Index

Page numbers in *italics* refer to illustrations; those in **bold** refer to tables

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>abdominal fat</td>
<td>57–60, 58</td>
</tr>
<tr>
<td>see also adipose tissue; fat distribution</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>173</td>
</tr>
<tr>
<td>activated protein C (APC)</td>
<td>187–188, 187</td>
</tr>
<tr>
<td>receptor polymorphism</td>
<td>198</td>
</tr>
<tr>
<td>acute coronary syndrome</td>
<td>3</td>
</tr>
<tr>
<td>acylation-stimulating protein (ASP)</td>
<td>134–135</td>
</tr>
<tr>
<td>nutritional regulation</td>
<td>145–146</td>
</tr>
<tr>
<td>physical activity influence</td>
<td>148</td>
</tr>
<tr>
<td>adhesion molecules</td>
<td>104, 109–110, 109</td>
</tr>
<tr>
<td>adipogenic transcription factors</td>
<td>147</td>
</tr>
<tr>
<td>adipokines</td>
<td>70, 132–133, 370, 378, 403–404</td>
</tr>
<tr>
<td>diet influence on</td>
<td>404</td>
</tr>
<tr>
<td>epicardial adipose tissue</td>
<td>126</td>
</tr>
<tr>
<td>genetic determinants</td>
<td>148–149</td>
</tr>
<tr>
<td>physical activity and</td>
<td>147–148</td>
</tr>
<tr>
<td>adipose tissue</td>
<td>122–123, 403–404</td>
</tr>
<tr>
<td>distribution</td>
<td>123–127, 404</td>
</tr>
<tr>
<td>epicardial (EAT)</td>
<td>125–127</td>
</tr>
<tr>
<td>hypertrophy and obesity</td>
<td>130</td>
</tr>
<tr>
<td>insulin resistance and</td>
<td>129–130</td>
</tr>
<tr>
<td>metabolic syndrome association</td>
<td>129</td>
</tr>
<tr>
<td>microRNA</td>
<td>141–144, 143</td>
</tr>
<tr>
<td>perivascular (PVAT)</td>
<td>124–125</td>
</tr>
<tr>
<td>signalling molecules derived from</td>
<td>129–140, 130, 131</td>
</tr>
<tr>
<td>nutritional regulation</td>
<td>145–147</td>
</tr>
<tr>
<td>research priorities</td>
<td>378</td>
</tr>
<tr>
<td>subcutaneous (SAT)</td>
<td>57, 58, 123–124</td>
</tr>
<tr>
<td>TNF-alpha role</td>
<td>138</td>
</tr>
<tr>
<td>types of</td>
<td>127–129</td>
</tr>
<tr>
<td>visceral (VAT)</td>
<td>57–59, 58, 123–124</td>
</tr>
<tr>
<td>see also cholesterol; fat distribution; obesity</td>
<td></td>
</tr>
<tr>
<td>age as risk factor</td>
<td>20</td>
</tr>
<tr>
<td>albumin</td>
<td>104, 110</td>
</tr>
<tr>
<td>antioxidant effect</td>
<td>228, 238</td>
</tr>
<tr>
<td>microalbuminuria</td>
<td>166</td>
</tr>
<tr>
<td>oxidation</td>
<td>225</td>
</tr>
<tr>
<td>alcohol consumption</td>
<td>350–351, 359, 362, 363</td>
</tr>
<tr>
<td>endothelial function relationship</td>
<td>175, 362</td>
</tr>
<tr>
<td>haemostatic system effects</td>
<td>181, 200–201, 363</td>
</tr>
<tr>
<td>inflammation association</td>
<td>118, 359</td>
</tr>
<tr>
<td>insulin resistance relationship</td>
<td>67</td>
</tr>
<tr>
<td>trends</td>
<td>23, 24, 351</td>
</tr>
<tr>
<td>alpha-linolenic acid</td>
<td>38, 77, 205, 334, 338</td>
</tr>
<tr>
<td>ambulatory blood pressure measurement</td>
<td>161</td>
</tr>
<tr>
<td>angina, unstable</td>
<td>3</td>
</tr>
<tr>
<td>angiotensinogen</td>
<td>140</td>
</tr>
<tr>
<td>gene polymorphism</td>
<td>149</td>
</tr>
<tr>
<td>nutritional regulation</td>
<td>147</td>
</tr>
<tr>
<td>anthocyanins</td>
<td>240–241</td>
</tr>
<tr>
<td>anti-inflammatory treatments</td>
<td>113–115</td>
</tr>
<tr>
<td>anticoagulant proteins</td>
<td>187–188, 187, 195</td>
</tr>
<tr>
<td>dietary antioxidants</td>
<td>229–233</td>
</tr>
<tr>
<td>bioavailability</td>
<td>230–231</td>
</tr>
<tr>
<td>fruit and vegetables</td>
<td>231, 406–407</td>
</tr>
<tr>
<td>oxidative stress relationships</td>
<td>239–241</td>
</tr>
<tr>
<td>trends in consumption</td>
<td>351</td>
</tr>
<tr>
<td>effects on major vascular events</td>
<td>268</td>
</tr>
<tr>
<td>endogenous antioxidant protection</td>
<td>228–229, 228</td>
</tr>
</tbody>
</table>

