Index

16–8 kbps G728-like Codec I, 351–354
16–8 kbps G728-like Codec II, 364–365
3.1 kbps System
 Performance, 214–217
 Summary, 217–218
4–8 kbps Low-delay Error Sensitivity, 382–387
5.3 kbps Low-rate G.723.1 Excitation, 297–298
6.3 kbps High-rate G.723.1 Excitation, 296–297
8–16 kbps Codec Performance, 388–389
8–4 kbps CELP Codes, 365–381
 Forward Adaption of the LTP, 368–374
 Forward Adaption of the STP Synthesis Filter, 367–368
 With Enlarged Codebooks, 366
A-law Companding, 21–23
AAC, 479–481
AAC Quantisation and Coding, 487–489
ACELP Codebook Structure, 170–172
Acknowledgements, xxxv
Adaptation Speed Control Factor in G.721 Codec, 50
Adaptation Speed Control in G.721 Codec, 49
Adaptive Codebook Approach, 81
Adaptive DECT-like Speech Schemes, 222–223
Adaptive Differential Pulse Code Modulation, 47
Adaptive GSM-like Speech Schemes, 220–221
Adaptive Modulation, 513–514
Adaptive Multi-slot PRMA Summary, 223–225
Adaptive One-word-memory Quantisation, 39–40
Adaptive Post-filtering, 88–90
Adaptive Predictor in the 32 kbps G.721 Codec, 48
Adaptive Wideband Transceiver, 427–428
 Parameters, 428–429
 Performance, 431–433
Adaptive Wideband Transmission, 425–427
Advanced Multirate (AMR) Codec, 302–327
Algebraic CELP, 170, 257
Algebraic Codebook, 265
Algorithmic Buffering Delay, 332
Aliasing Distortion, 399
All-pass System, 108
All-pole Synthesis Filter, 32
All-zero Filter, 32
AMR, xxvii, 443, 506
 ACELP Structure, 308–310
 Bit Allocation, 310–311
 Codec Overview, 306–307
 Error Sensitivity, 312–314
 LPC Analysis, 307
 LSF Quantisation, 307–308
 Mode Switching, 311–312
 Multimode Subjective Speech Quality, 325–327
 Pitch Analysis, 308
 Postprocessing, 310
 Speech Codec, 306–314
AMR-WB, 443
Analysis Filtering, 148, 400–403
Analysis-by-synthesis, 11
Codec Structure, 72–73
Coding, 71–192
 Motivation, 71
 Principles, 71–99
 Anti-aliasing Filtering, 12
 Asymmetric LPC Windowing, 259
 AT&T, 159
 AT&T Bell Laboratories, 226
 Audio Codec Overview, 435–437
 Audio Frame Error Results, 440
 Audio SEGSSNR Performance, 440–441
 Auto-correlation Method, 34
 Autoregressive Process, 44
Backward masking, 473
Backward-adaptive CELP Coding, 331–392
Backward-adaptive Codec, 333
Backward-adaptive Error Sensitivity Issues, 381
Backward-adaptive G728
Coding, 336–351
 Schematic, 334–336
 Backward-adaptive Gain Predictor, 336
 Backward-adaptive Gain Scaling, 334
 Backward-adaptive Prediction, 33, 42–47
 Backward-predictive Scheme, 30
 Bandwidth Expansion, 184, 341
 Binary Pulse Excitation, 164–166
 Bit Allocation
 LPC Vocoder, 596, 688
 LSFs, 567
 MMBE, 688
 PWI-STC, 732
 PWI-ZFE, 649, 661, 688
 Bit Masking Block, 55
 Bit Sensitivities for the 4.8 kbps Codec, 168
 Bit-allocation Scheme, 419
 Bitrate
 Summary, 737
 BSAC, xxx, 471, 481, 490–492
CDMA, 237
CELP
 Adaptive Codebook Delay Robustness, 198
 Adaptive Codebook Gain Robustness, 199
 Approach, 160–162
 Background, 159–160
 Coder Schematic, 543
 Coding, 498–500
 Error Resilience Conclusions, 203–204
 Error-sensitivity, 192–204
 Excitation Models, 165–174
 Excitation Parameters, 175–183
 Fixed Codebook Gain Robustness, 197–198
 Fixed Codebook Index Robustness, 197
 Fixed Codebook Search, 163–165
 Full Codebook Search Theory, 175–177
 Full Search Procedure, 178–179
 Introduction, 174–175
 Optimisation, 174–192
 Sequential Search Procedure, 177–178
 Sub-optimal Search, 180–181
CELP-based Wideband Codecs, 416
Characterisation of Speech Signals, 4–8
Chebyshev
 Description of LSFs, 109–115
 Polynomials, 109
Classification of Speech Codecs, 8–11
Closed-loop Codebook Training, 359–364
Closed-loop Optimisation of LTP, 80–85
CNET, 421
Cox, 755
Critical Band, 413, 473
DAB, 506
DCT, 474, 495
Decimated Signals, 401
Decoder Scenarios, 625–627
Delay
 Summary, 737
 Detailed Description of the Audio Codec, 437–439
 DFT, 474
 Differential Pulse Code Modulation, 30
