Contents

Preface XVII
Abbreviations XIX
List of Contributors XXIII

1 Introduction 1
Hans-Joachim Streitberger
1.1 Historic Development 1
1.2 Legislation 7
1.3 Automotive and Automotive Paint Market 9

2 Materials and Concepts in Body Construction 13
Klaus Werner Thomer
2.1 Introduction 13
2.2 Methods of Body Construction 15
2.2.1 Monocoque Design 15
2.2.2 Space Frame 18
2.2.3 Hybrid Type of Construction 19
2.2.4 Modular Way of Construction 19
2.3 Principles of Design 20
2.3.1 Conventional Design 20
2.3.2 Design Under Consideration of Light-Weight Construction 22
2.3.3 Bionics 23
2.4 Materials 26
2.4.1 Steel 26
2.4.1.1 General Remarks 26
2.4.1.2 Low-Carbon Deep Drawing Steels 29
2.4.1.3 Higher-Strength Steels 29
2.4.1.4 High-Strength Steels 31
2.4.1.5 High-Grade (Stainless) Steels 32
2.4.1.6 Manganese–Boron Steels 32
2.4.1.7 Light-Construction Steel with Induced Plasticity (TWIP Steel) 33
2.4.2 Aluminum 34
Contents

2.4.2.1 General Remark 34
2.4.2.2 Further Treatment 35
2.4.2.3 Aluminum Alloys 38
2.4.2.4 Aluminum as Light-Weight Construction Material 39
2.4.3 Magnesium 40
2.4.4 Titanium 42
2.4.5 Nonmetallic Parts – Fiber Composites 43
2.5 Manufacturing Methods 47
2.5.1 Tailored Products 47
2.5.1.1 General Remarks 47
2.5.1.2 Tailored Blanks 47
2.5.1.3 Tailored Tubes 48
2.5.1.4 Tailored Strips 48
2.5.1.5 Patchwork Blanks 48
2.5.1.6 Future 49
2.5.2 Hydroforming 49
2.5.3 Press Hardening 50
2.5.4 Metal Foam 50
2.5.5 Sandwich Structures 51
2.5.6 Roll Forming to Shape 52
2.6 Joining Methods 52
2.6.1 Bonding 53
2.6.2 Laser Welding 54
2.6.3 Others 55
2.6.3.1 Clinching 55
2.6.3.2 Riveting 56
2.6.3.3 Roller Hemming 56
2.7 Outlook 57
2.8 Surface Protection 59
2.8.1 Precoating of Sheets 59
2.8.2 Corrosion Prevention in the Design Phase 59

3 Pretreatment of Multimetal Car Bodies 61
 Horst Gehmecker

3.1 Introduction 61
3.2 Car Body Construction Materials 61
3.2.1 Sheet Materials 61
3.2.2 Surface Conditions/Contaminations 63
3.3 Pretreatment Process 65
3.3.1 Sequence of Treatment 65
3.3.2 Degreasing 65
3.3.3 Activation 69
3.3.4 Zinc Phosphating 70
3.3.5 Passivation 75
3.3.6 Pretreatment of Aluminum – Steel Structures 75
3.3.7 Pretreatment of Magnesium 76
3.3.8 Pretreatment of Plastic Parts 77
3.4 Car Body Pretreatment Lines 77
3.4.1 Spray Lines 80
3.4.2 Continuous Horizontal Spray/Dip Line 80
3.4.3 RoDip3 Line 80
3.4.4 Vario Shuttle Line 81
3.4.5 Other Types of Lines 82
3.4.6 Construction Materials 82
3.4.7 Details on Process Stages 82
3.4.7.1 Precleaning Stage 82
3.4.7.2 Spray degrease 83
3.4.7.3 Dip Degrease 83
3.4.7.4 Rinsing 84
3.4.7.5 Activation 84
3.4.7.6 Phosphating 84
3.4.7.7 Rinsing 85
3.4.7.8 Passivation 85
3.4.7.9 Deionized water rinsing 85
3.4.7.10 Entering the Electrocoat Line 85
3.5 Properties and Specifications of Zinc Phosphate Conversion Layers 85
3.6 Environmental Legislations 86
3.7 Outlook 86

