A
Activation energy, 298
Active/real power loss, \(P_{dc}, P_{ac} \), 293–295, 356, 357
Ambient plasma, 103
Arc (electric), 134, 138, 168–173
current density, \(J \), 170
dynamic characteristic, 171, 172
extinction, 173, 266
high current, 168
re-ignition, delayed, 266
quenching in vacuum, 265, 266
Attachment coefficient, \(\eta_a \), 180–182
Audible corona noise, (AN), 112, 117, 131, 133, 160, 164, 166, 167, 230
Aurora,
australis, 8
borealis, 6–8
displays, 223, 225
lights, 103
oval, 224
Avalanche (electron), 77, 80, 81, 87, 111, 115
critical amplification, 87, 88, 95, 114, 115, 119, 140, 182–184, 229
critical length, 95, 111, 112, 183
primary, 98
process (discharge), 110, 114
secondary, 98
B
Backward leader, 312
Ball lightning, 242–246
injurious effects, 243
phenomenon, 243
physics and models, 244
without lightning, 245
Bisphenol-A epoxyresin, 331
Boltzmann constant, \(k \), 251, 298
Borda profile, 22
Breakdown,
global, 6
internal, 14
local, 6
partial, (PB), 6
surface, 14
Breakdown in air, 77–160
in extremely nonuniform fields, 109, 132, 134–160
in gaseous dielectrics, 69, 70
in long air gaps, 146–149, 152, 156–158, 227, 228
in uniform fields, 88, 89
in weakly nonuniform fields, 143–145
maximum field intensity, \(E_{\text{max}} \), 108, 109, 124, 141
mechanisms, 87, 122, 124
spark, 89, 104, 122, 134, 138
with stable streamer (corona), 93, 96, 97, 140, 141, 146, 147
Breakdown in liquid dielectrics, 296–313
commercial, 279, 302–307
development of streamer (see streamer)
highly purified, 302–303
in near uniform field, 302–306
intrinsic strength, 301, 302
in weakly and extremely nonuniform fields, 307–314
Breakdown in solid dielectrics, 351–365
hot electron theory, 335
in intrinsic (see also intrinsic strength), 356
in extremely nonuniform fields, 359, 365
in weakly nonuniform fields, 363, 364
practical strength, 368, 369
time required for breakdown, \(t_b \), 363–365
Breakdown in vacuum, 258–265
 effect of area of electrodes, 268, 269
 effect of conditioning, 267, 268
 interrupters, 265
 long gaps with li, 263, 264
 maximum field intensity, E_{bmax}, 260–263
 weakly nonuniform fields, 260–263
Bunch discharge, 117
Bundle conductor, 12, 23, 164
Bushing, 25

C
Cables (power), 1, 45, 46, 319, 332, 333, 338, 362, 364, 365, 369
Callotes, 303
Capacitance, 8, 9
 effective, 289, 290
 stray, 9
Capacitive grading, 25
Capacitor, 8–10, 333
 parallel-plate, 9, 78, 79, 289
Cathode effect (γ-process), 140
Charge (see electric charge)
Charge Simulation Method (CSM), 48, 54–63
Chlorinated diphenyles, 280
Clouds, 219–223
 classification, 221
Composite dielectrics,
 application and properties, 333–337
 in electrical machines, 333
Compressed Gas Insulated Transmission Lines, (CGITL), 174, 176, 205, 206
Concentric conductor, 34, 38
Condition monitoring, 1
Conditioning of electrodes, 108, 188, 267
Conduction in insulating liquids, 297–301
Conductivity, 289, 294
 specific, dc, κ_{dc}, 26, 283, 284, 298, 299, 328, 329, 356
Constriction phenomenon, 123
Composite dielectrics/insulation, 41, 45, 46
Corona, 6, 14, 109, 110, 133
 bi-directional, 129
 burst, 126
 decomposition of air, 160
 effects in air, 159
 power loss, 162–164
 star, 110, 112, 114, 131–134, 136, 201, 235
 streamer, 115–119, 125, 131–136, 140, 141, 157, 229, 235, 346
Cosmic rays, 73
Creepage (surface) current, 284, 331, 345
Critical field intensity at cathode, E_c, 258, 260
Cross-linking agent, 324
Cross-linked polymers, 324
Cross-linked polyethylene (XLPE), 325, 327–330, 347–349, 364, 365, 369

