Contents

Preface xvii
List of Contributors xxi
Acknowledgements xxv

PART I  CONTENT CREATION

1  Consumer Depth Cameras and Applications 3
   Seungkyu Lee
   1.1  Introduction 3
   1.2  Time-of-Flight Depth Camera 3
      1.2.1  Principle 4
      1.2.2  Quality of the Measured Distance 6
   1.3  Structured Light Depth Camera 11
      1.3.1  Principle 11
   1.4  Specular and Transparent Depth 12
   1.5  Depth Camera Applications 15
      1.5.1  Interaction 15
      1.5.2  Three-Dimensional Reconstruction 15
   References 16

2  SFTI: Space-from-Time Imaging 17
   Ahmed Kirmani, Andrea Colaço, and Vivek K. Goyal
   2.1  Introduction 17
   2.2  Background and Related Work 18
      2.2.1  Light Fields, Reflectance Distribution Functions, and Optical
             Image Formation 18
      2.2.2  Time-of-Flight Methods for Estimating Scene Structure 20
      2.2.3  Synthetic Aperture Radar for Estimating Scene Reflectance 20
   2.3  Sampled Response of One Source–Sensor Pair 21
      2.3.1  Scene, Illumination, and Sensor Abstractions 21
      2.3.2  Scene Response Derivation 22
      2.3.3  Inversion 24
   2.4  Diffuse Imaging: SFTI for Estimating Scene Reflectance 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Response Modeling</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Image Recovery using Linear Backprojection</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Compressive Depth Acquisition: SFTI for Estimating Scene Structure</td>
<td>30</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Single-Plane Response to Omnidirectional Illumination</td>
<td>30</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Spatially-Patterned Measurement</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Algorithms for Depth Map Reconstruction</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Discussion and Future Work</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>35</td>
</tr>
</tbody>
</table>

3 2D-to-3D Video Conversion: Overview and Perspectives

Carlos Vazquez, Liang Zhang, Filippo Speranza, Nils Plath, and Sebastian Knorr

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>The 2D-to-3D Conversion Problem</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General Conversion Approach</td>
<td>38</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Depth Cues in Monoscopic Video</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Definition of Depth Structure of the Scene</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Depth Creation Methods</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Depth Recovery Methods</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Generation of the Second Video Stream</td>
<td>48</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Depth to Disparity Mapping</td>
<td>48</td>
</tr>
<tr>
<td>3.4.2</td>
<td>View Synthesis and Rendering Techniques</td>
<td>49</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Post-Processing for Hole-Filling</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Quality of Experience of 2D-to-3D Conversion</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>58</td>
</tr>
</tbody>
</table>

4 Spatial Plasticity: Dual-Camera Configurations and Variable Interaxial

Ray Zone

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Stereoscopic Capture</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Dual-Camera Arrangements in the 1950s</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Classic “Beam-Splitter” Technology</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>The Dual-Camera Form Factor and Camera Mobility</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>Reduced 3D Form Factor of the Digital CCD Sensor</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>Handheld Shooting with Variable Interaxial</td>
<td>71</td>
</tr>
<tr>
<td>4.7</td>
<td>Single-Body Camera Solutions for Stereoscopic Cinematography</td>
<td>73</td>
</tr>
<tr>
<td>4.8</td>
<td>A Modular 3D Rig</td>
<td>76</td>
</tr>
<tr>
<td>4.9</td>
<td>Human Factors of Variable Interaxial</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>

PART II REPRESENTATION, CODING AND TRANSMISSION

5 Disparity Estimation Techniques

Mounir Kaaniche, Raffaele Gaetano, Marco Cagnazzo, and Béatrice Pesquet-Popescu

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
</tbody>
</table>
5.2 Geometrical Models for Stereoscopic Imaging  
5.2.1 The Pinhole Camera Model  
5.2.2 Stereoscopic Imaging Systems  
5.3 Stereo Matching Process  
5.3.1 Disparity Information  
5.3.2 Difficulties in the Stereo Matching Process  
5.3.3 Stereo Matching Constraints  
5.3.4 Fundamental Steps Involved in Stereo Matching Algorithms  
5.4 Overview of Disparity Estimation Methods  
5.4.1 Local Methods  
5.4.2 Global Methods  
5.5 Conclusion  
References  