4 Electrodeposition Coatings 89
 Hans-Joachim Streitberger
4.1 History and Introduction 89
4.2 Physico-chemical Basics of the Deposition Process 90
4.3 Data for Quality Control 95
4.3.1 Voltage, Current Density, Bath Temperature, and Bath Conductivity 96
4.3.2 Wet Film Conductivity 96
4.3.3 Solid Content, Solvent Content, and pH 97
4.4 Resins and Formulation Principles 98
4.4.1 General Remarks 98
4.4.2 Anodic Electrodeposition Paints 99
4.4.3 Cathodic Electrodeposition Paints 99
4.5 Film Performance of Cathodic Electrocoatings 101
4.5.1 Physical Film Data 101
4.5.2 Corrosion Protection 102
4.5.3 Chip Resistance 104
4.5.4 Surface Smoothness and Appearance 105
4.6 Design of Cathodic Electrocoating Lines 106
4.6.1 Integration into the Coating Process of Cars and Trucks 106
4.6.2 Pretreatment 107
4.6.3 General Functions and Equipment of an Electrocoat Line 107
4.6.4 Tanks, Filters, Heat Exchanger, and Power Supply 108
4.6.5 Replenishment and Anode Cells 111
4.6.6 Ultrafiltration and Rinsing Zones 114
4.6.7 Baking Oven 118
4.7 Defects During Application and their Prevention 119
4.7.1 Dirt 119
4.7.2 Craters 120
4.7.3 Surface Roughness 121
4.7.4 Film Thickness/Throwing Power 122
4.7.5 Other Defects 123
4.8 Electrocoating and Similar Processes Used in Automotive Supply Industry 124
4.9 Outlook 125

5 Primer Surfacer 129
Heinrich Wonnemann
5.1 Introduction 129
5.2 Requirement Profile 132
5.2.1 Legislative Requirement 132
5.2.2 Technological Requirements 133
5.2.2.1 Film Properties 133
5.2.2.2 Product Specifications 136
5.2.2.3 Application 136
5.3 Raw Materials 138
5.3.1 Resin Components 139
5.3.2 Pigments and Extenders 141
5.3.2.1 Titanium Dioxide 143
5.3.2.2 Barium Sulfate 144
5.3.2.3 Talc 144
5.3.2.4 Silicon Dioxide 145
5.3.2.5 Feldspar 146
5.3.2.6 Carbon Blacks 146
5.3.3 Additives 146
5.3.3.1 Pigment Wetting and Dispersion Additives 148
5.3.3.2 Defoaming and Deaerating Agents 148
5.3.3.3 Surfactants and Additives for Substrate Wetting 149
5.3.3.4 Rheology Additives 149
5.3.4 Solvents 150
5.3.4.1 Aromatic Hydrocarbons: Diluents/Thinners 151
5.3.4.2 Alcohols, Cellosolves, and Esters: Solvents 151
5.3.4.3 Tetralin or Pine Oil: Very High Boiling Additive Diluents 152
5.4 Liquid Primers 152
 5.4.1 Formula Principles 152
 5.4.1.1 Application 152
 5.4.1.2 Rheology 153
 5.4.2 Manufacturing Process 156
 5.4.3 Application 158
5.5 Powder Primer Surfacers 160
 5.5.1 Formula Principles 160
 5.5.2 Manufacturing Process 162
 5.5.3 Application 166
5.6 Process Sequence 170
5.7 Summary and Future Outlook 171

6 Top Coats 175
 Karl-Friedrich Dössel
 6.1 Introduction 175
 6.2 Pigments and Color 175
 6.3 Single-Stage Top Coats (Monocoats) 180
 6.4 Base Coats 181
 6.4.1 Base Coat Rheology 184
 6.4.2 Low and Medium Solids Base Coat 185
 6.4.3 High Solids (HS) Base Coats 186
 6.4.4 Waterborne Base Coats 186
 6.4.5 Global Conversion to Waterborne Base Coat Technology 187
 6.4.6 Drying of Base Coats 189
 6.5 Clear Coat 189
 6.5.1 Market 189
 6.5.2 Liquid Clear Coats 190
 6.5.2.1 One-Component (1K) Acrylic Melamine Clear Coat 190
 6.5.2.2 Acrylic Melamine Silane 192
 6.5.2.3 Carbamate-Melamine-Based 1K Clear coat 192
 6.5.2.4 One-Component Polyurethane (PUR) Clear Coat 192
 6.5.2.5 One- (and Two-) Component Epoxy Acid Clear Coat 192
 6.5.2.6 Two-Component (2K) Polyurethane Clear Coat 193
 6.5.2.7 Waterborne Clear Coat 194
 6.5.3 Powder Clear Coat 195
 6.5.4 Top Coat Performance 198
 6.5.4.1 Environmental Etch 198
 6.5.4.2 UV Durability of Clear Coats 199
 6.5.4.3 Scratch Resistant Clear Coats 201
 6.5.4.4 Application Properties 204
 6.5.5 Future Developments: UV Curing 206
6.6 Integrated Paint Processes (IPP) for Top Coat Application 208
6.6.1 Wet-On-Wet-On-Wet Application (3 Coat 1 Bake) of Primer Surfacer–Base Coat–Clear Coat 208
6.6.2 Primerless Coating Process 209

