Index

A
Abiotic degradation, 53–54
Abiotic desorption, 191, 211
ABS. See Acrylonitrile butadiene styrene (ABS)
AC. See Activated carbon (AC)
Acclimation, 49, 56, 57–58, 63, 68, 80, 108, 193–194, 199, 207, 221, 335, 358
Acetic acid, 112, 301, 328
Acetone, 96
Acid Orange II, 111
Acid Orange 7, 111
Acinetobacter, 307
Acrylonitrile butadiene styrene (ABS), 99
Acrylonitrile manufacturing wastewater, 103
Activated carbon (AC), 13
– adsorption, 7–8, 18–19
– in anaerobic treatment, 81
– ash content, 15
– biodegradable and nonbiodegradable organics on, 56
– biological regeneration of, 59
– biological sludge properties with, 81–82
– bioregeneration of, 217–229, 361–363
– in drinking water treatment, 363
– in micropollutants, 362
– carbon activation, 29, 197
– chemically activated carbon, 21, 29, 193, 202, 257, 259, 269, 360
– thermally activated carbon, 21, 29, 193, 197, 256, 257, 274, 360
– characteristics of, 14–15
– density, 153
– in drinking water treatment, 4–5
– enhancement of denitrification by, 80
– enhancement of nitrification by, 78
– enhancement of organic carbon removal by, 78
– in environmental media, 7
– in environmental pollution, 4
– grade, 202, 360–361
– heterogeneity of, 21
– historical appraisal of, 1–3
– in industrial wastewater treatment, 6
– for inorganic species, 80
– for membrane filtration, 85–86
– for microbial products, 83–85
– microcrystallites, 14–15
– microbialorganisms
– attachment and growth of, 59
– natural organic matter
– adsorbability of, 255–258
– desorbability of, 258–259
– particle size, 15, 16, 85
– physicochemical regeneration of, 363
– pollutants, control of, 8–10
– pore volume, 13, 292
– porosity, 1, 203
– preparation of, 13–14
– raw materials
– charcoal, 14
– coal, 14
– coconut shell, 2, 13, 99
– coke, 13, 14
– lignite, 13, 14
– wood, 13, 14
– reactivation, 37–39
– regeneration, 37–39
– saturation, 204, 213
– in secondary treatment, 46
– sorption onto, 53
– substrates concentration, 58
– surface area, 1
– surface functional groups, 15, 21
– in tertiary treatment, 46–47
– for toxic and inhibitory substances, 56–58
– types, 15
– granular activated carbon (GAC), 16
– powdered activated carbon (PAC), 15
– use of, 1, 3–4
– volatile organic compounds (VOCs) on, 58
– in wastewater treatment, 5–6
– in water treatment, 246–247
– granular activated carbon (GAC) filtration, 247
– powdered activated carbon (PAC) addition, 246

Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment.
First Edition. Ferhan Çeçen and Özgür Aktaş
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Published 2011 by WILEY-VCH Verlag GmbH & Co. KGaA
Activated carbon adsorption, 6, 18, 43, 127, 177
– with biological processes, 7
--- in wastewater treatment, 7
--- in water treatment, 8
Activated carbon manufacturing, 13
– Bayer, 3
– Norit, 2–3
– Purit, 2
Activated carbon reactors, 30
– GAC adsorbers, 30
--- breakthrough curves, 34–37
--- operation of, 31–34
--- purpose of use, 30
--- types of, 30–31
– PAC adsorbers, 30
Activated sludge process, 70–71
– conventional, 68, 72, 73, 74, 102, 111, 134
– Powdered Activated Carbon Treatment (PACT), 7–8, 69, 98, 99, 100–101, 102, 110, 127–128
Adenosine triphosphate (ATP), 242, 306
Adsorbability, 255
– characteristics of, 54
– of Natural Organic Matter (NOM), 254, 255–258
– of organic matter
--- in raw and ozonated waters, 255–259
Adsorbable Organic Xenobiotics (AOX), 10, 62, 112
Adsorbate, 16
– aromaticity, 255
– hydrophobicity, 21
– physical and chemical characteristics of, 18–19
– polarity, 19
– solubility, 17, 18–19
Adsorbed organics, 59, 87, 190, 215
Adsorbents, 16
– abrasion number, 33
– apparent density, 33
– iodine number, 33
– molasses number, 33
--- particle density, 33
--- porosity, 20–21
--- shape, 20, 33
--- size, 20, 33
--- surface area, 33
--- type, 33
Adsorbers
– bed area, 33
– bed volume (BV), 34
– breakthrough curve, 34–37
– breakthrough time, 36
– carbon depth, 31
– carbon usage rate (CUR), 34
--- contact time, 32–33
--- effective contact time, 33
--- empty bed contact time (EBCT), 32–33
--- filter operation time, 34
--- filter velocities, 33–34
--- hydraulic loading rate (HLR), 31, 33
--- interstitial velocity, 34
--- mass transfer zone (MTZ), 34, 37
--- reactivation, 37–38
--- superficial linear velocity, 33
--- throughput volume, 34
--- void ratio, 160
--- wave front, 35
Adsorbing media, 153
Adsorption, 16, 53
– adsorption energy, 17, 211
– adsorption enthalpy, 18
– adsorption equilibrium and isotherms, 24
--- BET (Brunauer, Emmett, Teller), 27
--- Freundlich, 25–27
--- Fritz–Schluender, 228
--- Langmuir, 26–27
--- adsorption kinetics, 18, 22, 36
--- adsorption reversibility. See Hysteresis
--- and biological removal, 268–269
--- chemical adsorption, 17, 18
--- chemical bonding, 15, 17
--- competitive adsorption, 28–29
--- coverage, 18
--- equilibrium and isotherms, 24–27
--- factors influencing, 18
--- chemical surface characteristics, 21–22
--- pH value, 19–20
--- physical and chemical characteristics of adsorbate, 18–19
--- porosity of adsorbent, 20–21
--- surface area of adsorbent, 18
--- temperature, 20
--- irreversible adsorption, 29, 196, 197, 198, 200, 202, 204, 205, 208, 211, 222, 259
--- kinetics of, 22
--- adsorption bond, 24
--- bulk solution transport (advection), 22–23
--- external diffusion, 23
--- intraparticle (internal) diffusion, 23
--- mono- and multilayer adsorption, 20
--- multisolute adsorption, 28–30
--- of nonphenolic compound, 197
--- of phenolic compounds, 197
--- physical adsorption, 17, 18, 24
--- reversibility of, 195–198
--- single solute adsorption, 27–28
--- types of, 16–17
Adsorption and biodegradation characteristics of water, 250–260
--- determination of, 255–259
--- NOM characteristics, 250–251
--- adsorbability, change in, 255
--- biodegradability, increase in, 251–254
--- raw water NOM, 250
Adsorption capacities
--- direct measurement by, 213
Adsorption-induced acclimation, 193–194
Adsorption isotherm, 24, 154, 211–212, 256
Adsorption models
 – Ideal Adsorbed Solution (IAS) model, 28
 – Ideal Adsorbed Solution Theory (IAST), 28, 177, 227, 334
 – Improved Simplified Ideal Adsorbed Solution (ISIAS) model, 28
 – Simplified Ideal Adsorbed Solution (SIAS) model, 28, 29
Advanced Oxidation Processes (AOPs), 47, 97, 118
Advective transport, 170
Aerobic PACT, 46
Anaerobic–aerobic PACT, 46
Anaerobic systems, bioregeneration in, 216–217
Anaerobic systems, bioregeneration in, 216–217
AOC. See Assimilable Organic Carbon (AOC)
AOC limits, in water distribution, 319–320
AOCl (Adsorbable Organic Chlorine), 10
Ammonia in water treatment systems, 278–282
Ammonia monoxygenase enzyme (AMO), 298
Ammonia removal, 285, 308
 – importance of, 285–286
Ammonium, 78, 79, 238, 301
AMO. See Ammonia monoxygenase enzyme (AMO)
amoA (ammonia monoxygenase gene), 308
Amoco refinery, 98
Anaerobic–aerobic PACT, 46
Anaerobic systems, bioregeneration in, 216–217
Anaerobic systems, bioregeneration in, 216–217
Anthracene, 209
Anthracite, 66, 68, 99, 157, 273
AOB. See Ammonia Oxidizing Bacteria (AOB)
AOCL (Adsorbable Organic Chlorine), 10
AOCl limits, in water distribution, 319–320
AOPs. See Advanced Oxidation Processes (AOPs)
AOX. See Adsorbable Organic Xenobiotics (AOX)
Aromatics
 – aromatic acids
 – benzoic acids, 14, 118
 – benzene, 14, 22, 87, 104, 105, 106, 110, 138, 182, 183
 – chlorinated aromatics, 5, 14, 130
 – benzenes
 – 1,2-dichlorobenzene, 106, 110, 134, 182, 183, 304
 – 1,4-dichlorobenzene, 304
 – trichlorobenzene (TCB), 106, 134, 182, 183, 184
 – phenolics
 – pentachlorophenol (PCP), 108, 110, 206, 217, 327
 – phenol
 – phenolics
 – ethylphenol, 108
 – isopropylphenol, 200
 – methylphenol, 108
 – nitrophenol, 87, 107, 110
 – polynuclear aromatics, 5, 14
 – toluene, 14, 50, 96, 105, 106, 118, 134, 138, 182, 183, 208, 224, 225
Arthrobacter viscosus, 108
Assimilable organic carbon (AOC), 240–242, 252
 – modifications in, 242
ATP. See Adenosine triphosphate (ATP)
Azo dyes, 110–111, 210
B
BAC-FBR, 68
BAC filters. See Biological activated carbon (BAC) filters
BAC filtration. See Biological activated carbon (BAC) filtration
BAC reactors. See Biological activated carbon (BAC) reactors
Bacillus, 307
Backwashing, 276
 – biomass loss, 276
 – chlorinated water, 276
 – oxidant residuals, 277
BAC-Sequencing Batch Reactors (BAC-SBR), 112, 227
BAC sludge, 86–87
Bacteria
– ammonia oxidizing bacteria (AOB), 78, 308
– autotrophic bacteria, 78, 103
– cocci-shaped, 216
– filamentous, 216
– heterotrophic bacteria, 78, 80, 304
– nitrite oxidizing bacteria (NOB), 78, 308
Bacterial re-growth/aftergrowth, definition of, 238