6 3D Video Representation and Formats  
*Marco Cagnazzo, Béatrice Pesquet-Popescu, and Frédéric Dufaux*  
6.1 Introduction  
6.2 Three-Dimensional Video Representation  
6.2.1 Stereoscopic 3D (S3D) Video  
6.2.2 Multiview Video (MVV)  
6.2.3 Video-Plus-Depth  
6.2.4 Multiview Video-Plus-Depth (MVD)  
6.2.5 Layered Depth Video (LDV)  
6.3 Three-Dimensional Video Formats  
6.3.1 Simulcast  
6.3.2 Frame-Compatible Stereo Interleaving  
6.3.3 MPEG-4 Multiple Auxiliary Components (MAC)  
6.3.4 MPEG-C Part 3  
6.3.5 MPEG-2 Multiview Profile (MVP)  
6.3.6 Multiview Video Coding (MVC)  
6.4 Perspectives  
Acknowledgments  
References  

7 Depth Video Coding Technologies  
*Elie Gabriel Mora, Giuseppe Valenzise, Joël Jung, Béatrice Pesquet-Popescu, Marco Cagnazzo, and Frédéric Dufaux*  
7.1 Introduction  
7.2 Depth Map Analysis and Characteristics  
7.3 Depth Map Coding Tools  
7.3.1 Tools that Exploit the Inherent Characteristics of Depth Maps  
7.3.2 Tools that Exploit the Correlations with the Associated Texture  
7.3.3 Tools that Optimize Depth Map Coding for the Quality of the Synthesis  
7.4 Application Example: Depth Map Coding Using “Don’t Care” Regions  
7.4.1 Derivation of “Don’t Care” Regions  
7.4.2 Transform Domain Sparsification Using “Don’t Care” Regions  

References
9.4 Interactive Multiview Video Streaming 172
  9.4.1 Interactive Multiview Video Streaming (IMVS) 172
  9.4.2 IMVS with Free Viewpoint Navigation 179
  9.4.3 IMVS with Fixed Round-Trip Delay 181
9.5 Conclusion 184
References 184

10 Adaptive Streaming of Multiview Video Over P2P Networks 187
  C. Göktuğ Gürler and A. Murat Tekalp
  10.1 Introduction 187 187
  10.2 P2P Overlay Networks 188
    10.2.1 Overlay Topology 188
    10.2.2 Sender-Driven versus Receiver-Driven P2P Video Streaming 189
    10.2.3 Layered versus Cross-Layer Architecture 190
    10.2.4 When P2P is Useful: Regions of Operation 191
    10.2.5 BitTorrent: A Platform for File Sharing 191
  10.3 Monocular Video Streaming Over P2P Networks 192
    10.3.1 Video Coding 193
    10.3.2 Variable-Size Chunk Generation 193
    10.3.3 Time-Sensitive Chunk Scheduling Using Windowing 194
    10.3.4 Buffer-Driven Rate Adaptation 195
    10.3.5 Adaptive Window Size and Scheduling Restrictions 195
    10.3.6 Multiple Requests from Multiple Peers of a Single Chunk 196
  10.4 Stereoscopic Video Streaming over P2P Networks 197
    10.4.1 Stereoscopic Video over Digital TV 197
    10.4.2 Rate Adaptation in Stereo Streaming: Asymmetric Coding 197
    10.4.3 Use Cases: Stereoscopic Video Streaming over P2P Network 200
  10.5 MVV Streaming over P2P Networks 201
    10.5.1 MVV Streaming over IP 201
    10.5.2 Rate Adaptation for MVV: View Scaling 201
    10.5.3 Use Cases: MVV Streaming over P2P Network 202
References 203