7 Polymeric Engineering for Automotive Coating Applications 211
Heinz-Peter Rink
7.1 General Introduction 211
7.2 Polyacrylic Resins for Coating Materials in the Automotive Industry 214
7.2.1 Managing the Property Profile of the Polyacrylic Resins 214
7.2.2 Manufacturing Polyacrylic Resins 218
7.2.2.1 Manufacturing Polyacrylic Resins by Means of Solution Polymerization 218
7.2.2.2 Polymerization in an Aqueous Environment 222
7.2.2.3 Mass Polymerization 224
7.3 Polyester for Coating Materials for the Automotive Industry 224
7.3.1 Managing the Property Profile of Polyesters 224
7.3.2 Manufacturing Polyesters 228
7.4 Polyurethane Dispersions in Coating Materials for the Automotive Industry 231
7.4.1 Managing the Property Profile of Polyurethane Resins and Polyurethane Resin Dispersions 232
7.4.2 Manufacturing Polyurethane Resin Dispersions 234
7.5 Polyurethane Polyacrylic Polymers in Coating Materials for the Automotive Industry 238
7.5.1 Introduction 238
7.5.2 Managing the Property Profile of Polyurethane Polyacrylic Polymers 239
7.5.3 Manufacturing Polyurethane Polyacrylic Polymers 240
7.6 Epoxy Resins 241
7.6.1 Managing the Property Profile 242
7.6.2 Manufacturing Polyepoxy Resins 243
7.7 Cross-Linking Agents and Network-Forming Resins 244
7.7.1 Introduction 244
7.7.2 Cross-Linking Agents for Liquid Coating Materials 245
7.7.2.1 Melamine and Benzoguanamine Resins 245
7.7.2.2 Tris(Alkoxycarbonylamino)-1,3,5-Triazine 248
7.7.2.3 Polysobyanates and Blocked Polyisocyanates 249
7.7.2.4 Other Cross-Linking Agents for Liquid Coating Materials 252
7.7.3 Cross-Linking Agents for Powder Coatings in the Automotive Industry 252
Contents

