<table>
<thead>
<tr>
<th>3</th>
<th>Data Structures</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Definitions</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Derived Data Types</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Examples of Derived Data Types</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2</td>
<td>User-Defined Data Types</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Abstract Data Types</td>
<td>46</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Linked Lists</td>
<td>47</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Graphs</td>
<td>50</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Trees</td>
<td>52</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Stacks</td>
<td>56</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Queues</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>An Example: Conceptual Structural Design of Buildings</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>Network Science</td>
<td>70</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Types of Networks</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Hashing</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Object Representation and Reasoning</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Grouping Data and Methods</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Definitions and Basic Concepts</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Classes and Objects</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Object-Oriented Programming (OOP)</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Messages</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Important Characteristics of Objects</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Encapsulation of Data and Methods</td>
<td>84</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Message-Passing Mechanism</td>
<td>85</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Abstraction Hierarchy</td>
<td>86</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Secondary Features of Object Representation</td>
<td>88</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Decomposition versus Abstraction</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Applications Outside Programming</td>
<td>90</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Knowledge Representation</td>
<td>91</td>
</tr>
<tr>
<td>4.5.2</td>
<td>User Interfaces</td>
<td>91</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Off-the-Shelf Components</td>
<td>91</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Product Models</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>An Object-Oriented Design Methodology</td>
<td>93</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Single versus Multiple Inheritance</td>
<td>93</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Message-Passing Architecture</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>101</td>
</tr>
</tbody>
</table>
5 Database Concepts

5.1 Introduction 103
5.2 Basic Concepts 104
 5.2.1 Initial Definitions 104
 5.2.2 Evolution of Types of Databases 104
 5.2.3 The Three-Level Architecture 106
5.3 Relational Database Systems 106
 5.3.1 The Relational Model 107
 5.3.2 Limitations of Relational Databases 111
 5.3.3 Accessing Data in Relational Databases 112
5.4 Relational Database Design 114
 5.4.1 First Normal Form 114
 5.4.2 Second Normal Form 115
 5.4.3 Third Normal Form 118
 5.4.4 Boyce-Codd and Higher Normal Forms 119
 5.4.5 Importance of Database Design 120
5.5 Transaction Processing 120
 5.5.1 Definition of Transaction 121
 5.5.2 Implementing Transactions 122
 5.5.3 Properties of Transactions 124
5.6 Other Types of Database 124
 5.6.1 Object-Oriented Databases 124
 5.6.2 Geographical Databases 124
 5.6.3 Multimedia Database Systems 125
 5.6.4 Distributed Databases 125
5.7 Summary 126

Exercises 127
Reference 131
Further Reading 131

6 Computational Mechanics

6.1 Introduction 133
 6.1.1 Challenges of Computational Mechanics 134
6.2 From Physical Principles to Practical Systems 135
6.3 Methods for Finding Solutions 137
 6.3.1 Galerkin Method 137
 6.3.2 Remarks 139
6.4 Issues in Computer-Aided Engineering 139
 6.4.1 Accuracy 140
 6.4.2 Speed 141
 6.4.3 User Interaction 142
6.5 Summary 142
References 142
Further Reading 142
7 Constraint-Based Reasoning

7.1 Introduction 143
7.2 Terminology 145
7.3 Constraint-Solving Methods 146
7.3.1 Levels of Consistency for Label Propagation 147
7.3.2 Global Consistency in Label Propagation 148
7.3.3 Constraint Propagation 149
7.4 Reasoning with Constraints on Discrete Variables 149
7.4.1 CSP Complexity for Discrete Variables 151
7.5 Reasoning with Constraints on Continuous Variables 151
7.5.1 Constraint-Based Support for Collaborative Work 152
7.6 Summary 156
References 156

8 Optimization and Search

8.1 Introduction 157
8.2 Basic Concepts 158
8.2.1 Types of Optimization Problem 160
8.2.2 Formulating Optimization Tasks 161
8.2.3 Representing Search Spaces 163
8.2.4 Representing Constraints 164
8.2.5 Some Optimization Problems 165
8.3 Classification of Methods 167
8.4 Deterministic Optimization and Search 169
8.4.1 Special Cases 169
8.4.2 Deterministic Methods 174
8.5 Stochastic Methods 179
8.5.1 Pure Global Random Search 182
8.5.2 Local Search with Multiple Random Starts 182
8.5.3 Simulated Annealing 182
8.5.4 Genetic Algorithms 184
8.5.5 Controlled Random Search 184
8.5.6 PGSL 185
8.6 A Closer Look at Genetic Algorithms 188
8.6.1 Representation: Genetic Encoding 188
8.6.2 Evaluating an Individual 189
8.6.3 Creating the Initial Population 189
8.6.4 The Fitness Function 190
8.6.5 Reproduction 190
8.6.6 Mutation 192
8.7 Summary of Methods 192
Exercises 193
References 198
Further Reading 198
9 Knowledge Systems for Decision Support 199
 9.1 Introduction 199
 9.2 Important Characteristics of Knowledge Systems 200
 9.3 Representation of Knowledge 202
 9.3.1 Representation of Knowledge in Knowledge Systems 204
 9.4 Reasoning with Knowledge 205
 9.4.1 Rule Selection and Conflict Resolution 207
 9.5 Importance of the User Interface 207
 9.6 Maintenance of Knowledge 208
 9.7 Model-based Reasoning 209
 9.8 Case-Based Reasoning 209
 9.8.1 Stages of Case-Based Reasoning 210
 9.9 Summary 215
 Reference 215
 Further Reading 215