PART III RENDERING AND SYNTHESIS

11 Image Domain Warping for Stereoscopic 3D Applications 207
  Oliver Wang, Manuel Lang, Nikolce Stefanoski, Alexander Sorkine-Hornung,
  Olga Sorkine-Hornung, Aljoscha Smolic, and Markus Gross
  11.1 Introduction 207
  11.2 Background 208
  11.3 Image Domain Warping 209
  11.4 Stereo Mapping 210
    11.4.1 Problems in Stereoscopic Viewing 210
    11.4.2 Disparity Range 210
    11.4.3 Disparity Sensitivity 211
    11.4.4 Disparity Velocity 211

References
11.4.5 Summary 212
11.4.6 Disparity Mapping Operators 212
11.4.7 Linear Operator 212
11.4.8 Nonlinear Operator 212
11.4.9 Temporal Operator 213
11.5 Warp-Based Disparity Mapping 213
11.5.1 Data Extraction 213
11.5.2 Warp Calculation 214
11.5.3 Applications 216
11.6 Automatic Stereo to Multiview Conversion 218
11.6.1 Automatic Stereo to Multiview Conversion 218
11.6.2 Position Constraints 219
11.6.3 Warp Interpolation and Extrapolation 219
11.6.4 Three-Dimensional Video Transmission Systems for Multiview Displays 220
11.7 IDW for User-Driven 2D–3D Conversion 221
11.7.1 Technical Challenges of 2D–3D Conversion 222
11.8 Multi-Perspective Stereopsis from Light Fields 225
11.9 Conclusions and Outlook 228
Acknowledgments 229
References 229

12 Image-Based Rendering and the Sampling of the Plenoptic Function 231
Christopher Gilliam, Mike Brookes, and Pier Luigi Dragotti

12.1 Introduction 231
12.2 Parameterization of the Plenoptic Function 232
12.2.1 Light Field and Surface Light Field Parameterization 232
12.2.2 Epipolar Plane Image 234
12.3 Uniform Sampling in a Fourier Framework 235
12.3.1 Spectral Analysis of the Plenoptic Function 236
12.3.2 The Plenoptic Spectrum under Realistic Conditions 239
12.4 Adaptive Plenoptic Sampling 242
12.4.1 Adaptive Sampling Based on Plenoptic Spectral Analysis 244
12.5 Summary 246
12.5.1 Outlook 246
References 247

13 A Framework for Image-Based Stereoscopic View Synthesis from Asynchronous Multiview Data 249
Felix Klose, Christian Lipski, and Marcus Magnor

13.1 The Virtual Video Camera 249
13.1.1 Navigation Space Embedding 251
13.1.2 Space–Time Tetrahedralization 252
13.1.3 Processing Pipeline 255
13.1.4 Rendering 256
13.1.5 Application 257
13.1.6 Limitations 258
13.2 Estimating Dense Image Correspondences 258
  13.2.1 Belief Propagation for Image Correspondences 259
  13.2.2 A Symmetric Extension 260
  13.2.3 SIFT Descriptor Downsampling 261
  13.2.4 Construction of Message-Passing Graph 261
  13.2.5 Data Term Compression 262
  13.2.6 Occlusion Removal 263
  13.2.7 Upsampling and Refinement 263
  13.2.8 Limitations 263

13.3 High-Quality Correspondence Edit 264
  13.3.1 Editing Operations 264
  13.3.2 Applications 265

13.4 Extending to the Third Dimension 265
  13.4.1 Direct Stereoscopic Virtual View Synthesis 266
  13.4.2 Depth-Image-Based Rendering 267
  13.4.3 Comparison 267
  13.4.4 Concluding with the “Who Cares?” Post-Production Pipeline 268