D
Dart leader, 235
Degree of uniformity-see electric field, Schwaiger factor
Dielectric interface wrt electric field,
 diagonal, 46
 longitudinal, 41, 42
 perpendicular, 42, 43
Dielectric loss tangent, tanδ, 293–296, 321, 328, 330, 334
Dielectric properties, 283–296
 conductive mechanisms, 294
 power loss, 293–295
Dielectric (strength) recovery, 265
Dielectric susceptibility, 286
Dispersion domain, 290, 293

E
Earth’s atmosphere, 71, 219
 capacitor, 218
 ionosphere, 220
 stratosphere, 220
 troposphere, 220
Eigen frequency, ω_e, 290, 291
Electric/electrical breakdown, 3, 13
Electric,
 flux density, D, 26, 27, 43, 47, 286
 strength, 108
 traction, 246
Electric charge, 2, 11, 26
 accumulation of, 3
 in the atmosphere by friction, 225
 carriers, 71
 density, volume ρ_v, 26, 27
 man made sources, 246
 movement of, 3
 on the clouds, 218
 sources, 122–227
Electric discharge, 3
Electric field, 1, 3, 15
asymmetry in, 19
at voids (cavities), 339
classification, 15
configurations, 15, 19
curl free, 11
degree of uniformity, η, 15, 17, 19, 21
degree of nonuniformity, f, 18, 19
electrostatic, 11, 12, 26
estimation of, 25, 29, 34
estimation by CSM, 54–63
estimation by FEM, 48–54, 61, 228
extremely nonuniform, 15–17, 69, 70, 100, 109, 110, 121, 131, 133, 142
intensity, E, 11–13, 17, 20, 25, 26–30, 32, 34, 41, 42, 47
nonuniform, 15
numerical optimization, 61
quasi-stationary, 11, 14, 26
rotation free, 11
strength, 12, 13, 17
turbulence free, 26
uniform, 9, 15, 17, 20, 43, 44, 46, 69, 70, 77–87, 90, 94, 95, 99–101, 105, 106
weakly nonuniform, 15, 16, 23, 69, 70, 77, 82, 87, 93, 98, 100, 102, 108, 109, 142
Electric stress, 11, 12, 14, 23–25, 30, 35, 36
in service, 335, 368, 369
Electrohydrodynamic (EHD), 298, 300, 301, 309
Electromagnetic, field, 3
interference (EMI), 3, 131–133, 135, 160, 164, 165, 166, 167
radiation, 3
wave, 3, 131
Electron, 1
avalanche (see avalanche)
drift velocity, 73, 80, 83, 84, 87, 97
ionization energy, 73, 74
kinetic energy, 73, 74, 80
mean free path, 249, 302
potential energy, 73
Electron emission in vacuum, 250, 266
field assisted (metallic process), 250–254
nonmetallic mechanism, 250, 253, 255, 258
Electron Stimulated Adsorption (ESA), 254
Epoxies, 330–332
F
Faraday glow, 8, 271
inception, 104
in nature, 103
Fiber (glass) reinforced plastics, 323
insulator, 332, 336, 337
Fictitious charge, 55, 57
Fictitious electrode, 129
Field intensity coefficient, 57
Finite Element Method (FEM), 48–54, 61, 228
Floating screens, 24
Fire ball (see Ball lightning)
Fowler-Nordheim equation, 251, 252, 256
G
Gamma rays, 4
Gas cloud in vacuum, 249
Gas Insulated Sub-stations/Systems (GIS), 1, 24, 38, 45, 48, 69, 173–175, 195, 206
motion of free particle
particle contaminants, 190
particle initiated breakdown, 196
particle initiated PB, 197
particle in uniform and weakly nonuniform fields, 193
particle traps, 199
preventive measures for particle, 198
Gas mixtures (see SF$_6$)
Genetic Algorithms, 60
Greenhouse effect, 210
Grounding effect, 19, 21, 38, 122, 140
H
Halogenfree synthetic oils, 281
I
Impregnated paper, 333–335
cables (PILC), 334, 335
India rubber, 325, 332
Infra-red rays, 4
Insulating barrier, 312
Insulation resistance, R_{dc}, 283
specific, R_{ins}, 283, 284, 321, 328
Intrinsic (breakdown) strength, 62
 liquid and solid dielectrics, 301, 302,
 352–355
 methods of measurement in solids,
 353–355
Ion effect, 88
Ionization, 2, 3
 coefficient (see Townsend)
 effective (ionization) coefficient, \(\bar{\alpha} \), 180–185
 impact, 74, 75
 in atmospheric air, 224
 photo, 76, 77
 regenerative, 255
 thermal, 75, 76
Ionized zone, 232, 234
Impulse withstand voltage/level, 152