BAF. See Biological Aerated Filter (BAF)
BAR. See Biofilm annular reactor (BAR)
BASM. See Biodegradation/adsorption–screening model (BASM)
BDOC. See Biodegradable Dissolved Organic Carbon (BDOC)

Bed configurations
– expanded bed, 31, 63, 69, 346
– fixed bed, 31, 175
– fluidized bed, 31, 68
– moving bed, 31, 347
– packed bed, 23, 166

Bed Volume (BV), 34

Bentonite, 111
Benzenes, 87, 105, 110, 134, 182, 183, 209, 289, 304
Benzoic acids, removal of, 118

BET (Brunauer, Emmett, and Teller) isotherm, 25, 27
17 β-Estradiol (E2), 55, 109
β-Proteobacteria, 307

Bezafibrate, 52

BFAC model. See Biofilm on activated carbon (BFAC) model
BFR. See Biofilm Formation Rate (BFR)
BGAC. See Biological granular activated carbon (BGAC)

Bioavailability, 48
Biocarbone, 68
Biocides, 101, 288

Biodegradability, 199–200, 252–254
Biodegradable Dissolved Organic Carbon (BDOC), 240, 251, 265, 284
– modifications in, 242
– in water distribution, 319–320
Biodegradable fraction, 48, 78, 96, 114
– measurement of, in NOM, 239–243

Biodegradable organic compounds, 225, 358

Biodegradable organic matter (BOM), 48, 78, 199, 238, 265, 274, 332
– assimilable organic carbon (AOC), 240–242
– biodegradable dissolved organic carbon (BDOC), 240, 251, 265, 284

Biodegradation, 48, 293
– abiotic degradation/removal, 53–54
– biological removal
– of micropollutants, 50–52
– of organic substrates, 49
– characteristics of, 54
– cometabolism, 50, 208
– and concurrent adsorption
– bioregeneration in, 218–219
– fractionation of organic matter in wastewater, 48
– models
– first-order, 168, 228–229
– Haldane, 228
– Monod, 151, 183, 334
– organic substrates, biomass, and activation carbon, 54
– primary substrate, 49, 50
– reductive dechlorination, 105
– secondary substrate utilization, 49–50
– sorption onto activated carbon, 53
– sorption onto sludge, 52–53

Biodegradation/adsorption–screening model (BASM), 225, 227

Biodegradation products, measurement of, 214–215
Biofilm
– backwashing, 276, 308
– biofilm-carbon boundary, 67, 154, 172
– biofilm density, 155
– biofilm kinetics, 146, 151
– biofilm loss, 164
– biofilm thickness, 154–155, 161, 171, 174, 204, 220, 346
– detachment, 157
– dispersion coefficient, 33, 160, 163, 170, 171
– growth, 65, 154–155, 175, 223, 225, 304, 346
– mass transfer coefficient, 148, 166, 171, 224, 337
– models, 221, 222
– BFAC model, 174, 175, 219, 223
– MDBA model, 227
– molecular diffusivity, 148, 149, 151, 338
– substrate utilization, 151, 181

Biofilm annular reactor (BAR), 243
Biofilm–carbon system, dimensionless numbers in, 169–173
Biofilm formation, 57, 59
Biofilm Formation Rate (BFR), 243
Biofilm growth and loss, 154–155
Biofilm growth control, in BAC filters, 305

Biofilm on activated carbon (BFAC) model, 174, 175, 219, 223

Biofilters
– anthracite-sand filters, 276
– GAC-sand filters, 273, 276
– sand biofilter, 307, 308
– BIOFILT model, 339–340
– Biofouling, 8, 75–76, 195
– Biological activated carbon (BAC), conversion of GAC into, 64–65
– advantages of BAC process, 66
Biological activated carbon (BAC) reactors—mass transfer equations, 165–166
—reactor mass balance, 166–167
—zero-order kinetics inside biofilm, 167–168
—high substrate concentrations, 175–176
—initial steps in modeling, 173
—integration of adsorption into models, 174–175
—landfill leachate treatment in, 118–120
—substrate removal and biofilm formation, 173–174
—three-phase fluidized bed reactor, 177
—very low substrate conditions, 176–177
Biological activated carbon (BAC) systems, concurrent bioregeneration in, 195
Biological aerated filter (BAF), 68, 100
Biological granular activated carbon (BGAC), 237
Biologically treated water, 256, 258, 259
Biological Membrane Assisted Carbon Filtration (BioMAC), 76
Biological nitrogen removal, 250
Biological processes, in water treatment, 238
Biological rapid sand filtration (BSF), 249
Biological regeneration of activated carbon, 59
Biological removal of micropollutants, 50–52
Biological sludge, properties of, 81
—dewaterability of sludge, 82
—sludge settling and thickening, 81
Biological stability/instability, 238
—AOC, 10, 240–242, 251
—BDOC, 240, 251, 265, 284
—BioMAC. See Biological Membrane Assisted Carbon Filtration (BioMAC)
—Biomass
—acclimated, 51, 193–194, 199, 214, 301, 328
—activity
—ATP measurement, 306
—heterotrophic biomass, 306–308
—nitrifying biomass, 308–309
—attachment, 273
—concentration, 68, 205–206, 242, 344
—configuration
—fixed-growth, attached-growth (biofilm), 44, 66
—hybrid, 81
—suspended-growth, 44
—and microbial activity determination, in BAC filters, 305
—nonacclimated, 108, 199
Biomass respiration method (BRP), 306
Biomembrane operation assisted by PAC and GAC, 74
—membrane-assisted biological GAC filtration, 76
—membrane bioreactors (MBRs), 74
—PAC-MBR process, 75
Biopolymers, 244, 268, 323
Bioregenerated carbon, 107, 195, 208, 360
Bioregeneration, 59, 189, 211, 219, 361
—an aerobic/anoxic systems, 216–217
—bioregeneration conditions, 362–363
—concurren bioregeneration, 195
—definition of, 189
—determination of, 209–216
—adsorption capacities, direct measurement by, 213
—adsorption isotherms, use of, 211–212
—biodegradation products, measurement of, 214–215
—quantification, 213–214
—respirometry, in aerobic systems, 215
—reversible adsorption, extent of, 211
—scanning electron microscopy (SEM), 216
—solvent extraction, direct measurement by, 213
—in drinking water treatment, 363
—ex-situ, 138
—factors affecting, 198–209
—biodegradability, 199–200
—biomass concentration, 205–206
—carbon activation type, 202
—carbon particle size, 200–201
—carbon porosity, 201–202
—concentration gradient and carbon saturation, 204–205
—desorption kinetics, 203
—dissolved oxygen concentration, 206
—microorganism type, 206–207
—multiple substrates, presence of, 208–209
—physical surface properties of carbon, 202–203
—substrate, chemical properties of, 200
—substrate and biomass associated products, 207–208
—substrate–carbon contact time, 203–204
—groundwater, 7, 50, 250, 273, 300, 303–304, 355
—in-situ, 218
—mechanisms of, 189–194
—acclimation of biomass, 193–194
—concentration gradient, 189–191
Index