References 270

PART IV DISPLAY TECHNOLOGIES

14 Signal Processing for 3D Displays 275
  Janusz Konrad

  14.1 Introduction 275
  14.2 3D Content Generation 276
    14.2.1 Automatic 2D-to-3D Image Conversion 276
    14.2.2 Real-Time Intermediate View Interpolation 280
    14.2.3 Brightness and Color Balancing in Stereopairs 286
  14.3 Dealing with 3D Display Hardware 287
    14.3.1 Ghosting Suppression for Polarized and Shuttered Stereoscopic 3D Displays 287
    14.3.2 Aliasing Suppression for Multiview Eyewear-Free 3D Displays 289
  14.4 Conclusions 292
  Acknowledgments 293
  References 293

15 3D Display Technologies 295
  Thierry Borel and Didier Doyen

  15.1 Introduction 295
  15.2 Three-Dimensional Display Technologies in Cinemas 295
    15.2.1 Three-Dimensional Cinema Projectors Based on Light Polarization 296
    15.2.2 Three-Dimensional Cinema Projectors Based on Shutters 299
    15.2.3 Three-Dimensional Cinema Projectors Based on Interference Filters 300
  15.3 Large 3D Display Technologies in the Home 301
    15.3.1 Based on Anaglyph Glasses 301
15.3.2 Based on Shutter Glasses 302
15.3.3 Based on Polarized Glasses 304
15.3.4 Without Glasses 306
15.4 Mobile 3D Display Technologies 309
15.4.1 Based on Parallax Barriers 310
15.4.2 Based on Lighting Switch 310
15.5 Long-Term Perspectives 311
15.6 Conclusion 312
References 312

16 Integral Imaging
Jun Arai 313

16.1 Introduction 313
16.2 Integral Photography 314
16.2.1 Principle 314
16.2.2 Integral Photography with a Concave Lens Array 315
16.2.3 Holocoder Hologram 317
16.2.4 IP using a Retrodirective Screen 318
16.2.5 Avoiding Pseudoscopic Images 318
16.3 Real-Time System 319
16.3.1 Orthoscopic Conversion Optics 319
16.3.2 Applications of the Ultra-High-Resolution Video System 322
16.4 Properties of the Reconstructed Image 325
16.4.1 Geometrical Relationship of Subject and Spatial Image 325
16.4.2 Resolution 326
16.4.3 Viewing Area 329
16.5 Research and Development Trends 330
16.5.1 Acquiring and Displaying Spatial Information 330
16.5.2 Elemental Image Generation from 3D Object Information 331
16.5.3 Three-Dimensional Measurement 332
16.5.4 Hologram Conversion 333
16.6 Conclusion 334
References 334

17 3D Light-Field Display Technologies 336
Péter Tamás Kovács and Tibor Balogh 336

17.1 Introduction 336
17.2 Fundamentals of 3D Displaying 337
17.3 The HoloVizio Light-Field Display System 339
17.3.1 Design Principles and System Parameters 340
17.3.2 Image Organization 341
17.4 HoloVizio Displays and Applications 342
17.4.1 Desktop Displays 342
17.4.2 Large-Scale Displays 343
17.4.3 Cinema Display 343
17.4.4 Software and Content Creation 344
17.4.5 Applications 344
PART V  HUMAN VISUAL SYSTEM AND QUALITY ASSESSMENT

