet-scrub abraison test 457–458
 sealing process 262–263
 secondary-ion mass spectrometry (SIMS) 316
 selective catalytic reduction (SCR) technology 25
 sheet-metal parts, designing of 21
 sheet molding compounds (SMC) 310
 side crash velocity 22
 simulation of acid rain tests 422
 single-stone impact test 133
 sodium chlorate 71
 sodium nitrite 70
 sodium nitrobenzenesulfonate (SNIBS) 71
 soft kill option (SKO) method 24
 solid colors, visual evaluation of 393–397
 solvent-borne paint formulations 8
 solvents
 – in plastic coatings 319
 – in primer surfacer 130–152
 space-frame concept 18–19
 – interior passenger space and cargo space 20
 specification and testing, for paint finishes
 – abrasion
 – falling abrasive sand test 455–456
 – Taber Abraser procedure 454–455
 – adhesion and flexibility examinations
 – bending 445–446
 – cross-cut test 441–444
 – cupping test 446–447
 – falling-weight test 448–449
 – pull-off test 441
 – steam jet tests 444–445
 – color and appearance
 – appearance measurement techniques 392–193
 – applications of color control in the automotive industry 400–401
 – color measurement outlook 403–405
 – distinctness-of-image 385–386
 – dullness measurement 385–386
 – evaluation of ‘orange peel’ 386–390
 – measurement of colors 398–405
 – metallic and interference colors, visual evaluation of 397–398
 – for multangle color measurement of interference pigments 403–405
– solid colors, visual evaluation of
393–397
– specular gloss measurement
382–384
– visual evaluation of appearance
379–380
– visual perception of a surface
390–392
– corrosion protection
– tests for edge, contact and inner part
 protection 432–433
– tests for surface protection
429–431
– total body testing 433–434
– types 428–429
– mechanical examinations 435–440
– scratch resistance
– car wash simulation test 458–459
– crockmeter test 456–457
– nanoscratch test 460–461
– wet-scrub abrasion test 457–458
– standards of tests 462
– stone-chip resistance
– single-impact test methods
 451–454
– standardized multi-impact test
 methods 450–451
– uniformity 381
– weathering resistance of automotive
 coatings
– artificial weathering 414–421
– environmental impacts 406–421
– natural weathering 408–410
– procedures of outdoor weathering
 411–413
– testing 421–426
specular gloss measurement 382–384
spinning nozzle inert flotation (SNIF) 35
sports cars 18
spot weld bonding 369
spray application techniques 3
spray degreasing 83
stannic acid 230
steam jet tests 444–445
steel
– areas of use 27
– characteristics and application of
different types of cold-rolled
 high-strength steels 28
– cold-rolled thin sheets 28
– complex-phase (CP) 29
– deepdrawing steels 29
– electrogalvanized and hot-dip
galvanized steel sheets 62
– higher-strength 29
– bake-hardening 30
– interstitial free (IF) 30–31
– isotropic steel 31
– microalloyed 30
– phosphor-alloyed 30
– high-grade 32
– high-strength
– complex-phase (CP) 32
– dual-phase 31
– martensite phase (MS) 32
– rest austenite (RA) 31–32
– low-carbon deep drawing 29
– manganese–boron 32–33
– modern passenger cars 26
– passivation effect on 75
– twinning-induced plasticity (TWIP)
 33–34
stone-chip resistance test methods 133, 156
– single-impact 451–454
– standardized multi-impact
 450–451
stress-controlled growth principles 24
stripping process 101
sulfonic-acid-based compounds 233
Superleggera method, of construction 18
suppliers, of paint 10–11
supply concepts
– of paint materials 279–286
– quality assurance 467–468
– supply chain 468–473
surface conditions and contaminations, in
 body assembly 63–64
– roughness of electrocoat surfaces
 121–122
surface protection
– corrosion prevention in design phase
 59–60
– precoating of sheets 59
surface tension 313–315
surfactants 65–66
t
Taber Abraser procedure 454–455
tailored blanks 47
tailored strips 48
tailored tubes 48
testing, for paint finishes, see specification and
testing, for paint finishes 2,2,6,6-tetramethylpiperidin-N-oxide (TEMPO)
219
tetramethyl xylylene diisocyanate (TMXDI)
233, 236
thermal joining processes 19
thermoplastic polyolefins (TPOs) 310

- titanium and body construction 42–43

- Titanium Firebird car 43

- titanium phosphate activators 69–70

- titration methods 67–68

- tolerance compensation 356

- topcoats 175

- – single staged 180

- TPO bumpers, painting in 320–321

- triglycidyl isocyanurate (TGIC) 252–253

- trimethyl hexamethylene disiocyanate 232

- Trim shop bonding 371–374

- tris(aloxycarbonylamino)-1,3,5-triazine (TACT) 248–249

- tris(aminocarbonyl)triazine 227

- two-component (2K-) formulation 3

u

- ultrafiltration devices 68

- ultralight steel auto body—advanced vehicle concepts (ULSAB–AVC) 57–58

- ultralight steel auto closures (ULSAC) project 57

- ultraviolet radiation 5

- underbody protection 262–263

- US Insurance Institute for Highway Safety (IIHS) 22

- UV-curing clear coats 206–208

- UV-durability 199

v

- VDA humidity test 134

- viscoelastic materials 311

- viscosity 153, 154

- visual perception

- – of color 394–395

- – inherent types of color vision defects 394–395

- – of metallic finishes 397–401

- – of a surface 390–392

- volatile organic compounds (VOC), emission of 8

- Volkswagen 41

- voltage block systems 285–287

- Volvo 207, 385, 450

w

- washing oils 64

- waterborne coats

- – base 3, 186–188

- – clear 194–195, 264

- – conversion, global 187

- waterborne paints 2

- waterborne polyester dispersions 230

- waterborne primer surfacers 131–132, 154, 156

- water-dispersed powder clear coat systems 264

- water immersion test 134

- waviness measurements 388–390

- weathering impact, on automotive coatings

- – artificial 414–421

- – correlation between artificial and natural 426–427

- – environmental impacts 406–423

- – heat exposure 407

- – humidity exposure 408

- – outdoor weathering in Florida and Arizona 408, 410

- – radiation 406–407

- – with Fresnel mirror systems 410

- – natural 408–410

- – testing equipment and technology

- – cyclic corrosion tests (CCT) 421–422

- – etching tests 422–424, 439

- – laboratory weathering trial 419–421

- – light fastness test (aging from hot light) 421

- – QUV tester 417–419

- – simulation of acid rain tests 422

- – standards 423–426

- – xenon arc lamps 415–417

- wet film conductivity, defined 96

- wet-on-wet coating technology 3, 208

- wet-scrub abrasion test 457–458

x

- xenon arc lamps 415–417

- x-ray photoelectron spectroscopy (XPS) 316

z

- zinc phosphate conversion coatings 86

- zinc phosphating process 70–74

- Zr-based passivation 85