--- exoenzymatic reactions, 191–193
- in micropollutants, 362
- modeling/models, 217–229
--- biodegradation/adsorption-screening model (BASM), 225, 227
--- biofilm model, 221, 222
--- biofilm on activated carbon (BFAC) model, 174, 175, 219, 223
--- concurrent adsorption and biodegradation, 218–219
--- kinetics, 228–229
--- multicomponent systems, 225–227
--- multi-solute MDBA model, 218
--- offline bioregeneration, 228
--- one-liquid film model, 221, 222
--- single solute systems, 220–225
--- two-liquid film model, 221–222
- offline bioregeneration, 194–195
- reversibility of adsorption, 195–198
- schematic representation of, 190

Bioremediation,
groundwater, 50, 303–304
Bioremediation, soil, 7, 50
Biosorption, 100
- characterization of, 54
- NOM, 335
- potential, 52
- sorption onto sludge, 47
Biot number, 166, 172, 173
Biotransformation, 47, 48, 71, 156
Bis (2-ethylhexyl) phthalate, 111, 294
Bisphenol A (BPA), 53, 55, 109, 292
BKME. See Bleached kraft pulp mill effluent (BKME)
Bleached kraft pulp mill effluent (BKME), 98
BOD (biochemical oxygen demand), 8, 48, 113, 215, 240, 353
BOD5/COD ratio, in landfill leachate, 81, 99, 100, 113
BOM. See Biodegradable Organic Matter (BOM)
Bosia, 308
Bound EPS, 83
Bradyrhizobia, 308
Bradyrhizobium, 308
Breakthrough curve, 36, 162, 265
- initial stage of operation, 265
- intermediate and later stages of operation, 266
Breakthrough point, 36, 223
Bromate, 301
- bromide in water, 295
- brominated organic compounds, 298
- ozonation effects, 249
- removal of, 298–301
Bromide ion, 295, 298
Brominated flame retardants, 43
4-Bromo-3-chloroaniline, 111
Bromofenol, 107, 294
Bromine, 295, 298
BRP. See Biomass respiration method (BRP)
BSF. See Biological rapid sand filtration (BSF)
BTEX (Benzene, Toluene, Ethylbenzene, Xylene), 99, 104, 138
BTX (Benzene, Toluene, p-Xylene), 104, 105
Bulk organic matter, 47, 48, 56
Burkholderiales, 308
Bussy, 2
Butyl cellosolve, 102
BV. See Bed Volume (BV)

Carbon, physical surface properties of, 202–203
Carbon activation type, 29, 202
Carbonization process, 13
Carbon particle size, 200–201
Carbon porosity, 201–202
Carbon properties’ consideration in modeling, 177–178
Carbon saturation
- concentration gradient, 204–205
Carbon tetrachloride, 14, 105, 134, 209, 210
Carbon usage rate (CUR), 33, 34
Carbonyl oxygen, 15
Carboxylic acids, 241, 253
Carcinogen, 244, 295, 299, 354
Carman–Kozeny equation, 85
Castlemaine plant, 326
Cationic polyelectrolyte, 71
Caulobacter, 307
Caustic hydrolysate wastewater, 101
CB. See Chlorobenzene (CB)
CBZ. See Carbamazepine (CBZ)
CDOC. See Chromatographic DOC (CDOC)
CHABROL model, 335
Chambers Works PACT® system, 134
Characteristics of activated carbon, 14–15
Charcoal, 1, 2, 14
Chemical adsorption (chemisorption). See Adsorption
Chemical bonding, 15, 17
Chemically activated PAC, 201, 202
Chemical oxygen demand (COD)
- soluble chemical oxygen demand, (SCOD), 115
- total chemical oxygen demand (TCOD), 115
Chemical surface characteristics, 21–22
‘Chemische Werke’, 2
Chemisorption, 17, 196
– oxygen, 15, 272, 302, 306
– perchlorate reduction, 301
Chloramine, 276
Chlorinated compounds, 50, 105, 215, 297
Chlorinated hydrocarbons, 129, 182
Chlorinated organic compounds (AOCl), 10, 215
Chlorinated phenols, 50, 108
Chlorine, 4, 112, 248, 276, 277, 285, 294, 327
Chlorine dioxide, 277, 323
Chlorobenzene (CB), 14, 87, 183, 304
3-Chlorobenzoic acid, 197, 200, 202, 210
Chlorobenzoic acids, removal of, 118, 200, 202
Chloroform, 96, 134, 138, 185, 295, 298, 348
Chlorophenols, 4, 87, 108
2-Chlorophenol (2-CP), 29, 50, 87, 108, 134, 194, 199, 200, 207, 208, 210
4-Chlorophenol (4-CP), 107–108, 205, 207, 209, 210, 215
Chromatographic DOC (CDOC), 244
Chromium compounds, 113
Clofibric acid, 290
Clogging, 31, 47, 63, 68, 69, 305
Closed-loop offline bioregeneration system, 194
COD. See Chemical oxygen demand (COD)
Coke plant wastewaters, 102, 103
Comamonadaceae, 308
Cometabolism, 50, 208, 356
– ammonia, 78, 103, 133, 135, 248, 285
– AMO enzyme, 359
– chlorinated benzenes, 199
– chlorinated phenols, 50, 95, 108
– cometabolic regeneration, 362
– cometabolic substrate, 50, 356
Complexing agents, 109, 357
Concentration gradient
– bioregeneration due to, 189–191
– and carbon saturation, 204–205
Concurrent adsorption and biodegradation
– bioregeneration in, 218–219
Contaminated groundwater, remediation of, 7
Contaminated groundwaters, PACT for, 138–139
3-Chlorophenol (3-CP), 50, 87, 108, 199
Continuous-flow (CF) activated sludges, 115
Continuous-flow stirred tank reactor (CSTR), 70, 103, 177
Conventional water treatment, NOM removal in, 244–246
– extent of, 245–246
– rationale for, 244–245
Co-treatment, 82, 96, 136
Cresols, 108
Cryptosporidium, 326
CSTR. See Continuous-flow stirred tank reactor (CSTR)
CUR. See Carbon usage rate (CUR)
Cyanide
– biodegradation of, 112
– biological removal of, 102, 103
Cyanobacterial toxins
1,3-Cyclohexanediamine, 111
Cyclohexanes, 111
Cyclohexadiene, 111
Cyclohexenone, 111
Cyclophosphamide, 53, 55
Cytarabine (CytR), 53, 55
D
DAF. See Dissolved air flotation (DAF)
Damköhler number of type I, 170, 172
Damköhler number of type II, 170, 172
DBAA. See Dibromoacetic acid (DBAA)
DBPs. See Disinfection By-Products (DBPs)
DCAA. See Dichloroacetic acid (DCAA)
DCF. See Dichlofenac (DCF)
DCM. See Dichloromethane (DCM)
de Cavaillon, Joseph, 2
Dechlorination, 105, 215
– of chlorinated water, 4
Denitrification, 49, 286
– enhancement of, by activated carbon, 80
– GAC-FBR configuration, 80
– groundwater, 238, 297
– nitrogen removal, 286–288
– surface water, 288, 298
– wastewater, 135, 141
Desorbability, of NOM
– from activated carbon, 258–260
– in raw and ozonated waters, 254–260
Desorption, 53, 196
– abiotic desorption, 191, 211
– of biodegradable organics, 53, 65, 235
– desorption isotherm, 211, 258, 260, 360
– kinetics, 203
– of organic matter, 191
Detachment rate, 155, 157
Dewatering, 73, 82, 137
Diazepam (DZP), 55, 109
Dibromoacetic acid (DBAA), 295
Dibutyl phthalate, 111
Dichloroacetic acid (DCAA), 295
2,4-Dichloro-benzenamine, 111
Dichlorobenzene, 134
1,2-Dichlorobenzene, 110, 183
Dichloroethane (1,2-DCE), 105, 110, 328
Dichloromethane (DCM), 105
Dichlorophenol, 84, 107, 197, 200, 227, 229
1,4-Dichlorophenol, 134
2,4-Dichlorophenol, 107, 110, 197, 200, 208, 210, 227, 229
3,5-Dichlorophenol, 84, 106, 107
2,4-Dichlorophenoxyacetate (2,4-D), 60
Diclofenac (DCF), 52, 55, 109, 290
Diethylene triamine pentaacetic acid (DTPA), 109
Diffusion
– biofilm diffusivity, 171
– intraparticle diffusivity, 171, 201
– of substrate in water, 171
Dimensionless Empty Bed Contact Time, 338–339
Dimensionless numbers
– Biot number, 166, 172, 173
– Damköhler number Type I, 170, 172
– Damköhler number Type II, 170, 172
– modified Stanton number, 169, 170
– Peclet number, 167, 170
– Sherwood number, 165, 170
– solute distribution parameter, 167, 170
– Stanton number, 169, 170
Dimensionless parameters, definition of, 165
Dimensionless separation factor, 26
3,5-Dimethoxyacetophenone, 111
N,N-dimethyl acetamide, 96
N,N-dimethyl formamide, 96
Di-n-butyl phthalate, 294
Dinitrophenol, 107, 110, 134
Dinitrotoluene, 110, 134, 294
1,4-Dioxane, 130
Disinfection
– chlorine, 4, 5, 294, 320, 322, 323
– UV/H₂O₂, 249
Disinfection By-Products (DBPs), 5, 10, 243, 244, 270, 294–295
– bromate, 298, 299
– brominated organic compounds, 298
– haloacetic acids (HAAs), 10, 244, 294–295, 297
– total trihalomethanes (TTHM), 295
– trichloromethane formation potential (THMFP), 10, 295, 303
– trichloromethanes (THMs), 10, 244, 294, 297, 348, 359
Dissociation constant, 19
Dissolved air flotation (DAF), 4, 6, 73, 138, 141
Dissolved Organic Carbon (DOC), 239, 265
– Biodegradable Dissolved Organic Carbon (BDOC), 240, 270
– mineralization of, 253–254
– Nonbiodegradable Dissolved Organic Carbon (NBDOC), 243
Dissolved Organic Matter (DOM), 85, 239, 303
Dissolved oxygen (DO), 70, 194, 266
Dissolved oxygen concentration, 206
Diuron, 291
DO. See Dissolved oxygen (DO)
DOC. See Dissolved Organic Carbon (DOC)
Dohne water works, 248
DOM. See Dissolved Organic Matter (DOM)
Domestic and industrial wastewaters, PACT for, 136
Domestic wastewaters reuse, PACT for, 139
Domestic wastewater treatment, 83, 354
Draft tube gas–liquid–solid fluidized bed bioreactor (DTFB), 177
Drinking water BAC filtration, 273, 275, 332, 359, 363
Drinking water treatment, 237, 358–359
– activated carbon in, 4–5, 246–247
– granular activated carbon (GAC) filtration, 247
– powdered activated carbon (PAC) addition, 246
– adsorption and biodegradation characteristics of water, 250–259
– determination of, 254–259
– NOM characteristics, ozonation impact on, 250–254
– raw water NOM, 250
– biological activated carbon (BAC) filtration, 247
– adsorption and biological processes, 342–345
– biological processes in biofilters, 334–342
– current use of, 249–250
– history of, 247–249
– micropollutants removal, 346–348
– and ozonation, 249
– substrate removal and biofilm formation, 331–333
– biological processes in, 238
– bioregeneration of activated carbon in, 363
– NOM removal, in conventional water treatment, 244–246
– extent of, 245–246
– rationale for, 244–245
– organic matter in, 238–244
– biodegradable fraction, in NOM, 239–243
– expression, in terms of organic carbon, 239
Drinking water treatment (continued)

