Contents

Preface xiii
About the Authors xiv

1 The History of Wind Energy 1
Jos Beurskens

1.1 Introduction 1
1.2 The First Windmills: 600–1890 2
 1.2.1 Technical Development of the First Horizontal Windmills 5
1.3 Generation of Electricity using Wind Farms: Wind Turbines 1890–1930 10
1.4 The First Phase of Innovation: 1930–1960 16
1.5 The Second Phase of Innovation and Mass Production: 1960 to Today 25
 1.5.1 The State-Supported Development of Large Wind Turbines 28
 1.5.2 The Development of Smaller Wind Turbines 36
 1.5.3 Wind Farms, Offshore and Grid Connection 38
 1.5.4 International Grids 41
 1.5.5 To Summarise 43
References 43

2 The International Development of Wind Energy 45
Klaus Rave

2.1 The Modern Energy Debate 45
2.2 The Reinvention of the Energy Market 48
2.3 The Importance of the Power Grid 50
2.4 The New Value-added Chain 53
2.5 International Perspectives 55
2.6 Expansion into Selected Countries 58
2.7 The Role of the EU 59
2.8 International Institutions and Organisations 61
 2.8.1 Scenarios 64
3 Wind Resources, Site Assessment and Ecology

Hermann van Radecke

3.1 Introduction

3.2 Wind Resources

3.2.1 Global Wind Systems and Ground Roughness

3.2.2 Topography and Roughness Length

3.2.3 Roughness Classes

3.2.4 Contour Lines and Obstacles

3.2.5 Wind Resources with WAsP, WindPRO, Windfarmer

3.2.6 Correlating Wind Potential with Mesoscale Models and Reanalysis Data

3.2.7 Wind in the Wind Farm

3.2.8 Wind Frequency Distribution

3.2.9 Site Classification and Annual Energy Production

3.2.10 Reference Yield and Duration of Increased Subsidy

3.3 Acoustics

3.3.1 The dB(A) Unit

3.3.2 Sources of Noise

3.3.3 Propagation through the Air

3.3.4 Immission Site and Benchmarks

3.3.5 Frequency Analysis, Tone Adjustment and Impulse Adjustment

3.3.6 Methods of Noise Reduction

3.3.7 Regulations for Minimum Distances

3.4 Shadow

3.5 Turbulence

3.5.1 Turbulence from Surrounding Environment

3.5.2 Turbulence Attributed to Turbines

3.6 Two Comprehensive Software Tools for Planning Wind Farms

3.7 Technical Guidelines, FGW Guidelines and IEC Standards

3.8 Environmental Influences Bundes-Immissionsschutzgesetz (Federal Immission Control Act) and Approval Process

3.8.1 German Immission Protection Law (BImSchG)

3.8.2 Approval Process

3.8.3 Environmental Impact Assessment (EIA)

3.8.4 Specific Aspects of the Process

3.8.5 Acceptance

3.8.6 Monitoring and Clarifying Plant-Specific Data

3.9 Example Problems

3.10 Solutions to the Problems

References
4 Aerodynamics and Blade Design 126

Alois Schaffarczyk

4.1 Summary 126

4.2 Horizontal Plants 126
 4.2.1 General 126
 4.2.2 Basic Aerodynamic Terminology 127

4.3 Integral Momentum Theory 130
 4.3.1 Momentum Theory of Wind Turbines: the Betz Limiting Value 130
 4.3.2 Changes in Air Density with Temperature and Altitude 132
 4.3.3 Influence of the Finite Blade Number 133
 4.3.4 Swirl Losses and Local Optimisation of the Blades According to Glauert 134
 4.3.5 Losses Due to Profile Drag 136

4.4 Momentum Theory of the Blade Elements 137
 4.4.1 The Formulation 137
 4.4.2 Example of an Implementation: WT-Perf 139
 4.4.3 Optimisation and Design Rules for Blades 139
 4.4.4 Extension of the Blade Element Method: The Differential Formulation 140
 4.4.5 Three-Dimensional Computational Fluid Dynamics (CFD) 141
 4.4.6 Summary: Horizontal Plants 142