Index

antioxidants (cont’d)
endothelial function improvement 175, 361
haemostatic system and 208, 363
measurement 235–236
oxidative stress reduction 239–241, 314, 365
physical activity and 228
supplements 407
therapeutic use 233
trials related to CVD 267
see also micronutrients; oxidative stress; vitamins
antithrombin 188, 195
deficiency 195
apolipoproteins 400
apoA-I 76, 225
apoB 61, 76, 82, 401
apoE polymorphism 9, 94–95, 95, 401
as risk factors 401
functions 82
appetite control, physical activity effects 305–306
arrhythmias 3
arterial stiffness 154, 160
assessment 160, 161–162
arterial structure 155
ascorbate 229–232, 255
oxidative stress relationships 240
studies related to CVD 266
aspirin 114, 194
atherogenic lipoprotein phenotype 61–63, 85–87
atherogenic lipoproteins 82, 83
atherosclerosis 3, 4–6, 144
coagulation relationships 181
inflammation role 99–102, 302, 402–403
lesion development 101–102, 102
oxidative stress role 215
see also plaques
atrial fibrillation (AF) 127
attributable fraction 19
attributable risk (AR) 18–19

bariatric surgery 56
beige adipose tissue 128–129
beta-carotene 232, 269
oxidative stress relationship 240
smoking interaction 269
studies related to CVD 269
beta-glucans 347
bifidobacteria 272
see also gut microbiome
blood clotting see coagulation; haemostatic system
blood constituents, measurement 164–166, 165
blood pressure 6–7, 20
ambulatory blood pressure measurement 161
leptin effect 134
physical activity benefits 300
see also hypertension, Dietary Approaches to Stop Hypertension (DASH) diet

body mass index (BMI) 50–51, 122
as risk factor 21, 53–54, 55
 coronary heart disease 55, 55
classifications 51
in infancy and childhood 32–33, 33, 34, 396
maternal effects 38–40
trends 23
see also obesity; overweight
body shapes 57, 58
see also fat distribution
brachial artery blood flow assessment 159–160, 159
breastfeeding 35
intervention studies 43–44
brown adipose tissue (BAT) 124, 127–128
regulation 128–129
thermogenic process 127–128
butyrate 276, 289
C-reactive protein (CRP) 100, 102–107, 104, 106, 139, 369–370, 403
endothelial dysfunction association 168
genetic variants 9
predictive significance 103, 106–108
carbohydrates, dietary 319–323, 361
endothelial function relationships 174–175, 361
free sugars 27, 84, 319–321
glycaemic index 69, 116, 321
haemostasis relationships 206
low-carbohydrate, high-protein diets 329–330, 411
plasma triglyceride relationships 83–84
recommendations 321
trends in consumption 341–343, 343
utilisation by gut bacteria 274–278
cardiometabolic risk 2, 50, 276, 409
cardioprotection 295
assessment 296
body fat relationship 300
CVD risk relationship 298
see also physical fitness
cardiovascular disease (CVD) 2, 28
definitions 2–4
epidemiology 10–17
pathogenesis 4–9
risk factors 17–25
see also coronary heart disease (CHD); peripheral vascular disease (PVD); stroke
carotenoids 230, 269
oxidative stress relationships 240
see also beta-carotene
cerebrovascular disease 3–4
risk factors 21
see also stroke
chemokines 108, 131
childhood nutrition 313, 358, 413
recommendations 386–387
childhood obesity 399
intervention studies 44
links with adult obesity 70
chocolate 176, 232, 407
cholesterol 75, 400
as risk factor 9, 19, 19, 20, 25, 78, 369
assimilation and binding by gut microbiota 282–287
dietary fat relationship 79
endothelial dysfunction and 167
high cholesterol causes 401
oxidation 221
physical activity relationships 300–301
reduction see cholesterol-lowering interventions
remnant-like particle cholesterol 91–92, 92, 96
research priorities 377
trends 23, 24
types of 400
see also fats, dietary; high-density lipoprotein (HDL); low-density lipoprotein (LDL); very low-density lipoproteins (VLDL)
cholesterol-lowering interventions 78–79
prebiotics 284–286
probiotics 283–284
randomised trials 80–82, 80, 81
statins 9, 80–82, 80, 81
synbiotics 286–287
chronic inflammatory disease 113, 402
see also inflammation
cigarette smoking see smoking
coagulation 6, 6, 371, 405
anticoagulant proteins 187–188, 187
coronary heart disease relationships 181
dietary effects 208
dietary fats 201–202
fish oil supplementation 204–205
micronutrient influences 206–207
 genetic factors 196–199, 208–209, 406
 hypercoagulability 190–191
 inhibitors of 188–189, 188
 obesity influence 72
 pathway 180, 184–187
 physical activity influence 301
see also haemostatic system; thrombosis
 cocoa flavan-3-ols 176, 232, 240
 health claims 347
 confounding 18
 conjugated linoleic acid (CLA) 66–67
 coronary heart disease (CHD) 3
 coagulation relationships 181
 folic acid effects 254
 interleukin-6 (IL-6) role 139–140
 mortality 11, 13, 16, 368
 physical activity relationship 297
 risk factors 19–21
homocysteine studies 252, 253–255, 253, 256
obesity 54, 55
see also cardiovascular disease (CVD)
cytokines 101, 104, 108
adipose tissue 126, 131, 137
endothelial dysfunction mediation 168
nutritional regulation of 146
receptors 137–138
dairy products 79, 326
death rate see mortality
dense granules, platelets 182
Developmental Origins of Health and Disease (DOHaD)
hypothesis 30–47, 358, 368–369, 395–397
animal studies 40–42, 41
cohort studies 31–35
growth in infancy 32–33, 33, 34
low birthweight 31–32
low- and middle-income countries 33–35
environmental toxins 35–36
glucocorticoid exposure 36
maternal smoking 35
famine studies 36–38, 37
genetic markers 44
gestational diabetes 38–39, 39, 358
infant feeding 35, 358
maternal nutrition research priorities 376
maternal overweight 39–40
obesity 70, 396
programming mechanisms 44–46
randomised controlled trials 42–44
breastfeeding interventions 43–44
childhood obesity interventions 44
gestational diabetes treatment 43
maternal obesity treatment 43
 nutritional interventions in pregnancy 42–43
research priorities 376–377
recommendations 386–387
developmental programming 29–31
diabetes 20, 24–25, 67–70, 397–398
as CVD risk factor 68, 398
complications 68, 397–398
endothelial dysfunction 167
genetic factors 69–70, 399–400
gestational 38–39, 39, 358
intervention studies 43
Maturity Onset Diabetes of the Young (MODY) 69–70
physical activity benefits 301
prevalence 67, 397
prevention 68–69, 329–330
research priorities 377
risk factors for 398
statins and 82
trends 24–25, 67
types of 397
Index