--- fractionation, of NOM, 243–244
--- nonbiodegradable dissolved organic carbon (NBDOC), 243

dtfb. See Draft tube gas–liquid–solid fluidized bed bioreactor (DTFB)

dtpa. See Diethylene triamine pentaacetic acid (DTPA)

duPont, 70, 101

duPont’s Chambers Works, 128, 134

dyes
-- acid dye, 100, 214
-- Acid Orange, 111
-- anthraquinone dye, 100, 214
-- azo dye, 100, 110, 111, 214
-- indigo carmine, 14
-- methylene blue, 14, 111
-- polymeric dye, 111
-- Reactive Black, 110
-- removal of, 110–111
-- soluble organic dyes, 6, 14

dzp. See Diazepam (DZP)

E

e2 (17 β-Estradiol), 55
E3 (Estradiol), 55

EBCT. See Empty-bed contact time (EBCT)

eC. See Expanded clay (EC)

EOCl. See Extractable organic chlorine (EOCl)

edcs. See Endocrine disrupting compounds (EDCs)

EDTA (Ethylene diamine tetraacetic acid), 109
EE2 (17α-Ethinylestradiol), 52, 53, 55

EEM (Excitation-Emission Matrix), 325

effective contact time, 33

electrochemical oxidation, 101

Emerging substances, 5

empty-bed contact time (EBCT), 32–33, 204, 274–276, 284, 338–339

Endocrine disrupters, 55

endocrine disrupting compounds (EDCs), 5, 109, 288, 291–292
-- bisphenol A, 53, 55, 109
-- nonylphenol, 109, 290, 292

Endogenous respiration, 49

Engineered/mechanical treatment systems, 248–249

Envirex®, 68

Environmental media, activated carbon in, 7

Environmental pollution, activated carbon in, 4–10
-- activated carbon adsorption, with biological processes, 7
--- in wastewater treatment, 7–8
--- in water treatment, 8
-- drinking water treatment, 4–5
-- environmental media, 7
-- flue gases, treatment of, 7
-- groundwater contamination, remediation of, 7
-- soil contamination, remediation of, 7
-- water preparation, for industrial purposes, 7
-- pollutants control, 8–10
-- wastewater treatment, 5–6

Environmental Scanning Electron Microscopy (ESEM), 216

enzymes, 50
-- ammonia monoxygenase. See Ammonia monoxygenase enzyme (AMO)
-- extracellular enzymes (Exoenzymes), 191, 193

Eponit®, 2

EPS. See Extracellular polymeric substances (EPS)

erythromycin, 292

Escherichia coli, 308
Escherichia fergusonii, 308

ESEM. See Environmental Scanning Electron Microscopy (ESEM)

estradiol, 292

estril (e3), 55

Estrone, 52

Ethanol, 96, 108, 195, 301

Ethyl acetate, 96

Ethylbenzene, 134, 182

Ethylene diamine tetraacetic acid. See EDTA (Ethylene diamine tetraacetic acid)

Excitation-Emission Matrix. See EEM (Excitation-Emission Matrix)

Exhausted GAC, 205, 293

Exoenzymatic reactions
-- bioregeneration due to, 191–193
-- validity of, 361–362

Exopolymers See Extracellular polymeric substances (EPS)

Expanded and fluidized-bed BAC reactors, 68–69

Expanded clay (EC), 105

Extracellular enzymes, 191

Extracellular polymeric substances (EPS), 77
-- characteristics/definition, 83
-- composition, 82–83
-- effect on dewaterability, 83, 358
-- retention by PAC, 84

Extractable organic chlorine (EOCl), 103

F

FA. See Free ammonia (FA)

FB. See Fluidized bed (FB)

FBR. See Fluidized bed reactor (FBR)