 Digitisation of Speech, 11–13
 Diversity, 511
 Frequency, 511
 Spatial, 511
 Temporal, 511
DoD, 226
Dolby, 471
 AC-2, 471
 AC-3, 471
DPCM Codec Schematic, 30–31
DPCM Performance, 40–42
DSVD, 278
Dual-mode Speech Transceiver, 204–218
 Schematic, 204–205
Dual-rate ACELP
 Bit Allocation, 172–173
 Codec Performance, 173–174
Dual-rate Algebraic CELP
 Coding, 170–174
Dual-rate algebraic CELP, 170
DVB, 506
Dynamic Bit Allocation, 478
Dynamic Programming, 613–614
Effects of LTP on G728, 354–359
EFR-GSM
 Adaptive Codebook Search, 286
 Encoder, 284–287
Autocorrelation, 618
Dynamic Programming, 616
PWI-ZFE, 649, 689
STC, 715–716, 729–730
 Reduced, 715–720
Summary, 737
Wavelet Optimisation, 631
ZFE Optimisation, 629–630
Conjugate Structure CELP, 257
Conjugate Structured Codebooks, 267
Constant Throughput Adaptive Modulation, 430–431
Constrained Excitation, 229
Constrained Search, 634
Core Bits, 55
Covariance Coefficient Computation, 33–34
Covariance Method, 34
 Summary, 737
Wavelet Optimisation, 631
ZFE Optimisation, 629–630
Codec, 257–278
Decoder Post-processing, 267–269
Encoder Pre-processing, 258–259
Error-concealment Techniques, 269–270
Fixed Algebraic Codebook, 263–266
LPC Analysis and Quantisation, 259–262
Quantisation of the Gains, 266–267
Schematic and Bit Allocation, 257–258
Summary, 278
Weighting Filter, 262
G.729A, 278
Algebraic Codebook Search, 280–281
Closed-loop Pitch Search, 280
Conclusions, 281–282
Decoder Post-processing, 281
Open-loop Pitch Search, 280
Perceptual Weighting Filter, 279
Gain Control Tool, 482
Gain Detectors, 482
Gain Modifiers, 482
Gain Prediction, 266
Gain Vector Quantisation, 266
General Audio Coding, 471–495
Glottal Pulses, 610
Glottal Wave
Energy Spread, 591
Polynomial, 590
Triangular, 590
Granular and Overload Distortion, 14
GSM
Speech Codec, 146
Speech Decoder, 151
Speech Encoder, 146
Half-rate
GSM Codec, 253–257
GSM Codec Outline, 253–255
GSM Error Protection, 256–257
GSM Spectral Quantisation, 255–256
Hann Window, 482
High-band Coding, 418
High-quality 3.1 kBd Mode, 210–211
Highband Coding, 419
Higher-quality Mode, 389–391
HILN, 494
Huffman Coding, 414, 487
Human Speech Production, 540
HVXC, xxix, 470, 496–498
Hybrid Coding, 11
International Telegraph and Telephone Consultative
Committee (CCITT), 23
Interpolated LTP Delay, 263
Interpolation, 401, 645
\(\lambda_1 \) Interpolation, 644
Amplitude Interpolation, 642
Distance, 640–641
Effect, 195–196
Example, 641, 642, 645
LSFs, 645
Position Interpolation, 642–644
Position Interpolation Removal, 644
Interpolation and Decimation, 720
Inverse Filter, 32
IS-136
Bit-allocation Scheme, 288–290
Channel Coding, 291–292
Codec Outline, 288
Fixed Codebook Search, 290–291
Speech Codec, 288–292
IS-54 DAMPS Speech Codec, 231–235
IS-95, 237
ISO, xxix, 469
IZPPE, 552–553
Schematic, 552
Japanese Half-rate Speech Codec, 245–252
Jayant Quantiser, 39
JD-CDMA Transceivers, 318–325
JDC
Half-rate Codec Schematic and Bit Allocation, 245–247
Half-rate Encoder Pre-processing, 247–248
Speech Codec, 235–237
Kaiser–Bessel, 479
Karlhunen–Loewe transform, 118
LAR, 500
Lattice Analysis Structure, 96
Lattice Approach, 91
Lattice-based Linear Prediction, 90–99
Least Squares Techniques, 184–192
Line Spectral Frequencies, 103–115
Line Spectral Pairs, 106
Line Spectrum Frequencies, 103
Line Spectrum Pairs, 103
Linear Predictive Coding, 32, 553–556
Analysis-by-synthesis, 556
Schematic, 554
With Error Weighting, 557
Filter Memory, 636
Long-term Prediction, 556
Short-term Prediction, 554
Linear Quantiser, 13
Linearly Separable Speech Generation Model, 32
Listening Tests, 738–739
Local Decoder, 31
Locally Re-constructed Signal, 31
Log-area Ratio, 99–103
Long-term (LT) Postfilter, 348
Long-term Prediction, 76–85
Low Bitrate Speech Coders
Analysis-by-synthesis, 542
Low-band Coding, 417–418
INDEX 829