diabetic cardiomyopathy 3
Dietary Approaches to Stop Hypertension (DASH) diet 115–116, 326–327
dietary factors 1–2, 9, 25–27, 410–413
adipocyte hormone regulation 144–147
cerebrovascular disease 21
childhood nutrition 313
diabetes prevention 69
endothelial function 174–177, 177, 313–314, 405
fetal nutrition 313
fibrinolysis 181
gut microbiome 271–272, 408
haemostatic system 180–182, 199–209, 199, 314, 405–406
improving understanding of 380–381
inflammation 115–118, 313, 359, 370, 403
insulin resistance 65–67
microRNA gene expression 142
obesity prevention 57
oxidative stress 215, 239–241, 314
risk factor interactions 299–302
see also antioxidants; carbohydrates; dietary patterns; dietary recommendations; fats; fibre; micronutrients
dietary patterns 306, 322–331, 411
Dietary Approaches to Stop Hypertension (DASH) diet 115–116, 326–327
eating between meals 402
foods eaten outside the home 385–386
future considerations 354–355
inflammation relationship 115–116, 358
interventions 307–308, 323–324, 325
combined intervention effectiveness 303–306, 304
product reformulation 383–384, 385
research priorities for effective interventions 383–384
tailored approach 383
macronutrient changes 328–331
energy density 328, 329
low-carbohydrate, high-protein diets 329–330, 411
low-fat diets 329
trends 340
Mediterranean diet 115–116, 174, 324–326
PREDIMED Study 326
monitoring 385
plant-based diets 327–328
sedentary lifestyle relationships 306
trends and challenges 336–351
see also dietary factors; dietary recommendations
dietary recommendations 25–27, 26, 331–333, 333–335, 387
carbohydrates 321
fats 315
fibre 322
international comparisons 331–336