Fenoprofen, 290

Fick’s law, 148, 149

Filter backwashing, 276

Filter operation time, 34

Filter velocities, 33–34

Finished water
-- microbiological safety, 309
-- re-growth potential, 242–243

Firmicutes, 308

First-order kinetics, 228, 229
-- inside biofilm, 168–169

Five haloacetic acids (HAAS), 295
Fixed-bed carbon adsorbers, 31
Flame retardants, 43, 109, 357
Flavobacterium, 207, 307
Flue gases
– treatment of, 7
Fluidized bed reactor (FBR), 31, 68, 300
Fluorescence spectroscopy, 243
Fluorobenzene, 210, 215
2-Fluorobenzoate (2-FB), 105
5-Fluorouracil (5-Fu), 53, 55
FNA. See Free nitrous acid (FNA)
Food-to-microorganism (F/M) ratio, 70, 71
Formaldehyde, 274
Fouling, 75
– See also Biofouling;
 Membrane fouling;
 Microbial fouling
Free ammonia (FA), 79
Free nitrous acid (FNA), 79
Freundlich adsorption, 227
Freundlich isotherm, 25, 26, 27, 154, 220, 225, 256, 258
Freundlich parameters, 29
Full-scale drinking water treatment plants
– BAC filtration in, 319–329
Full-scale PACT systems, 127
 – for contaminated groundwaters, 138–139
 – for contaminated surface runoff waters, 139–140
 – for domestic and industrial wastewaters co-treatment, 136
 – for domestic wastewaters reuse, 139
 – for industrial effluents
 -- organic chemicals production industry, 128–130
 -- pharmaceutical wastewaters, treatment of, 135–136
 -- priority pollutants, treatment of, 134
 -- propylene oxide/styrene monomer (PO/SM) production wastewater, 130–131
 -- refinery and petrochemical wastewaters, 131–134
 -- synthetic fiber manufacturing industry, 130
 – for landfill leachates, 136–138
Full-scale surface water treatment, BAC filtration in, 320–326
– Bendigo, Castlemaine & Kyneton, 326–327
– Leiden plant, 320–322
– Mulheim plants, 320
– Ste Rose plant in Quebec, 323
– suburbs of Paris, plants in, 322–323
– Weesperkarspel plant, 324–326, 327
– Zürich-Lengg, plant in, 323–324
G
Gabapentin, 292
GAC. See Granular activated carbon (GAC)
GAC-SBR, 112
GAC-Sequencing Batch Biofilm Reactor (GAC-SBBR), 68
Gas masks, 3
Gemfibrozil, 290
Geosmin, 292–293
Giardia contamination, 326
Gibbs free energy, 190, 198, 200
Glyoxal, 273, 274
Granular activated carbon (GAC), 3, 4, 6, 13, 16, 39, 97, 105
– BAC reactors, main processes in, 66
– biomass attachment, 273
– coal-based, 274
– conversion of, into BAC, 64–65
-- BAC process, advantages of, 66
-- removal mechanisms and biofilm formation in BAC operation, 65–66
-- versus BAC operation, 66
 – expanded and fluidized-bed BAC reactors, 68
 – filtration, 145, 247, 265, 331
 – fixed-bed BAC reactors, 67–68
 – GAC upflow anaerobic sludge blanket reactor (GAC-UASB), 81
 – integration into groundwater bioremediation, 303–304
 – positioning, in wastewater treatment, 59–63
 – recognition of biological activity, 63–64
 – removal performance, 273
 – secondary treatment of wastewaters, 45
 – tertiary treatment of wastewaters, 45
 – wood-based, 274
Granular activated carbon (GAC) adsorbers, 30, 145
 – breakthrough curves, 34–37
 – integrated adsorption and biological removal, benefits of, 155–158
 – modeling approaches in GAC/BAC reactors, 158
-- BAC reactors’ characterization, by dimensionless numbers, 164–173
 -- biomass balance in reactor, 164
 -- substrate mass balance in liquid phase of reactor, 159–164
-- models in BAC reactors involving adsorption and biodegradation, 173
-- carbon properties, in modeling, 177–178
-- high substrate concentrations, 175–176
Granular activated carbon (GAC) adsorbers
(continued)
-- initial steps in modeling, 173
-- integration of adsorption into models, 174–175
-- substrate removal and biofilm formation, 173–174
-- three-phase fluidized bed reactor, 177
-- very low substrate (fasting) conditions, 176–177
-- operation of, 31–34
-- bed volume (BV), 34
-- carbon usage rate (CUR), 34
-- effective contact time, 33
-- empty-bed contact time (EBCT), 32
-- filter operation time, 34
-- filter velocities, 33–34
-- throughput volume, 34
-- processes around carbon particle surrounded by biofilm, 146
-- adsorption isotherms, 154
-- biofilm growth and loss, 154–155
-- diffusion and removal of substrate within biofilm, 149–152
-- diffusion into activated carbon pores and adsorption, 152–154
-- related to biomass and activated carbon, 146
-- related to substrate transport and removal, 146
-- transport of substrate to surface of biofilm, 148
-- purpose of use, 30
-- types of, 30–31
Granular activated carbon (GAC) reactors
-- GAC/BAC, 158–173, 177, 267–268, 331
-- GAC-FBR, 68, 99, 104, 118, 119, 120, 138, 208, 327
-- GAC-MBR, 209
-- GAC-SBBR, 68
-- GAC-UASB, 81
-- GAC-UFBR, 105
Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) system, 68, 99, 104, 118, 119, 120, 138, 208, 327
Groundwater bioremediation, 303–304
Groundwater recharge, 248
Gum arabic powder, 111

H
HAA. See Haloacetic Acids (HAA)
HAA5. See Five haloacetic acids (HAA5)
HAAFP, 10, 295
Haloacetic Acids (HAA), 10, 244, 294–295, 297
-- HAA5, 295, 297
-- HAAFP (HAA Formation Potential), 295
Halogenated hydrocarbons, 288
HD 4000, 256, 258
Heavy metals, 80
-- cadmium (Cd), 58, 80
-- chromium (Cr), 58, 113
-- copper (Cu), 58, 80
-- nickel (Ni), 58, 80
-- zinc (Zn), 58, 81
-- See also Organic pollutants
Henry constant, 54, 184
Heterogeneity of activated carbon, 21
Heterotrophic plate count (HPC), 238, 305
Hexavalent chromium (Cr (VI)), 80
High substrate concentrations, modeling in, 175–176
Historical appraisal of activated carbon, 1–3
History of activated carbon
-- Bussy, 2
-- Hunter, 2
-- Joseph de Cavaillon, 2
-- Kayser, 2
-- Lipscombe, 2
-- Lowitz, 2
-- Schatten, 2
-- Scheele, 2
-- Stenhouse, 2
-- von Ostreijko, 2
HLR. See Hydraulic loading rate (HLR)
HMX (High Melting Explosive), 195
Homogeneous surface diffusion model, 152
HPC. See Heterotrophic Plate Count (HPC)
Hubele model, 342
Hueco Bolson aquifer, 139
Humic acids, 64, 114, 254, 342, 343
Humic substances, 196, 240, 244, 338
-- humic acid, 64, 111, 114, 254, 342, 343
Hunter, 2
Hydraulic loading rate (HLR), 33, 35, 72, 274–276
Hydraulic regime
-- completely mixed, 146, 173
-- dispersed plug flow, 146, 173
-- plug flow, 173
Hydraulic residence time, 246
Hydrocarbons
-- aliphatic and aromatic, 5, 288
-- chlorinated, 129, 182
-- halogenated, 288
-- high molecular weight hydrocarbons, 14
-- polycyclic aromatic hydrocarbon (PAH), 99, 138, 209
-- total volatile hydrocarbon (TVH), 99
Hydrogenophaga, 307
Hydrogen peroxide, 196, 277, 328
Hydrogen sulfide (H2S)
-- biodegradation of, 112
Hydrolysis, 48, 83, 149, 335
Hydropiphlicity, 15, 290
Hydropobicity, 21, 239, 291
Hydropobic nonylphenol, 290
4-Hydroxyacetophenone, 109
Hysteresis, 196, 201, 208, 211, 362

I
IAS model. See Ideal Adsorbed Solution (IAS) model
IAST. See Ideal Adsorbed Solution Theory (IAST)
IBP. See Ibuprofen (IBP)
IBPCT. See Integrated Biological-Physicochemical Treatment (IBPCT)

IBuprofen (IBP), 52, 55, 290, 292
IC50, 106
Ideal Adsorbed Solution (IAS) model, 28
Ideal Adsorbed Solution Theory (IAST), 28, 177, 227

iMBRs. See Immersed MBRs (iMBRs)
Immersed MBRs (iMBRs), 74–75
Improved Simplified Ideal Adsorbed Solution (ISIAS) model, 28, 29
Indomethacin, 290
Industrial wastewater treatment, 6, 95, 100–104
– paper and pulp wastewaters, 97–98
– petroleum refinery and petrochemical wastewaters, 98–99
– pharmaceutical wastewaters, 95–97
– textile wastewaters, 99–100

Infrared spectroscopy, 243

Inhibition
– competitive, 56, 61
– noncompetitive, 56, 61
– substrate, 56, 60

Inhibitory compound, 108
Inorganic pollutants, 10, 79, 145, 359
Inorganic species, activated carbon in, 80