18  3D Media and the Human Visual System  
Simon J. Watt and Kevin J. MacKenzie 
18.1 Overview  349
18.2 Natural Viewing and S3D Viewing  349
18.3 Perceiving 3D Structure  
18.3.1 Perceiving Depth from Binocular Disparity  352
18.4 ‘Technical’ Issues in S3D Viewing  354
18.4.1 Cross-Talk  355
18.4.2 Low Image Luminance and Contrast  355
18.4.3 Photometric Differences Between Left- and Right-Eye Images  355
18.4.4 Camera Misalignments and Differences in Camera Optics  356
18.4.5 Window Violations  356
18.4.6 Incorrect Specular Highlights  356
18.5 Fundamental Issues in S3D Viewing  357
18.6 Motion Artefacts from Field-Sequential Stereoscopic Presentation  357
18.6.1 Perception of Flicker  359
18.6.2 Perception of Unsmooth or Juddering Motion  359
18.6.3 Distortions in Perceived Depth from Binocular Disparity  360
18.6.4 Conclusions  360
18.7 Viewing Stereoscopic Images from the ‘Wrong’ Place  361
18.7.1 Capture Parameters  361
18.7.2 Display Parameters and Viewer Parameters  364
18.7.3 Are Problems of Incorrect Geometry Unique to S3D?  364
18.7.4 Conclusions  366
18.8 Fixating and Focusing on Stereoscopic Images  366
18.8.1 Accommodation, Vergence and Viewing Distance  367
18.8.2 Accommodation and Vergence in the Real World and in S3D  367
18.8.3 Correcting Focus Cues in S3D  368
18.8.4 The Stereoscopic Zone of Comfort  369
18.8.5 Specifying the Zone of Comfort for Cinematography  370
18.8.6 Conclusions  371
18.9 Concluding Remarks  372
Acknowledgments  372
References  372

19  3D Video Quality Assessment  
Philippe Hanhart, Francesca De Simone, Martin Rerabek, and Touradj Ebrahimi 
19.1 Introduction  377
19.2 Stereoscopic Artifacts  378
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3</td>
<td>Subjective Quality Assessment</td>
<td>379</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Psycho-perceptual (or Psychophysical) Experiments</td>
<td>380</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Descriptive (or Explorative) Approaches</td>
<td>382</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Hybrid Approaches</td>
<td>382</td>
</tr>
<tr>
<td>19.3.4</td>
<td>Open Issues</td>
<td>383</td>
</tr>
<tr>
<td>19.3.5</td>
<td>Future Directions</td>
<td>384</td>
</tr>
<tr>
<td>19.4</td>
<td>Objective Quality Assessment</td>
<td>384</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Objective Quality Metrics</td>
<td>384</td>
</tr>
<tr>
<td>19.4.2</td>
<td>From 2D to 3D</td>
<td>385</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Including Depth Information</td>
<td>386</td>
</tr>
<tr>
<td>19.4.4</td>
<td>Beyond Image Quality</td>
<td>387</td>
</tr>
<tr>
<td>19.4.5</td>
<td>Open Issues</td>
<td>388</td>
</tr>
<tr>
<td>19.4.6</td>
<td>Future Directions</td>
<td>389</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>389</td>
</tr>
</tbody>
</table>