oil-rich fish consumption 340, 342
pregnant women 386–387
salt intake 349–350
see also general recommendations
DNA 8
methylation studies 45–46
oxidation 221
docosahexaenoic acid (DHA) 85, 115
endothelial function relationship 175
health claims 347
supplementation studies 85
see also fish oils
Dutch dietary recommendations 333–336
eating behaviour 306
eating between meals 402
portion size 351, 355, 390, 406
see also dietary patterns
Eatwell Guide 327–328, 331–332, 332, 387
ectopic fat deposition 50, 60–61, 60
eicosapentaenoic acid (EPA) 85, 115
endothelial function relationship 175
health claims 347
supplementation studies 85
see also fish oils
emerging risk factors 22, 25, 358–366, 395
see also specific risk factors
endothelial dysfunction 154, 156, 370–371, 404–405
as CVD risk factor 405
assessment 156, 157, 158–166
consistency between methods 163–164
direct measures 158–163
ex vivo techniques 158
excreted factors 166
invasive techniques 158–159
macrovacular 159–162
measures as predictors of CVD 170–171, 172
microvascular 162–163, 163
non-invasive techniques 159–163
damage aetiology 166–169
dietary influences 174–177, 177, 313–314, 405,
360, 361, 362
erectile dysfunction association 168
ethnicity association 169
genetic studies 172
integrated pathway for CVD 169–172, 169
oxidative stress 215
physical activity benefits 301–302
prevention and reversibility 172–173
research priorities 378
synthesis of available information 360–362
endothelium 155, 404
cell heterogeneity 157
function of 155, 156, 404
functional measures as predictors of CVD 170–171, 172
injury 158
platelet activation regulation 183–184, 184
see also endothelial dysfunction
energy density of foods 328, 329
energy expenditure 51–52, 52
see also physical activity; sedentary lifestyle
energy intake 51
synthesis of available information 360
underreporting 337, 337
see also dietary factors
epicardial adipose tissue (EAT) 125–127
epidemiology 10–17
diabetes 67, 397
metabolic syndrome 398–399
obesity 399
trends 2, 10–15, 393–394
variation in the UK 15–17, 394
epigenetics 9, 44–46, 142, 377
erythrocyte sedimentation rate (ESR) 104, 110–111
ethnic group as risk factor 16–17, 20
diabetes 69
endothelial dysfunction 169
excess pregnancy weight gain 39–40
intervention studies 43
exercise 296, 296, 360, 402, 409–410
see also physical activity
faecal microbiome transplant (FMT) 288–289, 409
familial hypercholesterolaemia (FH) 95
fat distribution 57–61, 58, 404
ectopic deposition 50, 60–61, 60
gene component 60
metabolic health effects 60
physical activity benefits 299–300
cholesterol level relationships 79
endothelial function effects 174, 315, 360
fatty acids as biomarkers of fat intake 318–319
gut microbiome interaction 280–281
haemostatic system effects 201–204, 363
inflammation relationships 116–117
insulin resistance relationship 65–66
low-fat diets 329, 401, 412
oils and fats 344–348
plasma triglyceride relationships 84–85
randomised cholesterol reduction trials 80
recommendations 26–27, 315
trends in consumption 337–340, 340, 342
types of 401
see also cholesterol; dietary factors;
monounsaturates; polyunsaturates; saturates
fatty acids 4, 77
as biomarkers of fat intake 318–319
edible oil compositions 338
food sources 77
lipid-related risk factor assessment 78
non-esterified (NEFAs) 93–94, 96, 112, 129
trans fatty acids 4, 316, 402
see also fats, dietary
Fetal Insulin Hypothesis 30, 44
see also Developmental Origins of Health and Disease (DOHaD) hypothesis
fetal nutrition 313, 358
Fetal Origins of Adult Disease (FOAD) hypothesis 29–30, 30, 396
see also Developmental Origins of Health and Disease (DOHaD) hypothesis
fibrates 115
high-fibre diet 206
recommendations 322
trends in consumption 341–343
utilisation by gut bacteria 275–277, 409
fibrinogen 104, 107–108, 139
alcohol influence 200
as risk factor for vascular disease 191–193, 192, 195
dietary carbohydrate influence 206
genetic polymorphism 197
micronutrient influences 206–207
weight loss influence 200
fibrinolysis 180, 189–190
dietary influences 181, 202–209
fibrinolytic factors 189
inhibitors 190
pathway 6
Finland, North Karelia project 324, 325, 385
fish oils 85, 115, 315–316, 369, 359, 361, 362
endothelial function improvement 175, 361
haemostatic system effects 204–205, 362
flavonoids 232, 240–241
foam cells 5
folic acid 42, 206–207, 361, 365, 408
docholesterol level relationship 176, 361
fortification 255–257, 408
homocysteine relationship 250–251, 255–257
supplementation 251, 254
food industry
recommendations to 389–391
role in dietary risk factor reduction 412
food labelling 353–354, 353, 387, 390
food manufacturers 389–390
food retailers 389–390
food service sector 390–391
France, dietary recommendations 336
free radicals 216, 217
damage effects on cellular components 218
origins 217, 217
physiological functions 217–218
see also oxidative stress
Index

