Contents

Preface to the Second Edition, xiii
Preface to the First Edition, xv
List of Contributors, xvii

PART I MODEL BUILDING, 1

1 Introduction, 3
 John Wainwright and Mark Mulligan
 1.1 Introduction, 3
 1.2 Why model the environment?, 3
 1.3 Why simplicity and complexity?, 3
 1.4 How to use this book, 5
 1.5 The book’s web site, 6
 References, 6

2 Modelling and Model Building, 7
 Mark Mulligan and John Wainwright
 2.1 The role of modelling in environmental research, 7
 2.2 Approaches to model building: chickens, eggs, models and parameters?, 12
 2.3 Testing models, 16
 2.4 Sensitivity analysis and its role, 18
 2.5 Errors and uncertainty, 20
 2.6 Conclusions, 23
 References, 24

3 Time Series: Analysis and Modelling, 27
 Bruce D. Malamud and Donald L. Turcotte
 3.1 Introduction, 27
 3.2 Examples of environmental time series, 28
 3.3 Frequency-size distribution of values in a time series, 30
 3.4 White noises and Brownian motions, 32
 3.5 Persistence, 34
 3.6 Other time-series models, 41
 3.7 Discussion and summary, 41
 References, 42

4 Non-Linear Dynamics, Self-Organization and Cellular Automata Models, 45
 David Favis-Mortlock
 4.1 Introduction, 45
 4.2 Self-organization in complex systems, 47
4.3 Cellular automaton models, 53
4.4 Case study: modelling rill initiation and growth, 56
4.5 Summary and conclusions, 61
4.6 Acknowledgements, 63
References, 63

5 Spatial Modelling and Scaling Issues, 69
Xiaoyang Zhang, Nick A. Drake and John Wainwright
5.1 Introduction, 69
5.2 Scale and scaling, 70
5.3 Causes of scaling problems, 71
5.4 Scaling issues of input parameters and possible solutions, 72
5.5 Methodology for scaling physically based models, 76
5.6 Scaling land-surface parameters for a soil-erosion model: a case study, 82
5.7 Conclusion, 84
References, 87

6 Environmental Applications of Computational Fluid Dynamics, 91
N.G. Wright and D.M. Hargreaves
6.1 Introduction, 91
6.2 CFD fundamentals, 92
6.3 Applications of CFD in environmental modelling, 97
6.4 Conclusions, 104
References, 106

7 Data-Based Mechanistic Modelling and the Emulation of Large Environmental System Models, 111
Peter C. Young and David Leedal
7.1 Introduction, 111
7.2 Philosophies of science and modelling, 113
7.3 Statistical identification, estimation and validation, 113
7.4 Data-based mechanistic (DBM) modelling, 115
7.5 The statistical tools of DBM modelling, 117
7.6 Practical example, 117
7.7 The reduced-order modelling of large computer-simulation models, 122
7.8 The dynamic emulation of large computer-simulation models, 123
7.9 Conclusions, 128
References, 129

8 Stochastic versus Deterministic Approaches, 133
Philippe Renard, Andres Alcolea and David Ginsbourger
8.1 Introduction, 133
8.2 A philosophical perspective, 135
8.3 Tools and methods, 137
8.4 A practical illustration in Oman, 143
8.5 Discussion, 146
References, 148

PART II THE STATE OF THE ART IN ENVIRONMENTAL MODELLING, 151

9 Climate and Climate-System Modelling, 153
L.D. Danny Harvey
Contents ix

9.1 The complexity, 153
9.2 Finding the simplicity, 154
9.3 The research frontier, 159
9.4 Online material, 160
References, 163

10 Soil and Hillslope (Eco)Hydrology, 165
Andrew J. Baird
10.1 Hillslope e-c-o-hydrology?, 165
10.2 Tyger, tyger…, 169
10.3 Nobody loves me, everybody hates me…, 172
10.4 Memories, 176
10.5 I’ll avoid you as long as I can?, 178
10.6 Acknowledgements, 179
References, 180

11 Modelling Catchment and Fluvial Processes and their Interactions, 183
Mark Mulligan and John Wainwright
11.1 Introduction: connectivity in hydrology, 183
11.2 The complexity, 184
11.3 The simplicity, 196
11.4 Concluding remarks, 201
References, 201

12 Modelling Plant Ecology, 207
Rosie A. Fisher
12.1 The complexity, 207
12.2 Finding the simplicity, 209
12.3 The research frontier, 212
12.4 Case study, 213
12.5 Conclusions, 217
12.6 Acknowledgements, 217
References, 218