Instrumental analysis
– Excitation-Emission Matrix (EEM), 325
– Gas Chromatography-Mass Spectrometry (GC-MS), 243
– Nuclear Magnetic Resonance (NMR), 243, 244
– Organic Carbon Detection (OCD), 243
– Organic Nitrogen Detection (OND), 243
– Size Exclusion Chromatography (SEC), 243, 244
– spectral measurements, 239
– IR, 243
– volatile organic compounds (VOCs) retention on, 58

Integrated Biological-Physicochemical Treatment (IBPCT), 173
Integrated systems, observed benefits of, 76
– anaerobic treatment, 81
– biological sludge in presence of activated carbon, 81
– dewaterability of sludge, 82
– sludge settling and thickening, 81
– denitrification, enhancement of, 80
– inorganic species, activated carbon addition on, 80–81
– membrane bioreactors (MBRs), effect of PAC on, 87
– membrane filtration, effect of activated carbon on, 85
– microbial products, effect of activated carbon on, 83
– microbial products, importance of, 82
– nitrification, enhancement of, 78–80
– organic carbon removal, enhancement of, 78

Ion exchange, 300, 302
Iopromide, 52
Irreversible adsorption, 29, 196, 197, 198, 200, 202, 204, 205, 208, 211, 222, 259
Irreversible fouling resistance, 85, 86

ISIAS model. See Improved Simplified Ideal Adsorbed Solution (ISIAS) model
Isopropyl alcohol, 96
Isopropyl ether, 96
Isothiazolinones, 101

K
Kayser, 2
Ketoprofen, 290
Kinetics
– adsorption, 22, 34, 36, 162, 169
– of bioregeneration, 228–229
– desorption, 203
Kyneton plant, 326

L
Laboratory-Scale PACT reactors, 114–118
Lake Zurich, 294, 323, 324
Landfill leachate treatment
– BAC filtration, 118–120
– PAC-MBR process, 118
– PACT, 114–118, 136–138
Langmuir isotherm, 25, 26, 154
LC50 tests, 101
LCC. See Life cycle cost (LCC)
LDF model. See Linear Driving Force (LDF) model
Leiden plant, 320–322
LHAAP. See Longhorn Army Ammunition Plant (LHAAP)
Life cycle assessment (LCA), 327
Life cycle cost (LCC), 327
Lignin, 13
Lignin sulfonate, 111
Lindane, 110, 182, 183
Linear Driving Force (LDF) model, 153
Lipscombe, 2
Liquid chromatography with online organic carbon detection (LC-OCD), 325
Liquid film-biofilm boundary
LMW organics. See Low-molecular-weight (LMW) organics
Longhorn Army Ammunition Plant (LHAAP), 327, 328
Lowitz, 2
Low-molecular-weight (LMW) organics, 244
Lyophobic character of solute, 17

M
Macropores, 20, 21, 23, 152, 193, 203, 216, 257
MAP. See Microbially available phosphorus (MAP)
Mass balance
– biofilm, 149
– liquid phase, 159–164
– in PACT process, 178–180
– reactor, 164
– solid phase, 158
Mass transfer coefficient, 148
Mass transfer equations, 165–166
Mass transfer zone (MTZ), 34, 37
Mass transport, 36, 145, 165, 171–172, 222
Maturation pond, 140
MBAA. See Monobromoacetic acid (MBAA)
MBRs. See Membrane bioreactors (MBRs)
MCAA. See Monochloroacetic acid (MCAA)
MDBA. See Multiple-Component Biofilm Diffusion Biodegradation and Adsorption model (MDBA)
Membrane-assisted biological GAC filtration (BioMAC process), 76
Membrane bioreactors (MBRs), 8, 74, 302–303
– biofouling, 75
– biological membrane assisted carbon filtration (BIOMAC), 76
– effect of PAC on, 82–86
– extracellular polymeric substances (EPS), 82–83, 84
– fouling, 75, 84
– GAC-MBR (GAC added membrane bioreactor), 209, 355
– immersed membrane bioreactor (iMBR), 74
– membrane flux, 84, 86
– microfiltration, 75
– PAC-MBR, 75–76
– permeability, 75, 76
– soluble microbial products (SMP), 358
– submerged membrane bioreactor (sMBR), 74, 303
– transmembrane pressure (TMP), 75, 85
– ultrafiltration, 75
Membrane filtration, activated carbon in, 85–86
Membrane fouling, 75, 245
MEP. See Metabolic end products (MEP)
Mesopores, 20, 21, 152, 192, 193, 201
Metabolic end products (MEP), 83, 84
Methanol, 96
2-Methyl-1-dioxolane, 130, 131
Methyl chloride, 134
Methylene chloride, 96, 213
Methyl ethyl ketone, 102
Methylphenols, 108
Methyl-tert-butylether (MTBE), 288, 294
MF. See Microfiltration (MF)
MIB (2-Methylisoborneol), 245, 292–293
Michigan Adsorption Design and Applications Model (MADAM) program, 173
Microbial ecology, 362–363
– of BAC filters, 304–305
Microbial fouling, 228
Microbially available phosphorus (MAP), 305
Microbial products, activated carbon on, 83–85
Microcrystallites, 14–15
Microcystins, 288, 293, 348
Microfiltration (MF), 74, 302
– continuous microfiltration (CMF), 326
– continuous microfiltration-submerged (CMF-S), 326
Microorganisms
– attachment and growth of, on surface of activated carbon, 59
Index

- and bioregeneration, 206–207
- determination, 306
-- heterotrophic biomass and activity, 306–308
-- nitrifying biomass and activity, 308–309

Micropollutants
- adsorption and biodegradation of, 362
- removal from drinking water in BAC systems, 288–298
- in wastewaters, 55

Micropores, 14, 20, 21, 23, 27, 152, 192, 193, 201, 202, 203, 216

Microtox test, 101

Mixed liquor (volatile suspended solids (MLSS/MLVSS), 70, 133, 180
M-nitrophenol (MNP), 107

MNP. See M-nitrophenol (MNP)

Modeling, 145
- adsorption, 145, 152, 158, 173, 174–175, 177
- biofilm detachment, 155
- biological removal
-- attached-growth, 66
-- suspended-growth, 145, 157
- bioregeneration, 217–229
- diffusion, 152
- drinking water biofiltration, 331, 341
- GAC adsorbers, 145
-- GAC/BAC reactors, modeling approaches in, 158–173
-- integrated adsorption and biological removal, benefits of, 155–158
-- prevalent models in BAC reactors involving adsorption and biodegradation, 173–178
-- processes around carbon particle surrounded by biofilm, 146–155
-- PACT process, modeling of, 178
-- mass balance for PAC in, 178–180
-- mass balances in, 178
-- models describing substrate removal in, 181–185

Models
- biodegradation/adsorption
-- screening model (BASM), 225
- biofilm on activated carbon (BFAC) model, 174, 175, 223
- BIOFILT model, 339–340
- homogeneous surface diffusion model (HSDM), 174, 347
-- ideal adsorbed solution (IAS) model, 28
-- improved simplified ideal adsorbed solution (SIAS) model, 28
-- michigan adsorption design and applications model (MADAM), 173
-- model of Wang and Summers, 337–338
-- models involving bioregeneration, 217–229
-- Multiple-Component Biofilm Diffusion Biodegradation and Adsorption model (MDBA), 227
-- plug flow stationary solid phase column (PSSPC) model, 345
-- Pore Diffusion Model (PDM), 152
-- Smin model, 334, 336
-- Simplified Ideal Adsorbed Solution (SIAS) model, 28, 29,
-- Uhl’s Model, 335–337
Modified Biot number, 170, 173
Modified Stanton number, 169, 170

Molecular tools
-- Amplified Fragment Length Polymorphism (AFLP), 307
-- Polymerase Chain Reaction (PCR), 308
-- terminal-restriction fragment length polymorphism (T-RFLP), 308
Molinate, 202, 203, 210
Monobromoacetic acid (MBAA), 295
Monochloramine, 277
Monochloroacetic acid (MCAA), 295
Monod model, 151, 183
MTBE. See Methyl-tert-butylether (MTBE)
MTZ. See Mass transfer zone (MTZ)
Mulheim process, 247–248, 320, 321

Multicomponent systems, bioregeneration modeling in, 225–227

Multiple-Component Biofilm Diffusion Biodegradation and Adsorption model (MDBA), 227