free sugars 27, 84, 319–321
trends in consumption 339, 341–343
fructose 66, 84
fruit and vegetable consumption 16, 26, 115, 174, 364
 antioxidant benefits 231, 406–407
 interventions to increase consumption 383
 5 A Day promotion 406
 trends in consumption 341–344, 343, 344, 345, 346
 see also dietary patterns
FTO gene 52
future research priorities 376–382
gender as risk factor 20, 394
 sex differences in mortality 11, 12, 13
genetic factors
 adipokines 148–149
 CVD 7–9, 94–95
 diabetes 69–70, 399–400
 endothelial dysfunction 172
 haemostatic system 196–199, 406
 homocysteine 251–252
 inflammatory biomarkers 118
 obesity 52, 399–400
 genetic variability 8
 gestational diabetes 38–39, 39
 intervention studies 43
 synthesis of available information 358
glycaemic index 69, 116, 321
glycaemic load 321
green tea 232, 240
 bile acid deconjugation 282
 cholesterol assimilation and binding 282–287
 composition changes with age 273–274, 274
 dietary influences 271–272, 408
 early life influences 273, 408
 faecal microbiome transplant 288–289, 409
 gut wall integrity 289–290
 metabolic condition relationships 287–288
 metabolic syndrome 287–288
 obesity 72–73, 287
 microbial fermentation substrates and products 274–281
 physical activity relationships 281–282
 positive and negative gut bacteria 274, 275
 prebiotic, probiotic and synbiotic influences 282, 283–286, 366
 research priorities 380
 gut wall integrity 289–290
haemostatic system 180, 182–189, 362–364, 371
 genetic factors 196–199, 208–209, 406
 physical activity benefits 301, 364
 primary haemostasis 180
 research priorities 378–379
 risk factors for vascular disease 191–196, 192
 secondary haemostasis 180
 weight loss effects 200, 364
 see also coagulation; platelets; thrombosis
health claims 347, 354
 health professionals 388–389
 heat-shock proteins (HSPs) 104, 111, 227
 high-fibre diet see fibre, dietary
 high-density lipoprotein (HDL) 20, 76, 89–91, 369, 400
 biological function 216
 endothelial function and 167
 oxidative modification 214, 215, 225, 225
 physical activity effects 300
 research priorities 377
 subfractions 90–91, 90, 96
 see also cholesterol
 high-protein diets 329–330, 411
 homocysteine 9, 248–249, 249, 372, 407
 as CVD risk factor 252–255, 253
 determinants of 250
 dietary influences 250–251, 408
 endothelial dysfunction association 168–169
 genetic influences 251–252
 laboratory measurement 249–250
 metabolism 250
 screening 407–408
 hypercoagulability 190–191
 hypertension 6–7
 as a risk factor 21
 causes and risk factors for 7, 7
 Dietary Approaches to Stop Hypertension (DASH) diet 115–116, 326–327
 endothelial injury 166
 obesity association 70–72, 71
 physical activity benefits 300
 see also blood pressure
 immune complexes 104, 111
 immune system 100–101
 infant feeding 35, 358, 377
 infant growth 32–33, 33, 34
 infectious burden 113
 inflammation 70, 99–100, 358–359, 369–370, 402–403
 atherosclerosis and 99–102, 302, 402–403
 chronic 113, 402
 dietary factors 115–118, 313, 359, 370, 403
dietary patterns 115–116, 358
Index

endothelial dysfunction association 168
genetics and family history 118
markers of 403
micronutrients and 118, 359
oxidative stress 215, 228
physical activity relationship 118, 302, 359
reduction of 403
research priorities 377–378
see also anti-inflammatory treatments
inflammatory risk factors 102–113, 104–105
adhesion molecules 104, 109–110, 109
albumin 104, 110
C-reactive protein (CRP) 9, 100, 102–107, 104, 106, 359
predictive significance 103, 106–108
chronic inflammatory disease 113
circulating immune complexes 104, 111
cytokines and chemokines 101, 104, 108
erthrocyte sedimentation rate (ESR) 104, 110–111
fibrinogen 104, 107–108
heat-shock proteins 104, 111
interrelationships between 102
leukocyte count 104, 110
lipoprotein-associated phospholipase A2 (Lp-PLA2) 105, 112
matrix metalloproteinases (MMPs) 111–112
multiple markers in risk prediction 113
myeloperoxidase (MPO) 105, 112–113
paraoxonase-1 (PON1) 105, 112
serum amyloid A (SAA) 104, 110

see also anti-inflammatory treatments
insulin resistance 50, 63–67, 64, 398
adipose tissue 129–130
as risk factor 64–65
causes 398
diet and 65–67
endothelial dysfunction association 168
maternal 39
measurement 63
physical activity benefits 301
TNF-alpha role 138
see also diabetes; metabolic syndrome
interleukin-6 (IL-6) 108, 137
acute elevation 138–139
chronic elevation 138, 139
chronic inflammation 138
endometriosis 15
endocannabinoids 128
endothelial dysfunction and 168
genotype 149
familial 195
interrelationships 195

nutritional regulation of 146
physical activity effect 148
receptors 137–138
inulin 284–289