K
Kanal, 95
 discharge, 86
 mechanism, 93

L
Laplace equations, 27–31, 55, 78
Leader channel, 131, 134
 unstable, 134, 229, 230
Leader propagation velocity, 127–131,
 139, 140
Lichtenberg figures, 120, 121
Life (expectancy) of dielectrics, 1, 320
 solid, 366
 characteristics of solid, 366–368
Lightning, 217–248
 activity distribution, 217, 218
 arrestors, 236
 blast due to (lightning), 233
 cloud to cloud, 217, 232
 deleterious effects, 232
 fire hazards, 233
 loss of life, 233
Lightning strike,
 mechanisms, 227–231
 preference, 231
 probability, 220
 transient over voltage, 234–236
Lightning protection, 236–242
 air terminal network, 239
 area, 240, 241
 buildings and structures, 238, 241
 down conductor, 239
 earth termination system, 240
 Franklin rod, 239, 240
 of lives, 237
 personal safety, 237, 238
 rolling sphere, 241
 volume, 240, 241
 zone, 240
Liquid dielectrics, 275–317
 aging in mineral insulating oils,
 313–315
 classification, 276, 277
 inorganic liquids, 276, 277, 282
 physical and electrical properties,
 278, 279
 synthetic organic, 276, 277, 280
Loss index, 286, 357
Loss tangent (see dielectric)
Lossy transmission line, 286

M
Magnetic field, 3, 4
 lines, 7
Magnetic poles, 7
Maxwell’s equation, 4, 26
Metastable, 76, 77, 302
 effect, 88
 state, 77, 245
Micro protrusions, 250
Molar mass, 265, 266
Molecular metal vapor density, 265, 266
Molecular structures of polymers
 (see polymers)
Molecular vibration, 302
Monomers and copolymers, 323
Multidielectric system, 42
Muhnochwa, 245

N
Naphthenic mineral oils, 277
Non-destructive testing, 1
Non-polar dielectrics, 282, 283
Numerical,
 estimation of fields, 29, 48
 optimization of electric fields, 11, 61–66

O
Oil test cell, 304
Optimization of electric field, 34, 57
Optimum maximum field intensity, 35–40
Organic vapors in vacuum, 254
Oxidation in vacuum, 254
Ozone concentration in air, 161, 162

P
Parallel plate capacitor/condenser, (see Capacitor)
Partial Breakdown (PB), 6, 7, 14, 15, 69, 70, 80, 110–113, 117, 119–122, 156–160, 165, 234
apparent charge, \(q_a \), 342
average discharge current, \(I \), 344
cumulative discharge, \(q_s \), 342–344
impulse discharge, \(q_i \), 342–344
current pulses, 124, 138
extinction voltage, \(U_i \), 343
inception field intensity, \(E_i \), 61, 62, 112, 115, 162
inception voltage, \(U_i \), 15, 111, 114, 141, 143, 162, 200, 201
internal PB, 337, 338, 348
in solid dielectrics, 337–351
phenomena, 337
stable, in air, 133, 136
unstable, 134
PB detection and measurement techniques, 349–351
acoustic (AN), 350
electrical circuits (direct method), 351, 352
EMI, 349
gas chromatography (analysis), 350
optical, 350
Partial Discharge (PD), 6, 14
Particle,
sub-atomic, 2
Particulate structures, 258
micro-sized, 258
Paschen’s,
curve, 100, 102, 105, 108
law, 99–108
law in \(\text{SF}_6 \), 182
minimum, 102
Peek’s formulae, 163
Permittivity \(\varepsilon \), 26, 37, 38, 43, 47, 285, 288–294
absolute, \(\varepsilon_o \), 9, 285
complex relative, \(\varepsilon_r \), 285, 286, 292
effective, 45, 46, 289
relative, \(\varepsilon_r \), 9, 27, 38, 44, 45, 282, 285, 291, 292, 328, 334
Photoelectric effect, 87, 98
Photo-ionization, 76
Photon,
effect, 88
radiation, 103
wavelength, 76
Physical properties of gases, 177
Planck’s constant, 76
Plasma jet, 232
Plasma state of gas (air), 103, 134
Poisson’s equations, 27, 28, 55, 78
Polar dielectrics, 282
Polarization, 286–294
boundary surface (space charge), 287
capacity, 286
displacement, 287
effect of time, 288
orientation, 287
under ac voltage, 290, 291–293
under dc voltage, 288
Polymer molecular structures, 325
Potential coefficients, 56, 58, 59
Potential gradient, 13
across leader, 131, 133, 135, 158, 159
across streamer, 118, 135, 142–147, 158, 159
Power theft, 246
Pre-breakdown conduction in vacuum, 258–260, 264
emission, 258
Pressboards, 336
Bakelite, 336
Pressure units, 72
Probability of breakdown, 151
Propagation time, 150
Proton, 2