XI

8 Paint Shop Design and Quality Concepts 259
Pavel Svejda
8.1 Introduction 259
8.2 Coating Process Steps 260
8.2.1 Pretreatment 261
8.2.2 Electrocoating (EC) 261
8.2.3 Sealing and Underbody Protection 262
8.2.4 Paint Application 263
8.2.4.1 Function Layer and Primerless Processes 263
8.2.4.2 Powder 264
8.2.5 Cavity Preservation 265
8.3 General Layout 266
8.4 Coating Facilities 268
8.4.1 Process Technology 268
8.4.2 Automation in the Paint Application 269
8.4.2.1 Painting Robot 270
8.4.3 Application Technology 271
8.4.3.1 Atomizer 272
8.4.3.2 Paint Color Changer 275
8.4.3.3 Paint Dosing Technology for Liquid Paints 277
8.4.3.4 Paint Dosing Technology for Powder Paints 278
8.4.4 Paint-Material Supply 279
8.4.4.1 Paint Supply Systems for the Industrial Sector 280
8.4.4.2 Paint Mix Room 280
8.4.4.3 Container Group 280
8.4.4.4 Circulation Line System 282
8.4.4.5 Basic Principles for the Design of the Pipe Width for Circulation Lines 282
8.4.4.6 Paint Supply Systems for Small Consumption Quantities and Frequent Color Change 283
8.4.4.7 Small Circulation Systems 283
8.4.4.8 Supply Systems for Special Colors 284
8.4.4.9 Voltage Block Systems 285
8.4.4.10 Voltage Block Systems with Color-Change Possibility 285
8.4.4.11 Installations for the High Viscosity Material Supply 286
8.4.5 Conveyor Equipment 287
8.5 Paint Drying 288
8.6 Quality Aspects 290
8.6.1 Control Technology 290
8.6.1.1 Process Monitoring and Regulation 292
8.6.2 Automated Quality Assurance 293
8.6.2.1 Process Optimization in Automatic Painting Installations 296
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Economic Aspects</td>
<td>298</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Overall Layout</td>
<td>298</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Full Automation in Vehicle Painting</td>
<td>298</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Exterior Application of Metallic Base Coats with 100% ESTA High-Speed Rotation</td>
<td>300</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Robot Interior Painting with High-Speed Rotation</td>
<td>301</td>
</tr>
<tr>
<td>9</td>
<td>Coatings for Plastic Parts</td>
<td>305</td>
</tr>
<tr>
<td>9.1</td>
<td>Exterior Plastics</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Guido Wilke</td>
<td></td>
</tr>
<tr>
<td>9.1.1</td>
<td>Introduction</td>
<td>305</td>
</tr>
<tr>
<td>9.1.1.1</td>
<td>Ecological Aspects</td>
<td>305</td>
</tr>
<tr>
<td>9.1.1.2</td>
<td>Technical and Design Aspects</td>
<td>306</td>
</tr>
<tr>
<td>9.1.1.3</td>
<td>Economical Aspects</td>
<td>307</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Process Definitions</td>
<td>307</td>
</tr>
<tr>
<td>9.1.2.1</td>
<td>Offline, Inline, and Online Painting</td>
<td>307</td>
</tr>
<tr>
<td>9.1.2.2</td>
<td>Process-Related Issues, Advantages, and Disadvantages</td>
<td>307</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Exterior Plastic Substrates and Parts</td>
<td>310</td>
</tr>
<tr>
<td>9.1.3.1</td>
<td>Overview</td>
<td>310</td>
</tr>
<tr>
<td>9.1.3.2</td>
<td>Basic Physical Characteristics</td>
<td>311</td>
</tr>
<tr>
<td>9.1.3.3</td>
<td>Part Processing and Influence on Coating Performance</td>
<td>315</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Pretreatment</td>
<td>315</td>
</tr>
<tr>
<td>9.1.5</td>
<td>Plastic-Coating Materials</td>
<td>318</td>
</tr>
<tr>
<td>9.1.5.1</td>
<td>Basic Technical Principles of Raw-Material Selection</td>
<td>318</td>
</tr>
<tr>
<td>9.1.5.2</td>
<td>Car-Body Color</td>
<td>320</td>
</tr>
<tr>
<td>9.1.5.3</td>
<td>Contrast Color and Clear Coat on Plastic Systems</td>
<td>324</td>
</tr>
<tr>
<td>9.1.6</td>
<td>Technical Demands and Testing</td>
<td>324</td>
</tr>
<tr>
<td>9.1.6.1</td>
<td>Basic Considerations</td>
<td>324</td>
</tr>
<tr>
<td>9.1.6.2</td>
<td>Key Characteristics and Test Methods</td>
<td>325</td>
</tr>
<tr>
<td>9.1.7</td>
<td>Trends, Challenges, and Limitations</td>
<td>329</td>
</tr>
<tr>
<td>9.1.7.1</td>
<td>Substrates and Parts</td>
<td>329</td>
</tr>
<tr>
<td>9.1.7.2</td>
<td>Paint Materials</td>
<td>330</td>
</tr>
<tr>
<td>9.1.7.3</td>
<td>Processes</td>
<td>332</td>
</tr>
<tr>
<td>9.2</td>
<td>Interior Plastics</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>Stefan Jacob</td>
<td></td>
</tr>
<tr>
<td>9.2.1</td>
<td>Introduction: the ‘Interior’ Concept</td>
<td>334</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Surfaces and Effects</td>
<td>335</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Laser Coatings</td>
<td>337</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Substrate Requirements</td>
<td>339</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Requirements to Be Fulfilled by the Paint Systems and Coating</td>
<td>339</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Demands Expected by the Inscription Technique</td>
<td>340</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Performances of Interior Coatings</td>
<td>341</td>
</tr>
<tr>
<td>9.2.4.1</td>
<td>Mechanical and Technological Demands</td>
<td>341</td>
</tr>
<tr>
<td>9.2.4.2</td>
<td>Substrates and Mechanical Adhesion</td>
<td>342</td>
</tr>
<tr>
<td>9.2.4.3</td>
<td>Ecological and Economical Requirements</td>
<td>343</td>
</tr>
</tbody>
</table>
10 Adhesive Bonding – a Universal Joining Technology

Peter W. Merz, Bernd Burchardt and Dobrivoje Jovanovic

10.1 Introduction 351
10.2 Fundamentals 351
10.2.1 Basic Principles of Bonding and Material Performances 351
10.2.1.1 Types of Adhesives 351
10.2.1.2 Adhesives are Process Materials 355
10.2.1.3 Advantages of Bonding 356
10.2.1.4 Application 359
10.2.2 Surface Preparation 359
10.2.2.1 Substrates 361
10.2.2.2 Adhesion 361
10.2.2.3 Durability and Aging of Bonded System 362
10.3 Bonding in Car Production 366
10.3.1 Body Shop Bonding 367
10.3.1.1 Antiflutter Adhesives 367
10.3.1.2 Hem-Flange Bonding 368
10.3.1.3 Spot-Weld Bonding 369
10.3.1.4 Crash-Resistant Adhesives/Bonding 369
10.3.2 Paint Shop 370
10.3.3 Trim Shop 371
10.3.3.1 Special Aspects of Structural Bonding in the Trim Shop 371
10.3.3.2 ‘Direct Glazing’ 371
10.3.3.3 Modular Design 372
10.3.3.4 Other Trim Part Bondings 372
10.4 Summary 374