kallikrein-kinin system 185–186
lactobacilli 272
see also gut microbiome
leptin 130–134, 131, 404
blood pressure relationship 134
cardiovascular risk relationship 131–134
diabetes 398
endothelial dysfunction association 168
mutations 52, 148
nutritional regulation of production 145
physical activity influence 147–148
therapeutic use 404
leukocyte count 104, 110
lipid oxidation 220–221
measurable products of 234–236, 234
lipid-lowering agents 114–115
cholesterol reduction 78–79
statins 9, 80–82, 80, 81, 114–115
endothelial function improvement 172–173
fibrates 115
fish oil supplementation 115
prebiotics, probiotics and synbiotics 283–287
lipid-related risk factors 96
assessment 78
see also cholesterol
lipopolysaccharide (LPS) 72–73
lipoprotein 16, 86, 216
atherogenic 61–63, 82, 83, 85–87
lipoprotein(a) [Lp(a)] 76, 92–93, 96, 400
oxidatively modified, detection 236, 237
triglyceride-rich (TRL) 86, 91
see also apolipoproteins; high-density lipoprotein (HDL); low-density lipoprotein (LDL); very low-density lipoproteins (VLDL)
lipoprotein lipase (LPL) 139
low birthweight 31–32, 368, 395–396
endothelial dysfunction association 169
genetic markers 44
intrauterine growth restriction vs preterm birth 32
maternal diet relationship 396–397
low-carbohydrate, high-protein diets 329–330, 411
low-density lipoprotein (LDL) 5, 20, 63, 75, 369, 400
biological function 216
fatty acid and antioxidant content 216
oxidation 214, 215, 222–225, 222, 223
measurement 236
products formed 224
physical activity effects 300
reduction interventions 78–79
randomised trials 80–82, 80, 81
research priorities 377
small, dense LDL 87–89, 87, 96
see also cholesterol
low-fat diets 329, 401, 412
magnesium intake 350
manufacturers 389–390
media 391
Mediterranean diet 115–116, 324–326
diabetes mellitus 174
PREDIMED Study 326
synthesis of available information 358
metabolic syndrome 50, 61–63, 369, 398
adipose tissue association 129
as risk factor 61
atherogenic lipoprotein phenotype 61–63
diagnostic criteria 62
endothelial dysfunction 167
gut microbiome relationship 287–288
links with other risk factors 70–73
physical inactivity relationship 61,63
prevalence 398–399
prevention 399
research priorities 377
metabolically healthy obese 56
microalbuminuria 166
microbiome see gut microbiome
micronutrients see 359, 361–363, 365
DNA methylation relationships 45–46
diabetes mellitus 361–362
haemostatic system relationships 206–209
inflammation and 118, 359
insulin resistance relationships 67
magnesium 350
potassium 173, 350
research priorities 379–380
selenium 233, 350
supplementation in pregnancy 42–43
trends and challenges 350–351
zinc 42, 67, 207
see also dietary factors; salt intake; vitamins
monounsaturates 4, 76, 338, 401
see also fats, dietary
mortality 2, 10–16, 10, 11, 17, 368
coronary heart disease 11, 13, 16, 368
international comparisons 393
sex differences 11, 12, 13
stroke 11–14, 13, 14
sudden death 3
vitamin D effect 265
musculoskeletal fitness 295
assessment 296
body fat relationship 300
CVD risk relationship 297–298
see also physical fitness
mycoprotein 348–349
myocardial infarction (MI) 3, 111
n-3 polyunsaturates 4, 26, 146, 338, 340, 359, 362, 401
food sources 338
supplementation studies 85, 314, 315–316
n-6 polyunsaturates 4, 338–339
The Netherlands, dietary recommendations 333–336
neural tube defect (NTD) 255
nitric oxide (NO) 155, 158, 218
genetic studies 172
platelet regulation 184
non-esterified fatty acids (NEFAs) 93–94, 96, 112, 129
non-steroidal anti-inflammatory drugs (NSAIDs) 113–114
Nordic Nutrition Recommendations 333
nutrition labelling 353–354, 355
recommendations 387, 390
obesity 49, 50–57, 122, 369
adipose tissue changes 130
as risk factor 9, 20, 21, 53–56, 149–150, 399, 403
childhood 70, 358, 399
intervention studies 44
cardiometabolic co-morbidities 53
definition 50–52, 399
diabetes mellitus 168
genetic factors 52, 399–400
endothelial dysfunction association 168
gut microbiome relationship 72–73, 287
haemostasis effects 199–200
hypertension association 70–72, 71
leptin therapeutic use 404
links with other risk factors 70–73
maternal obesity 39–40, 43, 358
metabolically healthy obese 56
metabolically obese, normal-weight 56
microRNA relationship 143–144
oxidative stress association 72, 228
prevalence 399
research priorities 377
thrombosis association 72, 144
trends 23, 24, 24
venous complications 72
vitamin status relationship 72
see also body mass index (BMI); overweight; weight loss
oil-rich fish consumption recommendations 340, 342
see also fish oils
olive oil 324–326
health claims 233, 347
omega-3 fatty acids see n-3 polyunsaturates
omega-6 fatty acids see n-6 polyunsaturates
obesity 20, 21, 55
interventions 307–308
combined intervention effectiveness 303–306, 304
see also dietary factors; physical activity; weight loss
maternal effects 39–40
trends 23, 24
see also body mass index (BMI); obesity
alternative mechanisms 227–228
dietary influences 239–241, 314
early stage CVD 221–222
endogenous antioxidant protection 228–229, 228
endothelial dysfunction association 167
enzymes involved 238–239
evidence for oxidative products 227
inflammation 215, 228
later stage CVD 226
LDL oxidation 214, 215, 222–225, 224
molecular targets 219–221, 220
obesity 72, 228
physical activity and 228
research priorities 379
thrombosis association 227
see also antioxidants
paraoxonase (PON1) 105, 112, 225, 238
peripheral vascular disease (PVD) 4
obesity association 54
smoking association 22
peroxisome proliferator-activated receptors (PPARs) 140–141, 146–147
polymorphisms 149
PPAR-alpha 115