4.5 Vertical Plants 142
 4.5.1 General 142
 4.5.2 Aerodynamics of H Rotors 144
 4.5.3 Aeroelastics of Vertical Axis Rotors 149
 4.5.4 A 50 kW Rotor as an Example 150
 4.5.5 Design Rules for Small Wind Turbines According to H-Darrieus Type A 150
 4.5.6 Summary: Vertical Rotors 151

4.6 Wind-Driven Vehicles with a Rotor 151
 4.6.1 Introduction 151
 4.6.2 On the Theory of Wind-Driven Vehicles 152
 4.6.3 Numerical Example 153
 4.6.4 The Kiel Design Method 153
 4.6.5 Evaluation 154
 4.6.6 Completed Vehicles 155
 4.6.7 Summary: Wind Vehicles 156

4.7 Exercises 157

References 158

5 Rotor Blades 162

Lothar Dannenberg

5.1 Introduction 162

5.2 Loads on Rotor Blades 163
 5.2.1 Types of Loads 163
 5.2.2 Fundamentals of the Strength Calculations 165
5.2.3 Cross-Sectional Values of Rotor Blades 167
5.2.4 Stresses and Deformations 172
5.2.5 Section Forces in the Rotor Blade 176
5.2.6 Bending and Inclination 178
5.2.7 Results According to Beam Theory 179
5.3 Vibrations and Buckling 180
5.3.1 Vibrations 180
5.3.2 Buckling and Stability Calculations 183
5.4 Finite Element Calculations 184
5.4.1 Stress Calculations 184
5.4.2 FEM Buckling Calculations 185
5.4.3 FEM Vibration Calculations 186
5.5 Fibre-Reinforced Plastics 187
5.5.1 Introduction 187
5.5.2 Materials (Fibres, Resins, Additives, Sandwich Materials) 188
5.5.3 Laminates and Lamine Properties 192
5.6 Production of Rotor Blades 195
5.6.1 Structural Parts of the Rotor Blades 195
5.6.2 Composite Manufacturing Methods 198
5.6.3 Assembly of the Rotor Blade 199
References 200

6 The Drive Train 202
Sönke Siegfriedsen
6.1 Introduction 202
6.2 Blade Angle Adjustment Systems 203
6.3 Wind Direction Tracking 209
6.3.1 General 209
6.3.2 Description of the Function 209
6.3.3 Components 210
6.3.4 Variations in Wind Direction Tracking Arrangements 213
6.4 Drive Train Components 215
6.4.1 Rotor Locking and Rotor Rotating Arrangements 216
6.4.2 Rotor Shaft and Mountings 217
6.4.3 Gears 220
6.4.4 Brake and Coupling 223
6.4.5 Generator 225
6.5 Drive Train Concepts 227
6.5.1 Direct-Driven – Double Mounting 228
6.5.2 Direct-Driven – Torque Support 230
6.5.3 One–Two Step Geared Drives – Double Bearings 232
6.5.4 One–Two Step Geared Drives – Torque Support 234
6.5.5 Three–Four Step Geared Drives – Double Mountings 235
6.5.6 Three–Four Step Geared Drives – Three-Point Mountings 237
6.5.7 Three–Four Step Geared Drives – Torque Support 239
6.6 Damage and Causes of Damage 240
6.7 Design of Drive Train Components
 6.7.1 LDD
 6.7.2 RFC
6.8 Intellectual Property in the Wind Industry
 6.8.1 Example Patents of Drive Trains
Further Reading

7 Tower and Foundation
 Torsten Faber
 7.1 Introduction
 7.2 Guidelines and Standards
 7.3 Tower Loading
 7.3.1 Fatigue Loads
 7.3.2 Extreme Loads
 7.4 Verification of the Structure
 7.4.1 Proof of Load Capacity
 7.4.2 Proof of Fitness for Use
 7.4.3 Proof of Foundation
 7.4.4 Vibration Calculations (Eigen Frequencies)
 7.5 Design Details
 7.5.1 Door Openings in Steel Tube Towers
 7.5.2 Ring Flange Connections
 7.5.3 Welded Connections
 7.6 Materials for Towers
 7.6.1 Steel
 7.6.2 Concrete
 7.6.3 Timber
 7.6.4 Glass Fibre-Reinforced Plastic
 7.7 Model Types
 7.7.1 Tubular Towers
 7.7.2 Lattice Masts
 7.7.3 Guyed Towers
 7.8 Foundations for Onshore WTs
 7.8.1 Force of Gravity
 7.8.2 Piles
 7.8.3 Cables
 7.9 Exercises
 7.10 Solutions
References