11 In-plant Repairs

Karl-Friedrich Dössel

11.1 Repair After Pretreatment and Electrocoat Application 377
11.2 Repair After the Primer Surfacer Process 378
11.3 Top-Coat Repairs 378
11.4 End-of-Line Repairs 380

12 Specifications and Testing

Gabi Kiegle-Böckler

12.1 Color and Appearance 381
12.1.1 Visual Evaluation of Appearance 381
12.1.1.1 Specular Gloss Measurement 382
12.1.1.2 Visual Evaluation of Distinctness-of-Image (DOI) 385
12.1.1.3 Measurement of Distinctness-of-Image 385
12.1.1.4 Visual Evaluation of ‘Orange Peel’ 386
12.1.1.5 Instrumental Measurement of Waviness (Orange Peel) 388
12.1.1.6 The Structure Spectrum and its Visual Impressions 390
12.1.1.7 Outlook of Appearance Measurement Techniques 392
12.1.2 Visual Evaluation of Color 393
12.1.2.1 Solid Colors 393
12.1.2.2 Metallic and Interference Colors 397
12.1.2.3 Color Measurement of Solid Colors 398
12.1.2.4 Color Measurement of Metallic and Interference Coatings 401
12.1.2.5 Typical Applications of Color Control in the Automotive Industry 402
12.1.2.6 Color Measurement Outlook 403
12.2 Weathering Resistance of Automotive Coatings 405
Gerhard Pausch and Jörg Schwarz
12.2.1 Introduction 405
12.2.2 Environmental Impact on Coatings 406
12.2.2.1 Natural Weathering 408
12.2.2.2 Artificial Weathering 414
12.2.2.3 New Developments 421
12.2.3 Standards for Conducting and Evaluating Weathering Tests 423
12.2.4 Correlation Between Artificial and Natural Weathering Results 426
12.3 Corrosion Protection 427
Hans-Joachim Streitberger
12.3.1 Introduction 427
12.3.2 General Tests for Surface Protection 429
12.3.3 Special Tests for Edge Protection, Contact Corrosion, and Inner Part Protection 432
12.3.4 Total Body Testing in Proving Grounds 433
12.4 Mechanical Properties 434
Gerhard Wagner
12.4.1 General Remarks 434
12.4.2 Hardness 435
12.4.2.1 Pendulum Damping 435
12.4.2.2 Indentation Hardness 436
12.4.2.3 Scratch Hardness 439
12.4.3 Adhesion and Flexibility 441
12.4.3.1 Pull-Off Testing 441
12.4.3.2 Cross Cut 441
12.4.3.3 Steam Jet 444
12.4.3.4 Bending 445
12.4.3.5 Cupping 446
12.4.3.6 Impact Testing by Falling Weight 448
12.4.4 Stone-Chip Resistance 449
12.4.4.1 Standardized Multi-Impact Test Methods 450
12.4.4.2 Single-Impact Test Methods 451
12.4.5 Abrasion 454
12.4.5.1 Taber Abraser 454
12.4.5.2 Abrasion Test by Falling Abrasive Sand 455
12.4.6 Scratch Resistance 456
12.4.6.1 Crockmeter Test 456
12.4.6.2 Wet-Scrub Abrasion Test 457
12.4.6.3 Simulation of Car Wash 458
12.4.6.4 Nanoscratch Test 460
12.4.7 Bibliography, Standards 462

13 Supply Concepts 467
Hans-Joachim Streitberger and Karl-Friedrich Dössel
13.1 Quality Assurance (QA) 467
13.2 Supply Chain 468
13.2.1 Basic Concepts and Realizations 468
13.2.2 Requirements and Limitations of a System Supply Concept 473

14 Outlook 475
Hans-Joachim Streitberger and Karl-Friedrich Dössel
14.1 Status and Public Awareness of the Automotive Coating Process 475
14.2 Regulatory Trends 476
14.3 Customer Expectations 478
14.4 Innovative Equipments and Processes 479
14.5 New Business Ideas 481

Index 483