Low-bitrate Speech Coders, 539–553
- Analysis-by-synthesis, 543
- At 2.4 kbps, 543–552
- Below 2.4 kbps, 552

Low-delay ACELP Codec, 378–381
- Error Sensitivity, 387–388

Low-delay Codes at 4–8 kbps, 375–378

Low-delay Multi-mode Speech Transceiver, 392

Low-delay Multimode Speech Transceiver, 388

Low-quality 3.1 kBd Mode, 206–210

Lower-quality Mode, 391

LPC Analysis and Quantisation, 500–502

LPC Codec
- Overview, 565
- Performance, 592–596
- Schematic, 542, 566

LPC-10, 542, 544, 548

LPC-10e, 544

LSF, 566–571
- Derivation, 103–107
- Determination, 107–109
- Ordering Policies, 192–194
- Ordering Property, 111
- Scalar Quantisation, 566–568
 - Bit Allocation, 567
 - Performance, 568
- SD
 - PDF, 569
 - Performance, 568
- Vector Quantisation, 261, 568–571
 - Performance, 571
- Windowing, 570

LTP, 481

Lucent, 471

PAC, 471

Masking, 473
- Backward, 473
- Forward, 473
- Simultaneous, 473
- Threshold, 473

Matching Channel Codecs to the Speech Codec, 199–203

MPE, 547–548

MDCT, 509

Mean Opinion Score, 54

MELP, 549–551

Schematic, 550

Memoryless VQ, 128–131

Mid-riser Quantiser, 14

Mid-tread Quantiser, 13

MMBE, 667–686

Conclusion, 699
- Control Structure, 669, 670
- Decoder, 676–678
- Encoder, 673–676
- Example, 679
- Higher Bitrate, 686–690

Overview, 668–670
- Performance, 680–685
- LPC Vocoder, 680–687
- PWI-ZFE, 683–685, 689–694
- Schematic, 671
- Motivation of Backward-adaptive Coding, 331–334
- Motivation of Speech Compression, 3–4
 - Moving Average Process, 44
- MPE, 499
- MPEG, xxix, 469
- MPEG-1, xxix, 469
 - Layer I, xxix, 469
 - Layer II, xxix, 469
 - Layer III, xxix, 469
- MPEG-2 AAC, xxix, 470
- MPEG-4, 469–535
 - Audio, xxix–xxxii
 - Codec Performance, 503–505
 - Frame Dropping Procedure, 507–510
 - Space–time OFDM Transceiver, 505–516
 - System
 - Overview, 506–507
 - Parameters, 507
 - Performance, 515–516
- MPEG–4 Transceiver Summary and Conclusions, 534–535
- µ-law Compander, 20–21
- Multi Pulse Excitation (MPE), 502
- Multi-slot PRMA Transceiver, 218–225
- Multimode Coding, 443
- Multimode JD-CDMA
 - Overview, 305–306
 - Transceivers, 302–327
 - Transceiver Adaptation, 433
 - Multimode Vector Quantisation, 136
 - Multiple ZFE, 654–660
 - Control Structure, 655
 - Encoding, 654–656
 - Improved Performance, 656
 - Performance, 657–660
 - Prototype Performance, 657
- Multirate Codecs, 302–327
- Multirate Codecs and Systems, 302–305
- Multirate Coding, 443
- Multiresolution Analysis, 603–604, 606

