Contents

Preface XIII

1 General Introduction 1
1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1
1.1.1 Wetting of Powder into Liquid 1
1.1.2 Breaking of Aggregates and Agglomerates into Individual Units 8
1.1.3 Wet Milling or Comminution 8
1.1.4 Stabilization of the Resulting Dispersion 9
1.1.5 Prevention of Ostwald Ripening (Crystal Growth) 9
1.1.6 Prevention of Sedimentation and Formation of Compact Sediments (Clays) 10
1.2 Particle Dimensions in Suspensions 11
1.3 Concentration Range of Suspensions 11
1.4 Outline of the Book 12
References 16

2 Fundamentals of Wetting and Spreading 17
2.1 Introduction 17
2.2 The Concept of the Contact Angle 18
2.2.1 The Contact Angle 19
2.2.2 Wetting Line—Three-Phase Line (Solid/Liquid/Vapor) 19
2.2.3 Thermodynamic Treatment—Young’s Equation 19
2.3 Adhesion Tension 20
2.4 Work of Adhesion W_a 22
2.5 Work of Cohesion 22
2.6 Calculation of Surface Tension and Contact Angle 23
2.6.1 Good and Girifalco Approach 24
2.6.2 Fowkes Treatment 25
2.7 The Spreading of Liquids on Surfaces 25
2.7.1 The Spreading Coefficient S 25
2.8 Contact Angle Hysteresis 26
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.1</td>
<td>Reasons for Hysteresis</td>
<td>28</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Wenzel’s Equation</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>The Critical Surface Tension of Wetting and the Role of Surfactants in Powder Wetting</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>The Critical Surface Tension of Wetting</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Theoretical Basis of the Critical Surface Tension</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of Surfactant Adsorption</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Dynamic Processes of Adsorption and Wetting</td>
<td>34</td>
</tr>
<tr>
<td>3.4.1</td>
<td>General Theory of Adsorption Kinetics</td>
<td>34</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Adsorption Kinetics from Micellar Solutions</td>
<td>36</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Experimental Techniques for Studying Adsorption Kinetics</td>
<td>37</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>The Drop Volume Technique</td>
<td>38</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Maximum Bubble Pressure Technique</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Wetting of Powders by Liquids</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Rate of Penetration of Liquids: The Rideal–Washburn Equation</td>
<td>43</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Measurement of Contact Angles of Liquids and Surfactant Solutions on Powders</td>
<td>44</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Assessment of Wettability of Powders</td>
<td>45</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Sinking Time, Submersion, or Immersion Test</td>
<td>45</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>List of Wetting Agents for Hydrophobic Solids in Water</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Structure of the Solid–Liquid Interface and Electrostatic Stabilization</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Structure of the Solid–Liquid Interface</td>
<td>49</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Origin of Charge on Surfaces</td>
<td>49</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Surface Ions</td>
<td>49</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Isomorphic Substitution</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Structure of the Electrical Double Layer</td>
<td>51</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Diffuse Double Layer (Gouy and Chapman)</td>
<td>51</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Stern–Grahame Model of the Double Layer</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Distinction between Specific and Nonspecific Adsorbed Ions</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Electrical Double-Layer Repulsion</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>van der Waals Attraction</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Total Energy of Interaction</td>
<td>57</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Deryaguin–Landau–Verwey–Overbeek Theory</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Flocculation of Suspensions</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Criteria for Stabilization of Dispersions with Double-Layer Interaction</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Electrokinetic Phenomena and Zeta Potential</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Stern–Grahame Model of the Double Layer</td>
<td>67</td>
</tr>
</tbody>
</table>
5.2 Calculation of Zeta Potential from Particle Mobility 68
5.2.1 von Smoluchowski (Classical) Treatment 68
5.2.2 The Huckel Equation 71
5.2.3 Henry’s Treatment 72
5.3 Measurement of Electrophoretic Mobility and Zeta Potential 73
5.3.1 Ultramicroscopic Technique (Microelectrophoresis) 73
5.3.2 Laser Velocimetry Technique 76
5.4 Electroacoustic Methods 78
References 83