13 Spatial Population Models for Animals, 221
George L.W. Perry and Nick R. Bond
13.1 The complexity: introduction, 221
13.2 Finding the simplicity: thoughts on modelling spatial ecological systems, 222
13.3 The research frontier: marrying theory and practice, 227
13.4 Case study: dispersal dynamics in stream ecosystems, 228
13.5 Conclusions, 230
13.6 Acknowledgements, 232
References, 232

14 Vegetation and Disturbance, 235
Stefano Mazzoleni, Francisco Rego, Francesco Giannino, Christian Ernest Vincenot,
Gian Boris Pezzatti and Colin Legg
14.1 The system complexity: effects of disturbance on vegetation dynamics, 235
14.2 The model simplification: simulation of plant growth under grazing and after fire, 237
14.3 New developments in ecological modelling, 240
14.4 Interactions of fire and grazing on plant competition: field experiment and modelling applications, 242
14.5 Conclusions, 247
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>Acknowledgements, 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Erosion and Sediment Transport: Finding Simplicity in a Complicated Erosion Model, 253</td>
<td>Richard E. Brazier</td>
<td>15.1 The complexity, 253</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.2 Finding the simplicity, 253</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.3 WEPP – The Water Erosion Prediction Project, 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.4 MIRSED – a Minimum Information Requirement version of WEPP, 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5 Data requirements, 258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.6 Observed data describing erosion rates, 259</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.7 Mapping predicted erosion rates, 259</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.8 Comparison with published data, 262</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.9 Conclusions, 264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>References, 264</td>
</tr>
<tr>
<td>16</td>
<td>Landslides, Rockfalls and Sandpiles, 267</td>
<td>Stefan Hergarten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>References, 275</td>
</tr>
<tr>
<td>17</td>
<td>Finding Simplicity in Complexity in Biogeochemical Modelling, 277</td>
<td>Hördur V. Haraldsson and Harald Sverdrup</td>
<td>17.1 Introduction to models, 277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.2 The basic classification of models, 278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.3 A ‘good’ and a ‘bad’ model, 278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.4 Dare to simplify, 279</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.5 Sorting, 280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.6 The basic path, 282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.7 The process, 283</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.8 Biogeochemical models, 283</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.9 Conclusion, 288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>References, 288</td>
</tr>
<tr>
<td>18</td>
<td>Representing Human Decision-Making in Environmental Modelling, 291</td>
<td>James D.A. Millington, John Wainwright and Mark Mulligan</td>
<td>18.1 Introduction, 291</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.2 Scenario approaches, 294</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.3 Economic modelling, 297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.4 Agent-based modelling, 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.5 Discussion, 304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>References, 305</td>
</tr>
<tr>
<td>19</td>
<td>Modelling Landscape Evolution, 309</td>
<td>Peter van der Beek</td>
<td>19.1 Introduction, 309</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.2 Model setup and philosophy, 310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.3 Geomorphic processes and model algorithms, 313</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.4 Model testing and calibration, 318</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.5 Coupling of models, 321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.6 Model application: some examples, 321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.7 Conclusions and outlook, 324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>References, 327</td>
</tr>
</tbody>
</table>
PART III MODELS FOR MANAGEMENT, 333

20 Models Supporting Decision-Making and Policy Evaluation, 335
Mark Mulligan
20.1 The complexity: making decisions and implementing policy in the real world, 335
20.2 The simplicity: state-of-the-art policy-support systems, 341
20.3 Addressing the remaining barriers, 345
20.4 Conclusions, 347
20.5 Acknowledgements, 347
References, 347

21 Models in Policy Formulation and Assessment: The WadBOS Decision-Support System, 349
Guy Engelen
21.1 Introduction, 349
21.2 Functions of WadBOS, 350
21.3 Decision-support systems, 351
21.4 Building the integrated model, 351
21.5 The integrated WadBOS model, 354
21.6 The toolbase, 359
21.7 The database, 359
21.8 The user-interface, 360
21.9 Discussion and conclusions, 362
21.10 Acknowledgments, 363
References, 363

22 Soil Erosion and Conservation, 365
Mark A. Nearing
22.1 The problem, 365
22.2 The approaches, 367
22.3 The contributions of modelling, 369
22.4 Lessons and implications, 375
22.5 Acknowledgements, 376
References, 376

23 Forest-Management Modelling, 379
Mark J. Twery and Aaron R. Weiskittel
23.1 The issue, 379
23.2 The approaches, 379
23.3 Components of empirical models, 383
23.4 Implementation and use, 386
23.5 Example model, 390
23.6 Lessons and implications, 390
References, 391

24 Stability and Instability in the Management of Mediterranean Desertification, 399
John B. Thornes
24.1 Introduction, 399
24.2 Basic propositions, 400
24.3 Complex interactions, 403
24.4 Climate gradient and climate change, 408
24.5 Implications, 409