8 Power Electronics and Generator Systems for Wind Turbines
 Friedrich W. Fuchs
 8.1 Introduction
 8.2 Single-Phase AC Voltage and Three-Phase AC Voltage Systems
 8.3 Transformer
 8.3.1 Principle and Calculations
 8.3.2 Equivalent Circuit Diagram, Phasor Diagram
9.3 Operating Management Systems for WTs
 9.3.1 Control of the Operating Sequence of WTs
 9.3.2 Safety Systems
9.4 Wind Farm Control and Automation Systems
9.5 Remote Control and Monitoring
9.6 Communication Systems for WTS

References

10 Grid Integration
 Sven Wanser and Frank Ehlers
 10.1 Energy Supply Grids in Overview
 10.1.1 General
 10.1.2 Voltage Level of Electrical Supply Grids
 10.1.3 Grid Structures
 10.2 Grid Control
 10.2.1 Controlling the Power Range
 10.2.2 Compensating Power and Balancing Grids
 10.2.3 Base Load, Medium Load and Peak Load
 10.2.4 Frequency Stability
 10.2.5 Primary Control, Secondary Control and Tertiary Control
 10.2.6 Voltage Stability
 10.2.7 System Services by means of Wind Turbines
 10.3 Basic Terminology of Grid Integration of Wind Turbines
 10.3.1 Basic Electrical Terminology
 10.3.2 Grid Quality
 10.4 Grid Connections for WTs
 10.4.1 Rating the Grid Operating Media
 10.4.2 Checking the Voltage Changes/Voltage Band
 10.4.3 Checking the Grid Reaction ‘Fast Voltage Change’
 10.4.4 Checking the Short-Circuit Strength
 10.5 Grid Connection of WTs
 10.5.1 Switchgear
 10.5.2 Protective Equipment
 10.5.3 Integration into the Grid System
 10.6 Further Developments in Grid Integration and Outlook
 10.6.1 Grid Expansion
 10.6.2 Load Displacement
 10.6.3 Energy Storage

References

11 Offshore Wind Energy
 Lothar Dannenberg
 11.1 Offshore Wind Turbines
 11.1.1 Introduction
 11.1.2 Differences between Offshore and Onshore WTs
 11.1.3 Environmental Conditions and Nature Protection
11.2 Currents and Loads 409
 11.2.1 Currents 409
 11.2.2 Current Loads 410
 11.2.3 Vortex Shedding of Bodies Subject to Flows 412
11.3 Waves, Wave Loads 413
 11.3.1 Wave Theories 413
 11.3.2 Superposition of Waves and Currents 423
 11.3.3 Loads Due to Waves (Morison Method) 425
11.4 Swell 430
 11.4.1 Regular Swell 430
 11.4.2 Irregular or Natural Swells 430
 11.4.3 Statistics 431
 11.4.4 Swell Spectra 432
 11.4.5 Influence of Currents 436
 11.4.6 Long-Term Statistics of the Swell 436
 11.4.7 Extreme Waves 436
11.5 Scouring Formation, Growth, Corrosion and Ice 437
 11.5.1 Scouring 437
 11.5.2 Marine Growth 438
 11.5.3 Ice Loads 439
 11.5.4 Corrosion 439
11.6 Foundations for OWTs 441
 11.6.1 Introduction 441
 11.6.2 Fixed Foundations 442
 11.6.3 Floating Foundations 447
 11.6.4 Operating Strength 448
11.7 Soil Mechanics 450
 11.7.1 Introduction 450
 11.7.2 Soil Properties 450
 11.7.3 Calculation of Load-Bearing Behaviour of the Sea Bed 451
References 454

Index 455