R
Radio interference, (RI), 165–167
Relative gas (air) density, 106
Relaxation time, 290
 Resistivity, 284
surface, 284, 285
volume, 284
Return stroke, 128
Richardson-Dushman equation, 256, 258
Richardson-Schottky equation, 251
Rogowski profile, 22
Rolling sphere method, 241
Roughness (electrode surface) factor, 188, 189
Rubber, natural and synthetic, 332, 333
 nuclear irradiation resistance, 332
S
 Scattering process, 255, 256
 Schlieren technique/photographs, 307, 308, 310, 312
 Schwaiger curves, 18, 108
 Schwaiger equation, 108, 185
 Schwaiger factor, η, 17, 32–34, 37–40, 100, 102, 108, 109
 threshold/limiting, η_{lim}, 141–145, 199
 Segmented electrodes, 22, 23
 Silicone oils, 276–281
 Simulation charge, 55, 58
 Solar wind (cosmic rays), 223
 Solid insulating materials,
 application, 319–337
 classification, 320
 electrical properties, 322, 328
 inorganic, 320
 organic, 323
 Space charge, 3, 27, 77–80, 84–86, 90, 91, 93–96, 98, 110–120,
 124, 156, 201, 359
 bipolar, 309
 eigen, 94
 eigen field, 96
 Space leader, 128–130, 148
 Statistical time lag, t_s, 124, 150
 Stem bunch discharge, 122–124, 140
 Stiffness matrix, 53
 Streamer, 6, 86, 87, 94
 anode-directed, 86, 120, 121, 229
 breakdown criterion, 95, 96, 98
 cathode-directed, 86, 87, 97, 98, 115, 120, 121, 229
 corona, 7, 116–118, 123, 124, 142
 mechanism, 87, 96, 107
 propagation/development in liquids, 306, 309–313
 propagation velocity, 96, 97, 118, 121, 150
 Stress cone, 22
 Stress control, 11, 20, 22–24
 Sulphurhexafluoride, SF$_6$, 174–211
 breakdown in distorted weakly nonuniform field, 201–203
 breakdown in extremely nonuniform fields, 199, 201
 breakdown in uniform and weakly nonuniform fields, 180–182
 decomposition, 206–209
 environment impact, 210
 greenhouse gas, 209
 intrinsic electric strength, 186, 187, 189
 PB inception voltage, 210
 practical electric strength, 186, 187, 189
 properties, 176–179
 property of electron attachment, 179
 state of gas (with temperature), 179
 Surface discharge (Tracking), 266, 338, 345, 346
 Surface resistance, R_s, 284
 Surge diverters, 236
 Switchgears, 1, 174
T
 Tesla coil, 133, 134
 Thermal breakdown (solid), 355–359
 hot spot development, 358, 359
 Thermal instability, 355
 Thunderstorms, 226
 charging mechanism, 226
 Time to crest, T_{cr}, 136, 149, 153–156, 157, 159
 Time requirement,
 for the formation of breakdown, 150, 151
 Townsend’s,
 criterion, for breakdown, 93, 99, 104
 current growth equation, 91, 92
 ionization coefficient, 81–83, 88, 90, 180, 181
 mechanism, 87, 88, 90, 93, 94, 105, 108, 182
 theory of breakdown, 100
 Toroids, 24
 Tracking (see also surface discharge), 14, 131, 266, 267
 Comparative Tracking Index, (CTI), 347
 Transformers, 1, 46, 333
 Transformer oil, 278
 Traveling wave, 236
Treeing process, 330, 347–349, 359–362
classification, 360
electrical tree, 360
electrochemical/water tree, (ECT), 330, 360, 362
inhibition/ inhibitors, 347, 348 scavengers, 348
Trichel pulses, 113, 114, 138

U
Ultra-violet,
illumination, 89
irradiation, 73, 225
rays, 4

V
Van’t Hoffsch law, 298
Varistors, metal oxide, (MOV), 236
Vacuum as insulation, 249–273
micro-discharges, 253, 254
pre-breakdown current, 250, 251, 253, 255–258
space application, 269, 270
Vacuum circuit breakers (interrupters), 265–267
Vacuum in low earth orbit, 270
Vegetable oils, 278, 336
Volume charge density, ρ_v, 26, 27

W
Whisters, 250

X
X-rays, 4
tubes, 249
spectrometer, 255
XLPE cables (see cross-linked PE)