### PART VI APPLICATIONS AND IMPLEMENTATION

#### 20 Interactive Omnidirectional Indoor Tour

*Jean-Charles Bazin, Olivier Saurer, Friedrich Fraundorfer, and Marc Pollefeys*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>395</td>
</tr>
<tr>
<td>20.2</td>
<td>Related Work</td>
<td>396</td>
</tr>
<tr>
<td>20.3</td>
<td>System Overview</td>
<td>397</td>
</tr>
<tr>
<td>20.4</td>
<td>Acquisition and Preprocessing</td>
<td>398</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Camera Model</td>
<td>398</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Data Acquisition</td>
<td>400</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Feature Extraction</td>
<td>401</td>
</tr>
<tr>
<td>20.4.4</td>
<td>Key-Frame Selection</td>
<td>401</td>
</tr>
<tr>
<td>20.5</td>
<td>SFM Using the Ladybug Camera</td>
<td>401</td>
</tr>
<tr>
<td>20.6</td>
<td>Loop and Junction Detection</td>
<td>401</td>
</tr>
<tr>
<td>20.7</td>
<td>Interactive Alignment to Floor Plan</td>
<td>402</td>
</tr>
<tr>
<td>20.7.1</td>
<td>Notation</td>
<td>402</td>
</tr>
<tr>
<td>20.7.2</td>
<td>Fusing SFM with Ground Control Points</td>
<td>403</td>
</tr>
<tr>
<td>20.8</td>
<td>Visualization and Navigation</td>
<td>405</td>
</tr>
<tr>
<td>20.8.1</td>
<td>Authoring</td>
<td>405</td>
</tr>
<tr>
<td>20.8.2</td>
<td>Viewer</td>
<td>405</td>
</tr>
<tr>
<td>20.9</td>
<td>Vertical Rectification</td>
<td>408</td>
</tr>
<tr>
<td>20.9.1</td>
<td>Existing Studies</td>
<td>408</td>
</tr>
<tr>
<td>20.9.2</td>
<td>Procedure Applied</td>
<td>408</td>
</tr>
<tr>
<td>20.9.3</td>
<td>Line Extraction</td>
<td>408</td>
</tr>
<tr>
<td>20.9.4</td>
<td>Line Clustering and VP Estimation</td>
<td>409</td>
</tr>
<tr>
<td>20.10</td>
<td>Experiments</td>
<td>410</td>
</tr>
<tr>
<td>20.10.1</td>
<td>Vertical Rectification</td>
<td>410</td>
</tr>
<tr>
<td>20.10.2</td>
<td>Trajectory Estimation and Mapping</td>
<td>411</td>
</tr>
<tr>
<td>20.11</td>
<td>Conclusions</td>
<td>414</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>414</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>414</td>
</tr>
</tbody>
</table>
21 View Selection
Fahad Daniyal and Andrea Cavallaro

21.1 Introduction 416
21.2 Content Analysis 417
  21.2.1 Pose 417
  21.2.2 Occlusions 419
  21.2.3 Position 419
  21.2.4 Size 421
  21.2.5 Events 421
21.3 Content Ranking 421
  21.3.1 Object-Centric Quality of View 422
  21.3.2 View-Centric Quality of View 423
21.4 View Selection 424
  21.4.1 View Selection as a Scheduling Problem 425
  21.4.2 View Selection as an Optimization Problem 425
21.5 Comparative Summary and Outlook 426
References 429

22 3D Video on Mobile Devices
Arnaud Bourge and Alain Bellon

22.1 Mobile Ecosystem, Architecture, and Requirements 432
22.2 Stereoscopic Applications on Mobile Devices 433
  22.2.1 3D Video Camcorder 434
  22.2.2 3D Video Player 434
  22.2.3 3D Viewing Modalities 434
  22.2.4 3D Graphics Applications 435
  22.2.5 Interactive Video Applications 435
  22.2.6 Monoscopic 3D 435
22.3 Stereoscopic Capture on Mobile Devices 436
  22.3.1 Stereo-Camera Design 436
  22.3.2 Stereo Imaging 437
  22.3.3 Stereo Rectification, Lens Distortion, and Camera Calibration 438
  22.3.4 Digital Zoom and Video Stabilization 440
  22.3.5 Stereo Codecs 442
22.4 Display Rendering on Mobile Devices 442
  22.4.1 Local Auto-Stereoscopic Display 442
  22.4.2 Remote HD Display 443
  22.4.3 Stereoscopic Rendering 443
22.5 Depth and Disparity 445
  22.5.1 View Synthesis 445
  22.5.2 Depth Map Representation and Compression Standards 446
  22.5.3 Other Usages 447
22.6 Conclusions 448
Acknowledgments 448
References 448
### 23 Graphics Composition for Multiview Displays