Noise Feedback Effects in Backward-adaptive Prediction, 333

Noiseless Huffman Coding, 489–490

Non-uniform Quantisation, 16
- for a Known PDF: Companding, 16–18

Nonlinear Compander, 17

NTT, 257, 421

Nyquist Theorem, 12

Objective Speech-quality, 54

OFDM, 506

FRAMES Speech/Data Sub-burst, 274–275
OFDM/G.729
Channel Model, 275
Parameters, 276
System Overview, 272–273
Open-loop Optimisation of LTP, 76–80
Optimisation via Powell’s Method, 187–188
Optimum Non-uniform Quantisation, 23–29
Optimum One-tap Predictor, 37
Ordering Property of the LSFs, 111
Orthogonal Rotation, 117

Packet Reservation Multiple Access, 211–214
Packetised Voice Protocol (PVP), 55
Pairwise Nearest Neighbour, 345
Parametric Audio Coding, 494–495
PDF-independent Quantisation by Logarithmic Compression, 18–23
Perceptual Coding, 473
Perceptually Weighted Error, 72
Perfect Reconstruction, 474
Phase Restrictions, 634
Philips, 471
DCC, 471
Pitch Detection, 571–583, 631–632
Autocorrelation, 616–617
Oversampled Signal, 574–577, 582
Control Structure, 581
Example, 577
Non-integer Delays, 574
Schematic, 576
Performance, 577, 617
Pitch Doubling, 579
Pitch Period Decisions, 576, 615, 618
Oversampled Signal, 578, 582
Pitch Tracking, 578, 580
STC, 713
Summary, 619
Voiced–Unvoiced Decision, 573–574, 610, 611, 632
Voicing Strengths, 575, 679
Wavelets, 612–619
Control Structure, 617
With Tracking, 582–583
Pitch Detector, 348
Pitch Frequency, 5
Pitch Period, 5
Pitch Sharpening, 299
Pitch Track
AF1, 561
AF2, 561
AM1, 561
AM2, 561
BF1, 562
BF2, 562
BM1, 562
BM2, 562
Pole-zero Predictor, 44
Polynomial Splines, 604–605
Postfilter, 585–588, 645–646, 678
Adapter, 348
AGC, 587
Frequency Responses, 589
Long Term, 586
LPC Vocoder, 588
MMBE, 680
Schematic, 586
Short Term, 586
Postfiltering, 231, 243, 267
PQF, 482
Pre-echo, 482
Prediction Error, 29
Prediction Gain, 36
Prediction Problem Formulation, 31–33
Predictive Coding, 29–71
Predictor Coefficient Computation, 34–38
Predictor Design, 31–38
PRMA-assisted Multi-slot Adaptive Modulation, 219–220
Processing Delay, 332
Pruning Method, 345
Pseudo-QMF, 475
PSI-CELP
Channel Coding, 251
Coder Schematic, 544
Decoder Post-processing, 252
Excitation Vector 1, 249
Excitation Vector 2, 250–251
LPC Analysis and Quantisation, 248
Weighting Filter, 248–249
Psycho-acoustic Model, 482–484
Pulse Code Modulation, 21
Pulse Dispersion Filter, 588–592
Pitch Dependent, 592
Pitch Independent, 589–592
Principles, 588
PW-I-SC, 709–710
Amplitude, 720–725
Decoding, 728–729
Encoder Schematic, 711
Fourier Coefficient Interpolation, 729
Fourier Coefficients, 726–727
Interpolation, 729
Frequency, 729
Parameters, 720
Performance, 730–736
Phase, 725–726
Voiced–Unvoiced Decision, 727–728
PW-I-ZFE, 622–649
Conclusion, 665
Control Structure, 623, 626
Interpolation, 639
Performance, 646–648
Prototype Selection, 633–635, 637
Pyramidal Algorithm, 605–607
INDEX 831

QCELP

Codec Rate Selection, 239
Codec Schematic and Bit Allocation, 238–239
Decoder Post-filtering, 243–244
Error Protection and Concealment Techniques, 244
Fixed Codebook, 242–243
LPC Analysis and Quantisation, 240–241
Pitch Filter, 241–242
Rate 1/8 Filter Excitation, 243
Summary, 244–245