Multisolute Fritz–Schluender isotherm, 228

Multi-solute MDBA model, 218

Municipal wastewater treatment, 6

N
Naphthalene, 21, 118
Naproxen (NPX), 52, 55, 290
National Pollutant Discharge Elimination System (NPDES), 132
Natural Organic Matter (NOM), 5, 30, 200, 237, 363
-- acidity, 255, 267
-- adsorbability of, 255, 255–258
-- aromaticity, 251, 255
-- BAC filtration, 288–289
-- biodegradability, 251, 253–254
-- biodegradable fraction in, 239–243
-- biological removal of, 331, 332, 344–345
-- desorbability of, 258–260
-- fractionation of, 243–244, 255
-- fractions removal, 267
Natural Organic Matter (NOM) (continued)
– molecular size distribution of, 243
– ozonation effects, 248, 250
– polarity, 250, 255
– raw water NOM, 250
– removal in conventional water treatment, 244–246
– structure and composition, 251
– see also Organic matter
Natural treatment systems, 248
N-butanol, 102
NDMA. See N-nitrosodimethylamine (NDMA)
Neutrals, definition of, 244
Nitrates, 238
– removal, 298
– role in bromate reduction, 300
– role in perchlorate reduction, 301
Nitrification, 78–79, 285
– affecting factors, 285–286
– BAC filtration, 285–286
– drinking water, 359
– enhancement, by activated carbon, 78
– inhibition of, 79
– nitrifiers in BAC filtration, 285, 286
– PAC addition, 79–80
– wastewater treatment, 78–80
Nitrifiers, 285
– ammonia oxidizing bacteria (AOB), 78, 308–309
– molecular microbiology, 308–309
– nitrite oxidizing bacteria (NOB), 78, 308
Nitrifying biomass, 308
Nitrate Oxidizing Bacteria (NOB). See Nitrifiers
Nitrobenzene, 110, 134
Nitrophenol, 87, 107, 197, 200, 362
2-Nitrophenol (2-NP), 58, 108, 200, 207, 210
4-Nitrophenol (4-NP), 107, 110, 134, 198
N-nitrosodimethylamine (NDMA), 288
Nitrosomonas sp., 308
Nitrospira sp., 308
NMR spectroscopy. See Nuclear Magnetic Resonance (NMR) spectroscopy
NOM. See Natural Organic Matter (NOM
Nonadsorbing media, 168, 334
Nonbiodegradable dissolved organic carbon (NBDOC), 243, 265
Nonbiodegradable organics, 56, 97, 111, 255, 256, 258, 259
Nongrowth substrate. See Cometabolism: cometabolic substrate
Nonsingularity, 196
Nonylphenol, 290, 292
Nonylphenol ethoxylates (NPEs), 101
Norit® 1240, 258, 259, 260, 268, 270
Norit®, 2, 3
NPDES. See National Pollutant Discharge Elimination System (NPDES)
NPEs. See Nonylphenol ethoxylates (NPEs)
NPX. See Naproxen (NPX)
Nuclear Magnetic Resonance (NMR) spectroscopy, 243, 244
OCPSF. See Organic chemicals, plastics and synthetic fiber (OCPSF)
O-cresol, 108, 177, 197, 200, 202, 210
9-Octadecenamide, 111
Octanol-water partition coefficient, 52, 54, 110
– relation to adsorption, 53
– sorption to biological sludge, 52
Offline bioregeneration, 194–195, 204, 207, 228
Oil and grease, 98, 99, 140
Oilfield wastewater, treatment of, 99
‘One-liquid film’ model, 221, 222
Orange II, 110, 111
Organic carbon
– assimilable organic carbon (AOC), 240–242, 253
– biodegradable organic carbon (BDOC), 242
– dissolved organic carbon (DOC), 239
– nonbiodegradable organic carbon (non-BDOC or NBDOC), 243
– particulate organic carbon (POC), 239, 251
– total organic carbon (TOC), 239
Organic carbon removal, enhancement of
– by activated carbon, 78
Organic chemicals, plastics and synthetic fiber (OCPSF), 127
Organic chemicals production industry, full-scale PACT for, 128–130
Organic matter
– biodegradable organic matter (BOM), 48, 78, 199, 205, 238, 274, 293
– dissolved organic matter (DOM), 85, 239, 303, 308
– fractionation, in wastewater, 48
– natural organic matter (NOM), 5, 30, 200, 237
– particulate organic matter (POM), 48, 67, 303, 335
– in water treatment, 238–244
– biodegradable fraction, 239–243
– expression of, 239
– fractionation of, 243–244
– nonbiodegradable dissolved organic carbon (NBDOC), 243
Organic matter, removal of, 265
Pharmaceuticals (continued)
– and endocrine disrupting compounds (EDCs), 109, 291
– estradiol, 292
– fenoprofen, 290
– gemfibrozil, 290
– ibuprofen, 52, 109, 290, 292, 358
– indomethacin, 290
– ketoprofen, 290
– naproxen, 52, 55, 109, 290
– octanol-water partitioning, 52, 54, 110, 291
– propyphenazone, 290
– salicylic acid, 291, 292
– sorption to sludge, 55
– trovafloxin mesylate, 292
– wastewater treatment, 95–97, 135
– water treatment, 44, 52
Pharmaceutical wastewaters, treatment of, 95–97, 135–136
Phenol, 5, 20, 21, 29, 50, 59, 87, 111, 134, 200, 208, 210, 217, 220, 224, 227, 228, 229, 288, 294
– removal of, 106–108, 110, 118
Phenolic compounds
– adsorption of, 197
– chlorophenol, 4, 87, 107
– nitrophenol, 87, 107, 110, 134, 197, 200, 362
– oxidative coupling of, 197
– oxidative polymerization of, 196
– wastewaters, 101
Phenol molecules (PhOH), 196
Phenoxy radicals (PhO*), 196, 197
Phosphorus, 70, 140, 198, 254, 304
Phragmitis communis, 207
Phthalate ester (PAE), 294
Phthalates, 294
Physical adsorption (Physisorption). See Adsorption
Physicochemically regenerated carbon, 360
Physicochemical regeneration of activated carbon, 363
Physisorption, 17, 193, 196
Pilot reactors, 102
Pilot-scale GAC-FBR, leachate treatment in, 119–120
p-isopropylphenol, 200, 210
Plane of zero gradient (PZG), 190
Plants in suburbs, of Paris, 322–323
Plug flow reactor (PFR), 70, 170, 177, 242, 335, 338
Plug flow stationary solid phase column (PSSPC) model. See Models
p-methylphenol, 195, 200, 210
p-nitrophenol (PNP), 107, 200, 210, 220, 221, 224, 229
PNP. See p-Nitrophenol (PNP)
POC. See Particulate Organic Carbon (POC)
Polychlorinated biphenyls (PCBs), 109
Polycyclic aromatic hydrocarbon (PAH), 99, 138, 209
Polyelectrolyte, 71
Polymerase Chain Reaction (PCR), 308
Polyoxyethylen, 210
Polymerase, 308
Poly S119, 111
Polysaccharide, 84
POM. See Particulate organic matter (POM)
POPs. See Persistent Organic Pollutant (POP)
Pore blockage, 347
Pore diffusion model (PDM), 152
‘Pore diffusion’, 23
Pore-filling, 21
Pores, 14
– macro pores, 20, 21, 152, 193, 203, 216, 257
– meso pores, 20, 21, 152, 192, 193, 201
– micro pores, 14, 20, 21, 27, 152, 192, 193, 201, 202, 203, 216
– pore blockage, 347
Pore volume, 13, 21, 193, 202, 257, 292
Porosity, 1, 203
Postchlorination, 308
Potable water, 139, 194
Index

POTW. See Publicly Owned Treatment Works (POTW)

 – addition, 246
 – adsorbers, 30
 – anaerobic PACT process, 74
 – integration into biological wastewater treatment, 70–73
 – sequencing batch PACT reactors, 73
 – single-stage continuous-flow aerobic PACTs process, 70
 – activated sludge process, basic features of, 70
 – characteristics of, 72
 – development of, 70
 – process parameters in, 72