10 Machine Learning 217
 10.1 Introduction 217
 10.2 Improving Performance with Experience 218
 10.3 Formalizing the Learning Task 220
 10.3.1 Searching Hypothesis Spaces 224
 10.4 Learning Algorithms 224
 10.4.1 Rote Learning 225
 10.4.2 Statistical Learning Techniques 226
 10.4.3 Deductive Learning 230
 10.4.4 Exploration and Discovery 231
 10.5 A Closer Look at Artificial Neural Networks 231
 10.5.1 Types of Neural Network 235
 10.5.2 Learning in Neural Networks 236
 10.5.3 Summary of Neural Networks 237
 10.6 Support Vector Machines 237
 10.6.1 Support Vector Classification 237
 10.6.2 Support Vector Regression 240
 10.7 Summary 240
 Exercises 241
 References 242
 Further Reading 242

11 Geometric Modelling 243
 11.1 Introduction 243
 11.2 Engineering Applications 244
 11.2.1 Criteria for Evaluating Representations 244
 11.3 Mathematical Models for Representing Geometry 245
 11.3.1 Two-Dimensional Representation of Simple Shapes 245
11.3.2 Curves Without Simple Mathematical Representations 247
11.3.3 Bézier Curves 248
11.3.4 Mathematical Representation of Simple Surfaces 249
11.3.5 Bézier Patches 250
11.3.6 Mathematical Representation of Regular-Shaped Solids 251

11.4 Representing Complex Solids 252
11.4.1 Primitive Instancing 252
11.4.2 Mesh Representations 253
11.4.3 Sweep Representations 255
11.4.4 Boundary Representations 257
11.4.5 Decomposition Models 258
11.4.6 Constructive Solid Geometry (CSG) 260

11.5 Applications 263
11.5.1 Estimation of Volume 263
11.5.2 Finite Element Mesh for a Spread Footing 264
11.5.3 3D Graphical View of a Structure 266

11.6 Summary 267

Further Reading 267

12 Computer Graphics 269
12.1 Introduction 269
12.2 Tasks of Computer Graphics 270
12.3 Display Devices 270
12.3.1 Types of Display Device 271
12.3.2 From Geometric Representations to Graphical Displays 272
12.4 Representing Graphics 272
12.4.1 Representing Colours 273
12.4.2 Coordinate System 273
12.4.3 Bitmap Representations 274
12.4.4 Higher-Level Representations 275
12.5 The Graphics Pipeline 276
12.5.1 Modelling Transformations 276
12.5.2 Viewing Transformations 280
12.5.3 Scan Conversion 285
12.6 Interactive Graphics 287
12.7 Graphical User Interfaces (GUI) and Human–Computer Interaction (HCI) 288
12.7.1 Engineer–Computer Interaction 288
12.8 Applications 289
12.8.1 4D Simulations 289
12.8.2 Navigating Multidimensional Solution Spaces 289
12.8.3 Computer Vision and Image Processing 290
12.8.4 Laser Scanning 290
12.9 Summary 292

References 292

Further Reading 292
Contents

13 Distributed Applications and the Web

13.1 Introduction

13.1.1 A Simple Example of a Client–Server System

13.1.2 Definitions

13.1.3 Trends Driving C/S Architecture

13.2 Examples of Client–Server Applications

13.2.1 File Servers

13.2.2 FTP Servers

13.2.3 Database Servers

13.2.4 Groupware Servers

13.2.5 Object Servers

13.2.6 Operating System Servers

13.2.7 Display Servers

13.2.8 Web Servers

13.2.9 Application Servers

13.3 Distinctive Features of C/S Systems

13.3.1 Asymmetrical Protocol

13.3.2 Message-Based Mechanism

13.3.3 Why are Protocols Important?

13.4 Client–server System Design

13.4.1 Three-Tier Architecture

13.4.2 Application Partitioning

13.5 Advantages of Client–Server Systems

13.6 Developing Client–Server Applications

13.6.1 TCP/IP Sockets

13.6.2 Other Middleware Options

13.7 The World Wide Web

13.7.1 Limitations of Exchanging Only Static Information

13.7.2 Common Gateway Interface

13.7.3 Engineering Applications on the Web

13.7.4 Other Models for Dynamic Information Exchange

13.8 Peer-to-Peer Networks

13.8.1 Information Interchange Through P2P Networks

13.8.2 P2P Networks for Engineering Applications

13.8.3 Advantages of Peer-to-Peer Networks

13.8.4 Issues and Challenges

13.9 Agent Technology

13.9.1 Issues in Multi-Agent Systems

13.10 Cloud Computing

13.11 Complexity

13.12 Summary

Reference

Further Reading

Index