6 General Classification of Dispersing Agents and Adsorption of Surfactants at the Solid/Liquid Interface 85
6.1 Classification of Dispersing Agents 85
6.1.1 Surfactants 85
6.1.2 Anionic Surfactants 85
6.1.3 Cationic Surfactants 86
6.1.4 Amphoteric (Zwitterionic) Surfactants 86
6.1.5 Nonionic Surfactants 87
6.1.6 Alcohol Ethoxylates 87
6.1.7 Alkyl Phenol Ethoxylates 88
6.1.8 Fatty Acid Ethoxylates 88
6.1.9 Sorbitan Esters and Their Ethoxylated Derivatives (Spans and Tweens) 89
6.1.10 Ethoxylated Fats and Oils 90
6.1.11 Amine Ethoxylates 90
6.1.12 Polymeric Surfactants 90
6.1.13 Polyelectrolytes 93
6.1.14 Adsorption of Surfactants at the Solid–Liquid Interface 93
6.1.15 Adsorption of Ionic Surfactants on Hydrophobic Surfaces 94
6.1.16 Adsorption of Ionic Surfactants on Polar Surfaces 97
6.1.17 Adsorption of Nonionic Surfactants 98
6.1.18 Theoretical Treatment of Surfactant Adsorption 101
6.1.19 Examples of Typical Adsorption Isotherms of Model Nonionic Surfactants on Hydrophobic Solids 103
References 105

7 Adsorption and Conformation of Polymeric Surfactants at the Solid–Liquid Interface 107
7.1 Theories of Polymer Adsorption 110
7.2 Experimental Techniques for Studying Polymeric Surfactant Adsorption 117
7.3 Measurement of the Adsorption Isotherm 118
7.4 Measurement of the Fraction of Segments p 118
7.5 Determination of the Segment Density Distribution $\rho(z)$ and Adsorbed Layer Thickness δ_h 119
7.6 Examples of the Adsorption Isotherms of Nonionic Polymeric Surfactants 122
7.7 Adsorbed Layer Thickness Results 126
7.8 Kinetics of Polymer Adsorption 128
References 129

8 Stabilization and Destabilization of Suspensions Using Polymeric Surfactants and the Theory of Steric Stabilization 131
8.1 Introduction 131
8.2 Interaction between Particles Containing Adsorbed Polymeric Surfactant Layers (Steric Stabilization) 131
8.2.1 Mixing Interaction G_{mix} 132
8.2.2 Elastic Interaction G_{el} 134
8.2.3 Total Energy of Interaction 135
8.2.4 Criteria for Effective Steric Stabilization 135
8.3 Flocculation of Sterically Stabilized Dispersions 136
8.3.1 Weak Flocculation 136
8.3.2 Incipient Flocculation 137
8.3.3 Depletion Flocculation 138
8.4 Bridging Flocculation by Polymers and Polyelectrolytes 138
8.5 Examples for Suspension Stabilization Using Polymeric Surfactants 142
8.6 Polymeric Surfactants for Stabilization of Preformed Latex Dispersions 146
References 148

9 Properties of Concentrated Suspensions 151
9.1 Interparticle Interactions and Their Combination 151
9.1.1 Hard-Sphere Interaction 151
9.1.2 “Soft” or Electrostatic Interaction: Figure 9.1b 152
9.1.3 Steric Interaction: Figure 9.1c 153
9.1.4 van der Waals Attraction: Figure 9.1d 156
9.1.5 Combination of Interaction Forces 157
9.2 Definition of “Dilute,” “Concentrated,” and “Solid” Suspensions 160
9.3 States of Suspension on Standing 164
References 169

10 Sedimentation of Suspensions and Prevention of Formation of Dilatant Sediments 171
10.1 Sedimentation Rate of Suspensions 172
10.2 Prevention of Sedimentation and Formation of Dilatant Sediments 178
10.2.1 Balance of the Density of the Disperse Phase and Medium 178
Contents

10.2.2 Reduction of the Particle Size 178
10.2.3 Use of High Molecular Weight Thickeners 178
10.2.4 Use of “Inert” Fine Particles 179
10.2.5 Use of Mixtures of Polymers and Finely Divided Particulate Solids 182
10.2.6 Controlled Flocculation (“Self-Structured” Systems) 183
10.2.7 Depletion Flocculation 186
10.2.8 Use of Liquid Crystalline Phases 190
References 192