peroxynitrite 214, 215, 218–219, 219, 225
phospholipid oxidation 220–221
physical activity 19, 293–294, 296, 352, 373, 409–410
adipokines and 147–148
appetite control relationship 305–306
CVD risk relationship 296, 399
cardiovascular endpoints 297, 298
definition 295
endothelial function improvement 173
gut microbiome importance 281–282
interventions 307–308, 382–383
combined intervention effectiveness 303–306, 304
microRNA association 142
oxidative stress relationship 228
promotion 388, 389
recommendations 295, 352, 388, 409–410
risk factor interactions 299–302, 381–382, 359, 364, 402
synthesis of available information 359, 360, 364
weight relationships 51–52, 410
see also sedentary lifestyle
physical fitness 294–295, 296
assessment 296
CVD risk relationship 296, 297–299
definition 295
interventions 307–308
see also physical activity
phytochemicals 117–118
phytosterol-enriched foods 348
plant sterols 117–118, 347
cholesterol reduction 348
phytosterol-enriched foods 348
plant-based diets 327–328
plaques 3, 4, 101
development 5–6, 5, 101–102, 102
foam cells 5
plasminogen activator inhibitor-1 (PAI-1) 72, 144, 190
alcohol influence 200
as risk factor for vascular disease 192, 193
dietary carbohydrate influence 206
dietary fat effects 202–203
fish oil supplementation effect 205
genetic polymorphism 198, 209
micronutrient influences 206–207
obesity influence 199–200
platelets 181, 182–184
activation 183–184, 184
alcohol influence 200–201
as risk factor for vascular disease 192, 193–195
dietary fat effects 181, 203–204, 314
fish oil supplementation effects 205
function tests 194–195
micronutrient influences 207–208, 207
polyphenols 176, 229, 230, 232–233, 362
oxidative stress relationships 240–241
utilisation by gut microbiota 278–279
polyunsaturates 4, 26, 76, 401
cholesterol level relationships 79
n-3 polyunsaturates 4, 26, 146, 338, 340, 401
supplementation studies 85, 314, 315–316
synthesis of available information 359, 362
n-6 polyunsaturates 4, 338–339
oxidation 220, 221
platelet interactions 181, 314
see also fats, dietary
population attributable risk 19
portion size 351, 355, 390, 406
postprandial lipaemia 85–87, 96
potassium intake 350
endothelial function improvement 173
prebiotics 282, 284, 366, 409
lipid lowering effects 284–286
organic acid production 289
pregnancy
excess weight gain 39–40, 43
gestational diabetes 38–39, 39, 43, 358
nutrition recommendations 386–387
nutritional interventions 42–43
see also Developmental Origins of Health and Disease (DOHaD) hypothesis
probiotics 282, 366, 409
lipid lowering effects 283–284
proteins 237
chlorination 237
fermentation by gut microbiota 237–280
glycation 238
low-carbohydrate, high-protein diets 329–330, 411
nitration 237
autoantibodies to nitrated proteins 237–238
oxidation 219–220, 220, 236–238
supplementation in pregnancy 42, 43
prothrombin 182, 185, 379
genetic polymorphism 197
prothrombotic state 190, 371
psychological stress 352–353
rapseseed oil 338, 348
reactive nitrogen species 218–219, 218, 219
see also oxidative stress
reactive oxygen species 72, 217
origins 217, 217
physiological functions 217–218
see also oxidative stress
reformulation 383–384, 385, 390
relative risk (RR) 18
remnant-like particles (RLP) 91–92, 92, 96
resistin 140
risk factors for cardiovascular disease 17–25, 20, 395
assessment methods 380
association interpretation 18–19
cerebrovascular disease 21
conventional 20
coronary heart disease 19–21
definition 17–18
emerging factors 22, 25, 358–366, 395
genetic risk factors 7–9
hypertension 7, 7
interactions between 70–73, 299–302, 395
research evidence 18
trends 23–25
see also inflammatory risk factors; specific factors
salicylates 117–118
salt intake 21
recommendations 349–350
trends and challenges 349–350, 350
saturates 4, 26, 75–76, 401
as CVD risk factor 401–411
cholesterol level relationships 79
dietary recommendations 384–385
food sources 338
reduction methods in foods 345–348
trends in consumption 338, 339, 340, 342
versus unsaturates 316–318
see also fats, dietary
sedentary lifestyle 295, 296, 302–303, 352, 373
as risk factor 19, 20, 294, 296–297, 302–303, 410
risk factor interactions 299–302, 381–382
eating pattern relationships 306
interventions 307–308
metabolic syndrome relationship 61, 63
prevalence 295
research priorities 381, 382
trends 23
see also physical activity
selenium 233, 350
serum amyloid A (SAA) 104, 110
sleep duration 353
small, dense LDL 87–89, 87, 96
smoking 351, 359, 362, 365
as risk factor 20, 221
maternal smoking 35
peripheral vascular disease 22
beta-carotene interaction 269
endothelial damage 166–167, 362
platelet effects 208
trends 23, 24, 351
snacking 402
socioeconomic status as risk factor 20
sodium intake see salt intake
soya 349
cholesterol-lowering effects 283–284, 349
fermented drink 283–284
isoflavones 232
statins 9, 114–115
diabetes risk and 82
endothelial function improvement 172–173
inflammation reduction 114
randomised cholesterol-lowering trials 80–82, 80, 81
side effects 82
stress 352–353
early life 36
stroke 3–4
folic acid supplementation effects 254
haemorrhagic 4
ischaemic 3–4
mortality 11–14, 13, 14
risk factors 21
homocysteine 252, 253
obesity 54
trends 11–15
see also cardiovascular disease (CVD)
subcutaneous adipose tissue (SAT) 57, 58, 123–124
sucrose, plasma triglyceride relationships 84
sugar intake 27, 319
free sugars 27, 84, 319–321
plasma triglyceride relationships 84
see also carbohydrates, dietary; dietary factors
synbiotics 282, 286, 409
lipid lowering effects 286–287
syndrome X see metabolic syndrome
Task Force recommendations