QMF, 475

Design, 405
Design Constraints, 405–410

QR algorithm, 117

Quadrature Mirror Filter, 396, 399–410

Qualcomm, 237

Variable Rate CELP Codec, 237–245

Quantile, 17

Quantisation

Characteristics, 13–14
Error, 14
LSFs, 566–571
MMBE, 677
Noise and Rate-distortion Theory, 14–16

Quantiser Scale Factor Adaptation in G.721 Codec, 49

Quasi-stationary, 33

Rate-distortion

in Predictive Coding, 63–71
Theorem, 15

Ratio-filter, 107

Re-configurable Modulation, 205–206
Reconstruction Level, 13
Redundancy, 29
Reflection Coefficients, 500

Regular Excitation Pulse Computation, 149

RMS Quantiser

PDF, 584
SNR Values, 584

Robust Vector Quantisation Schemes for LSFs, 121–122

RPE, 499, 502
Coding, 139–159

RPE-LTP

GSM Speech Encoder, 146–149
Speech Decoder, 151–153

RRNS

Error Correction Coding, 314–318
Overview, 314–318

Sampling Rate Conversion, 720–721
Conversion Rates, 721
Example, 722

SBC, 549

Excitation Sources, 550

Schematic, 549

SBC-CELP Motivation, 417
Scalar Quantisation

Amplitude, 724
LSFs, 566–568
Segmental Signal-to-noise Ratio (SEGSNR), 54

Sherbrooke Speech Laboratory, Quebec, Canada, 421

Sherbrooke University, 257, 419

Short-term (ST) Post-filtering, 350

Short-term Synthesis Filter, 73–76

Simulated Annealing and the Effects of Quantisation, 188–192

Simultaneous Masking, 473

Sinusoidal Analysis, 702–704

Analysis-by-synthesis, 703–704
Peak-picking, 702–703
Unvoiced Speech, 703
Voiced Speech, 703

Sinusoidal Coders

Decoder, 709
Encoder, 709
LPC Analysis, 710

PWI, 709–710

Sinusoidal Components, 712

Analysis-by-synthesis, 713–720
Frequency, 710–712
Peak-picking, 712–713

Sinusoidal Synthesis, 704–705

Interpolation, 704
Overlap-add, 706
Overlap-add Interpolation, 705
Overlap-add Windows, 708
Voicing Onset, 707