11 Characterization of Suspensions and Assessment of Their Stability 193
11.1 Introduction 193
11.2 Assessment of the Structure of the Solid/Liquid Interface 194
11.2.1 Double-Layer Investigation 194
11.2.1.1 Analytical Determination of Surface Charge 194
11.2.1.2 Electrokinetic and Zeta Potential Measurements 195
11.2.2 Measurement of Surfactant and Polymer Adsorption 196
11.3 Assessment of Sedimentation of Suspensions 199
11.4 Assessment of Flocculation and Ostwald Ripening (Crystal Growth) 201
11.4.1 Optical Microscopy 201
11.4.1.1 Sample Preparation for Optical Microscopy 203
11.4.1.2 Particle Size Measurements Using Optical Microscopy 203
11.4.2 Electron Microscopy 204
11.4.2.1 Transmission Electron Microscopy (TEM) 204
11.4.2.2 Scanning Electron Microscopy (SEM) 204
11.4.3 Confocal Laser Scanning Microscopy (CLSM) 205
11.4.4 Scanning Probe Microscopy (SPM) 205
11.4.5 Scanning Tunneling Microscopy (STM) 206
11.4.6 Atomic Force Microscopy (AFM) 206
11.5 Scattering Techniques 206
11.5.1 Light Scattering Techniques 207
11.5.1.1 Time-Average Light Scattering 207
11.5.2 Turbidity Measurements 208
11.5.3 Light Diffraction Techniques 208
11.5.4 Dynamic Light Scattering—Photon Correlation Spectroscopy (PCS) 211
11.5.5 Backscattering Techniques 214
11.6 Measurement of Rate of Flocculation 214
11.7 Measurement of Incipient Flocculation 215
11.8 Measurement of Crystal Growth (Ostwald Ripening) 216
11.9 Bulk Properties of Suspensions: Equilibrium Sediment Volume (or Height) and Redispersion 216
References 217
Rheological Techniques for Assessment of Stability of Suspensions

12.1 Introduction

12.1.1 Steady-State Shear Stress σ–Shear Rate γ Measurements

12.1.2 Constant Stress (Creep) Measurements

12.1.3 Dynamic (Oscillatory) Measurements

12.2 Steady-State Measurements

12.2.1 Rheological Models for Analysis of Flow Curves

12.2.1.1 Newtonian Systems

12.2.1.2 Bingham Plastic Systems

12.2.1.3 Pseudoplastic (Shear Thinning) System

12.2.1.4 Dilatant (Shear Thickening) System

12.2.1.5 Herschel–Bulkley General Model

12.2.2 The Casson Model

12.2.3 The Cross Equation

12.2.4 Time Effects during Flow Thixotropy and Negative (or anti-) Thixotropy

12.3 Constant Stress (Creep) Measurements

12.3.1 Analysis of Creep Curves

12.3.1.1 Viscous Fluid

12.3.1.2 Elastic Solid

12.3.2 Viscoelastic Response

12.3.2.1 Viscoelastic Liquid

12.3.2.2 Viscoelastic Solid

12.3.3 Creep Procedure

12.4 Dynamic (Oscillatory) Measurements

12.4.1 Analysis of Oscillatory Response for a Viscoelastic System

12.4.2 Vector Analysis of the Complex Modulus

12.4.3 Dynamic Viscosity η'

12.4.4 Note that $\eta \rightarrow \eta(0)$ as $\omega \rightarrow 0$

12.4.5 Strain Sweep

12.4.6 Oscillatory Sweep

12.4.7 The Cohesive Energy Density E_c

12.4.8 Application of Rheological Techniques for the Assessment and Prediction of the Physical Stability of Suspensions

12.4.8.1 Rheological Techniques for Prediction of Sedimentation and Syneresis

12.4.8.2 Role of Thickeners

12.4.9 Assessment and Prediction of Flocculation Using Rheological Techniques

12.4.9.1 Strain Sweep Measurements

12.4.9.2 Oscillatory Sweep Measurements

12.4.10 Examples of Application of Rheology for Assessment and Prediction of Flocculation
12.4.10.1 Flocculation and Restabilization of Clays Using Cationic Surfactants 240
12.4.10.2 Flocculation of Sterically Stabilized Dispersions 240

References 241

13 Rheology of Concentrated Suspensions 243
13.1 Introduction 243
13.1.1 The Einstein Equation 244
13.1.2 The Batchelor Equation 244
13.1.3 Rheology of Concentrated Suspensions 244
13.1.3.1 Rheology of Hard-Sphere Suspensions 245
13.1.3.2 Rheology of Systems with “Soft” or Electrostatic Interaction 246
13.1.3.3 Rheology of Sterically Stabilized Dispersions 248
13.1.3.4 Rheology of Flocculated Suspensions 250
13.1.4 Analysis of the Flow Curve 258
13.1.4.1 Impulse Theory: Goodeve and Gillespie 258
13.1.4.2 Elastic Floc Model: Hunter and Coworkers 259
13.1.5 Fractal Concept for Flocculation 259
13.1.6 Examples of Strongly Flocculated (Coagulated) Suspension 261
13.1.6.1 Coagulation of Electrostatically Stabilized Suspensions by Addition of Electrolyte 261
13.1.7 Strongly Flocculated Sterically Stabilized Systems 263
13.1.7.1 Influence of the Addition of Electrolyte 263
13.1.7.2 Influence of Increase of Temperature 266
13.1.8 Models for Interpretation of Rheological Results 267
13.1.8.1 Dublet Floc Structure Model 267
13.1.8.2 Elastic Floc Model 268

References 270

Index 271