to health professionals 388–389
to industry and the out-of-home sector 389–391
 agriculture 389
 food service sector 390–391
 manufacturers and retailers 389–390
to policy makers 385–388
dietary guidance 387
foods eaten outside the home 385–386
life course approach 386–387
nutrient/dietary requirements to reduce CVD risk 384–385
physical activity promotion 388
public information provision 387–388
reformulation 385
to the media 391
to workplaces/employers 391

see also dietary recommendations

thiazolidinediones 128, 146, 173
thrombin 180–186
prothrombotic state 190–191
thromboembolism 3–4, 6
thrombomodulin 187–188, 187
 genetic polymorphism 198
thrombosis 3–4, 6
 genetic factors 406
 mechanisms 101
 obesity association 72, 144
 oxidative stress association 227
 prevention 181, 406
tissue factor (TF) 183, 185, 227
tissue plasminogen activator (tPA) 189
 alcohol influence 200
 as risk factor for vascular disease 192, 193
dietary carbohydrate influence 206
dietary fat effects 202–203
 fish oil supplementation effect 205
 micronutrient influences 206–207
 weight loss influence 200
tocopherols (vitamin E) 117, 230, 239,
 265–266, 359
 oxidative stress relationships 239–240
trans fatty acids 4, 316, 402
 food sources 339
 reduction of 316
trends in consumption 339, 348
triglyceride-rich lipoproteins (TRLs) 86, 91
 triglycerides 4, 20, 76, 76, 82–85, 369, 400, 401
endothelial dysfunction and 167
 physical activity effects 300
 plasma concentrations 82–85
 see also fat distribution
tumour necrosis factor-alpha (TNF-alpha) 137
endothelial dysfunction and 168
 physical activity influence 148

receptors 137
 role in adipose tissue 138
type 2 diabetes see diabetes

UK dietary guidelines 331–332, 332
US dietary guidelines 333
vascular dysfunction 154–155, 156–157, 360–362
 arterial stiffness 154
 estimates of 158–166
 flow-mediated constriction (FMC) 154
 research priorities 378
 see also endothelial dysfunction; endothelium;
 vascular function
vascular function 155–158
 arterial structure 155
 measures of 154
 blood constituents 164–166, 165
 endothelial function 157, 158–166
 excreted factors 166
 see also endothelial dysfunction; endothelium;
 vascular dysfunction
vegetable consumption see fruit and vegetable consumption
very low-density lipoproteins (VLDL) 84–87, 86, 400
visceral fat 57–59, 58
distribution 123–124
 physical activity benefits 299–300
 see also adipose tissue; fat distribution
vitamins 246, 314, 359, 361, 365, 407–408
 classification 246–248
 dietary reference values and safe upper levels 247
 endothelial function relationships 175–176, 361
 haemostatic system relationships 206–209
 inflammation relationship 118, 359
 obesity relationship 72
 oxidative stress relationships 239–240, 365
 research priorities 379–380
 trends in consumption 351
vitamin A 147, 359
vitamin B group 176, 246, 248
 CVD prevention trials 252–253
 folate 42, 176, 206–207, 250–251, 361, 408
 homocysteine relationship 250–251, 408
 supplementation 251, 252–253
 vitamin B6 46, 118, 176, 206–207, 250, 365
 vitamin B12 46, 176, 250–251, 255–257, 365
 vitamin C (ascorbate) 229–232, 240, 255, 266
vitamin D 67, 72, 118, 175, 246, 257–265, 351, 361, 365
 assays 260
 dietary sources 257–258
 functions 258
Index

vitamins (cont’d)
 insufficiency prevalence 259
 mortality effect 265
 need for further trials 264–265, 264
 observational studies of CVD risk 260–262, 261, 262
 plasma levels 258–260
 RCTs of CVD prevention 262–263, 263
 regulation 257
 vitamin E (tocopherol) 117, 230, 239–240, 265–266, 359
 see also antioxidants; micronutrients
von Willebrand factor (vWF) 192, 193

walnuts 344, 347
weight cycling 330–331
weight loss 56–57, 359, 360, 364, 399
 diabetes prevention 68–69
 endothelial function improvement 173
 haemostasis and 200, 364
 see also dietary factors; physical activity
microRNA association 142
physical activity relationships 51–52, 410
white adipose tissue (WAT) 124, 129
wholegrain consumption 116, 322