Jean Le Feuvre and Yves Mathieu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 An Interactive Composition System for 3D Displays</td>
<td>450</td>
</tr>
<tr>
<td>23.2 Multimedia for Multiview Displays</td>
<td>451</td>
</tr>
<tr>
<td>23.2.1 Media Formats</td>
<td>451</td>
</tr>
<tr>
<td>23.2.2 Multimedia Languages</td>
<td>452</td>
</tr>
<tr>
<td>23.2.3 Multiview Displays</td>
<td>453</td>
</tr>
<tr>
<td>23.3 GPU Graphics Synthesis for Multiview Displays</td>
<td>454</td>
</tr>
<tr>
<td>23.3.1 3D Synthesis</td>
<td>454</td>
</tr>
<tr>
<td>23.3.2 View Interleaving</td>
<td>455</td>
</tr>
<tr>
<td>23.3.3 3D Media Rendering</td>
<td>457</td>
</tr>
<tr>
<td>23.4 DIBR Graphics Synthesis for Multiview Displays</td>
<td>458</td>
</tr>
<tr>
<td>23.4.1 Quick Overview</td>
<td>458</td>
</tr>
<tr>
<td>23.4.2 DIBR Synthesis</td>
<td>459</td>
</tr>
<tr>
<td>23.4.3 Hardware Compositor</td>
<td>460</td>
</tr>
<tr>
<td>23.4.4 DIBR Pre- and Post-Processing</td>
<td>462</td>
</tr>
<tr>
<td>23.4.5 Hardware Platform</td>
<td>464</td>
</tr>
<tr>
<td>23.5 Conclusion</td>
<td>466</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>466</td>
</tr>
<tr>
<td>References</td>
<td>466</td>
</tr>
</tbody>
</table>

### 24 Real-Time Disparity Estimation Engine for High-Definition 3DTV Applications

Yu-Cheng Tseng and Tian-Sheuan Chang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>468</td>
</tr>
<tr>
<td>24.2 Review of Disparity Estimation Algorithms and Implementations</td>
<td>469</td>
</tr>
<tr>
<td>24.2.1 DP-Based Algorithms and Implementations</td>
<td>469</td>
</tr>
<tr>
<td>24.2.2 GC-Based Algorithms and Implementations</td>
<td>470</td>
</tr>
<tr>
<td>24.2.3 BP-Based Algorithms and Implementations</td>
<td>470</td>
</tr>
<tr>
<td>24.3 Proposed Hardware-Efficient Algorithm</td>
<td>471</td>
</tr>
<tr>
<td>24.3.1 Downsampled Matching Cost for Full Disparity Range</td>
<td>472</td>
</tr>
<tr>
<td>24.3.2 Hardware-Efficient Cost Diffusion Method</td>
<td>472</td>
</tr>
<tr>
<td>24.3.3 Upsampling Disparity Maps</td>
<td>473</td>
</tr>
<tr>
<td>24.3.4 Temporal Consistency Enhancement Methods</td>
<td>474</td>
</tr>
<tr>
<td>24.3.5 Occlusion Handling</td>
<td>475</td>
</tr>
<tr>
<td>24.4 Proposed Architecture</td>
<td>476</td>
</tr>
<tr>
<td>24.4.1 Overview of Architecture</td>
<td>476</td>
</tr>
<tr>
<td>24.4.2 Computational Modules</td>
<td>477</td>
</tr>
<tr>
<td>24.4.3 External Memory Access</td>
<td>478</td>
</tr>
<tr>
<td>24.5 Experimental Results</td>
<td>479</td>
</tr>
<tr>
<td>24.5.1 Comparison of Disparity Quality</td>
<td>479</td>
</tr>
<tr>
<td>24.5.2 Analysis of Sampling Factor</td>
<td>480</td>
</tr>
<tr>
<td>24.5.3 Implementation Result</td>
<td>481</td>
</tr>
<tr>
<td>24.6 Conclusion</td>
<td>483</td>
</tr>
<tr>
<td>References</td>
<td>483</td>
</tr>
</tbody>
</table>

Index | 487 |