Smoothly Evolving Speech, 622

Sony, 471

ATRAC, 471

MiniDisc, 471

Source-matched Error Protection, 206–211

Space–time Coding, 511–513

Sparse Codebooks, 164

Speaker-adaptive Vector Quantiser, 115

of LSFs, 115–116

Spectral Error Sensitivity Reduction, 192–196

Spectral Normalisation, 481

Spectral Vector Quantisation, 115–123

Spectral VQ Background, 115

Speech Codec Specifications, 127

Speech Coding in MPEG-4 Audio, 495–502

Speech Coding Introduction, 3

Speech Coding Scene, xxv

Speech Database, 560
File Details, 560

Speech Quality, 53–54

Speech Quality Measures, 557–560

2.4 kbps Selection Process, 558–560
Objective Measures, 557–558
Subjective Measures, 558
Speech Signals, 3
and Coding, 3–29
and Waveform Coding, 3–71
Speech Spectral Quantisation, 99–139
Speech Transceiver Performance, 391–392
Split Matrix Quantiser, 285
Standard CELP Codecs, 225–329
Standard LSF VQs, 122–123
Stationary Statistics, 33
STC, 546–547
20 ms Frame Length, 708
Low-bitrate, 705–708
LPC Analysis, 708–709
Schematic, 547
STC-PWI Decoder Schematic, 728
Steepest Descent, 43
Stereo, 481
Intensity, 481, 487
Mid/Side, 481, 487
Sterephonic Coding, 486–487
STFT, 495
Stochastic Model Processes, 44–47
Stochastic VQ of LPCs, 117–120
Sub-band Coding, 399
Sub-band-based Wideband CELP Coding, 417–419
Sub-band-split Wideband CELP Codecs, 416–419
Summary of Standard CELP-based Codecs, 327–329
Switched-adaptive Vector Quantisation, 120
Symmetric FIR Filters, 396
Synthesis Filtering, 403–405
Synthesis Lattice Structure, 96
Target Vector, 83, 141, 343
TBPE
Bit Sensitivity, 168–170
Excitation Generation, 166–167
TDMA, 237
Temporal Noise Shaping (TNS), 484–486
TIA, 237
Time Mismatch Effects in Backward-adaptive Prediction, 333
Time-domain Waveform Coding, 9
TNS, 481, 484
'Tool-box' Based Speech Transceiver, 154, 159
Transceiver Mode Switching, 433–435
Transform-coding Algorithm, 413–416
Transformed Binary-pulse Excitation, 164, 166–170
Transmission Delay, 332
Turbo Channel Encoding, 273–274
Turbo-coded G.729 OFDM
Performance, 277
Speech Transceiver, 271–277
Summary, 277
Turbo-coded Wideband Speech Transceiver, 425–441
TWINVQ, 492–494
Uniform and Non-uniform Quantiser, 14
Unvoiced Sounds, 4
Unvoiced Speech, 645
/r/ Example, 541
Excitation, 583–584
Vector Quantisation, 720
Amplitude, 721–723
Codebook Design, 723
LSFs, 568–571
PDF, 724, 725, 794, 795
Performance, 723
Phase, 725
Vector Sum Excited Linear Prediction, 164
Vocal Apparatus, 4
Vocal Cords, 4
Vocoders, 10–11
Voiced Sounds, 4
Voiced Speech
/r/ Example, 541
Autocorrelation, 573
Excitation, 584–585
Energy, 585
Placement, 585
Frames, 635–645
Energy Scaling, 636–638
Transmitted Parameters, 640
Fricative /z/, 668
Voicing Onset, 707
Voicing Strengths, 668, 674–676
PDF, 677
VSELP, 164, 578
WATM, 506
Waveform Coding, 9–29
Wavelets, 599–610
Boundary Effects, 607
Discontinuities, 601–602
ECG Signals, 602
Filter Coefficients, 605
Frequency Response, 606
Impulse Response, 606
Mathematics, 602–604
Preprocessing, 607–610
Amalgamation, 611
Maxima, 609
Normalisation, 609–610
Spurious Pulses, 609–610
Wavelet Theory, 600–601
Wavelet Transform Example, 608
Weighted Synthesis Filter, 83, 161
WL, 551
Schematic, 551
Wideband 32 kbps ACELP Coding, 422–423
Wideband 9.6 kbps ACELP Coding, 423–425
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wideband ACELP Excitation</td>
<td>420–422</td>
</tr>
<tr>
<td>Wideband Adaptive System Performance</td>
<td>439</td>
</tr>
<tr>
<td>Wideband G.722.1 Codec</td>
<td>435–437</td>
</tr>
<tr>
<td>Wideband LSF Statistics</td>
<td>125–127</td>
</tr>
<tr>
<td>VQs</td>
<td>128–136</td>
</tr>
<tr>
<td>Wideband Spectral Quantisation</td>
<td>123–127</td>
</tr>
<tr>
<td>Wideband Speech Coding</td>
<td>395–467</td>
</tr>
<tr>
<td>Wideband Transform-coding at 32 kbps</td>
<td>413–416</td>
</tr>
<tr>
<td>Wiener–Knitschin Theorem</td>
<td>117</td>
</tr>
<tr>
<td>Window Switching</td>
<td>478</td>
</tr>
<tr>
<td>Zero Input Response</td>
<td>83</td>
</tr>
<tr>
<td>Zero-memory Quantisation</td>
<td>28</td>
</tr>
<tr>
<td>zero-state Response</td>
<td>140</td>
</tr>
<tr>
<td>Zinc Basis Functions</td>
<td>553</td>
</tr>
<tr>
<td>Error Minimisation</td>
<td>628–629</td>
</tr>
<tr>
<td>Modelling</td>
<td>627–631</td>
</tr>
<tr>
<td>Phases</td>
<td>631</td>
</tr>
<tr>
<td>Quantisation</td>
<td>638–639</td>
</tr>
<tr>
<td>SD Values</td>
<td>640</td>
</tr>
<tr>
<td>SEGNSNR Values</td>
<td>639</td>
</tr>
<tr>
<td>SNR Values</td>
<td>638</td>
</tr>
<tr>
<td>Shapes</td>
<td>632</td>
</tr>
<tr>
<td>Wavelet Optimisation</td>
<td>630</td>
</tr>
<tr>
<td>ZFE Optimisation</td>
<td>630</td>
</tr>
</tbody>
</table>