Powdered Activated Carbon Treatment (PACT) process, 7, 44, 69, 100, 101, 102, 109, 114, 127, 145, 157, 195, 199, 207, 209
 – aerobic PACT, 46
 – anaerobic PACT, 46, 74, 81, 86, 114, 157
 – and BAC systems, 353–355
 – concurrent bioregeneration in, 195
 – for contaminated groundwaters, 138–139
 – for contaminated surface runoff waters, 139–140
 – for domestic and industrial wastewaters co-treatment, 136
 – full-scale PACT systems, 127
 – for contaminated groundwaters, 138–139
 – for contaminated surface runoff waters, 139–140
 – for co-treatment of domestic and industrial wastewaters, 136
 – for domestic wastewaters reuse, 139
 – for industrial effluents, 128–136
 – for landfill leachates, 136–138
 – general process diagram, 71
 – for landfill leachates, 136–138
 – mass balance for PAC in, 178, 180–181
 – models describing substrate removal in, 181–185
 – operation process parameters, 72
 – PACT®, 70–74, 87, 128, 131–132, 134
 – PACT sludge, 70, 73, 81, 85, 87, 106, 139, 180, 363–364
 – PACT/WAR, 87, 132, 136, 139
 – for reuse of domestic wastewaters, 139
 – SBR-PACT, 74, 135, 137
 – typical conditions in, 72

PPCPs. See Pharmaceutical and Personal Care Products (PPCPs)

Prechlorination, 308

Precurcursors, 295
 – DBP formation, 5, 244, 270, 285, 295, 303
 – humic substances, 196, 240, 244, 245

Preparation of activated carbon, 13–14
 – Pressure swing adsorption, 38
 – Primary substrate, removal as, 49, 108, 293, 356
 – Priority pollutants, 70, 76, 87
 – removal of, 109–110
 – treatment of, 134

Propylene oxide/styrene monomer (PO/SM)
 – production wastewater, 130–131

Propyphenazone, 290

Pseudomonas, 206, 306
 – chrysosporium, 206
 – fluorescens, 112
 – fluorescens P17, 241
 – putida ATCC 70047, 107

Pseudomonas strains, 207

Publicly Owned Treatment Works (POTW), 43, 56, 101, 127, 135, 137

Purit®, 2–3

Pyrolysis/GC-MS, 243

PZG. See Plane of zero gradient (PZG)

R
 – Radiolabeled carbon, 214–215
 – Radiolabeled phenol, 215
 – Rapid sand filtration, 248, 249, 307, 320, 322, 323
 – Rate-limiting step, 16, 24, 199, 201, 337–338
 – Raw and ozonated waters, 250, 253, 267, 286–287
 – adsorbability and desorbability of organic matter in, 255–259
 – NOM, 250
 – RBF. See River bank filtration (RBF)

RDX. See Royal Demolition Explosive (RDX)

Reactivation of activated carbon, 37–39

Reactive Black 5, 110

Reactor mass balance, 220
 – dimensionless form of, 166–167
 – total dimensionless expression of, 168–169

Reactors
 – BAC-SBR, 227
 – biomass balance in, 164
Reactors (continued)
– FBR, 68, 69
– GAC-FBR (Fluidized Bed Reactor packed with Granular Activated Carbon), 119, 327
– GAC-MBR (GAC added Membrane Bioreactor), 209, 355
– GAC-SBBR (GAC Reactor operated as a Sequencing Batch Biofilm Reactor), 68
– GAC-UASB (Upflow Anaerobic Sludge Blanket packed with Granular Activated Carbon), 81, 100
– GAC-UFBR (Upflow Fixed Bed Reactors packed with GAC), 105
– MBR (Membrane Bioreactor), 74–75, 86
– PAC-MBR, 111, 302
– PACT, 73–74, 101, 114, 129, 132, 137
– substrate mass balance in liquid phase of, 159–164
Reclamation
– BAC filtration, 141
– domestic wastewater, 140–141
– industrial wastewater, 141–142
– nonpotable use, 141–142
– ozonation, 140
Recycle fluidized bed (RFB), 175
Reductive dechlorination, 105
Refinery wastewaters, PACT treatment of, 98, 131–134
Regeneration
– of activated carbon, 360
– activated carbon grade, importance of, 360–361
– biological activated carbon, 363–364
– bioregeneration of activated carbon, 361–363
– bioregeneration
– of PACT and BAC sludges
– frequency, 327, 328
– thermal, 39
– wet air oxidation (WAO), 38, 86, 103, 131, 139, 363–364
– wet air regenration (WAR), 71, 87, 128, 131, 363
Reeves Ford Road landfill, 137
Remediation, 7, 8
Removal mechanisms and micropollutant elimination, 355
– drinking water treatment, 358–359
– wastewater treatment, 355–358
– Repsol Tarragona wastewater treatment plant, 131
Respirometry, 215
– OUR, 80, 96, 103, 106, 117, 185
– SOUR, 58
– bioregeneration on, 195–198
– extent of, 211
RFB. See Recycle fluidized bed (RFB)
Rheinisch–Westfälische Wasserwerksgesellschaft (RWW), 247–248
Rhodococcus rhodochrous, 206
Ribosomal RNA genes, 308
River bank filtration (RBF), 248
Row Supra, 256, 257, 258, 259
Royal Demolition Explosive (RDX), 195
RWW. See Rheinisch–Westfälische Wasserwerksgesellschaft (RWW)
S
Salicylic acid, 291, 292
Sand biofiltration, 277, 291
Sandwich filter, 273
SAT. See Soil aquifer treatment (SAT)
SBR. See Sequencing batch reactor (SBR)
SBR-PACT, 74, 135, 137
Scale
– laboratory-scale, 80, 97, 101, 103, 112, 114, 119, 141, 269, 275, 300
– pilot-scale, 98, 102, 104, 109, 119, 133, 152, 268, 276, 277, 283, 284, 286, 293, 300, 308, 343, 344, 345
Scanning Electron Micrographs, 207, 217
Scanning Electron Microscopy (SEM), 64, 207, 216, 305
Scattered surface growth, meaning of, 222
SCFB. See Semi-Continuously Fed Batch Reactor (SCFB)
Schatten, 2
Scheele, 2
SCR. See Specific Cake Resistance (SCR)
SEC. See Instrumental analysis
Secondary substrate, 49–50, 356
Secondary treatment, activated carbon in, 46
– GAC, 46
– PAC, 46
SEM. See Scanning Electron Microscopy (SEM)
Semi-Continuously Fed Batch Reactor (SCFB), 115–116
Semi-volatile organic compounds (SVOCs), 294
Sequencing batch reactor (SBR), 73, 81, 103, 106, 195
– BAC-SBR, 112, 227
– GAC-SBBR, 68
– SBR-PACT system, 74, 135, 137
– sequencing batch biofilm reactor (SBBR), 68, 194, 195
Sequential adsorption–biodegradation approach, 215
Settling, 81–82, 103, 129, 322, 323, 354, 358
Sewage treatment plants (STPs), 43–44, 62, 114, 140
Shigella sp., 308
SIAS. See Simplified Ideal Adsorbed Solution (SIAS)
Siemens
Simplified Ideal Adsorbed Solution (SIAS), 28, 29
Single solute adsorption, 27–28, 37
Single solute systems, bioregeneration in, 220–225
Single-stage continuous-flow aerobic PACT process, 70
– activated sludge process, basic features of, 70–71
– characteristics of, 71
– development of, 70
– process parameters in, 72–73
Size Exclusion Liquid Chromatography coupled to Organic Carbon Detection (SEC-OCD), 243
Slow sand filtration (SSF), 249, 320, 323
Sludge, biological
– dewaterability, 78, 82, 83, 87, 358
– mean floc size, 85
– settleability, 82, 84, 97, 181
– sludge volume index (SVI), 82, 97, 129
– specific cake resistance (SCR), 85–86
– specific resistance to filtration (SRF), 82, 83
Sludge age. See Sludge retention time (SRT)
Sludge retention time (SRT), 47, 52, 66, 68, 70, 72, 75, 85, 157, 179
Sludge-water partition coefficient, 54
sMBRs. See Submerged membrane bioreactors (sMBRs)
SMP. See Soluble microbial products (SMP)
SOC. See Synthetic Organic Compounds (SOC)
Sodium-2-(diisopropylamino) ethylthiolate, 101
Sodium ethylmethyl phosphonate, 101
Soil aquifer treatment (SAT), 248–249
Soil contamination, remediation of, 7
Solid–water partition coefficient, 52
Solubility, 18–19, 48, 113
Soluble EPS, 83
Soluble microbial products (SMP), 77, 83, 208, 304, 341
– biomass associated products (BAP), 341
– drinking water biofiltration, 341
– membrane bioreactors, 302
– utilization associated products (UAP), 341
Solute, 16, 17, 18, 158
– bisolute, 29, 37, 208, 209
– multisolute, 27, 28–30, 37
– single solute, 27–28, 37, 220–225, 342
Solute distribution parameter. See Dimensionless numbers
Solvent, 96, 102, 103, 112, 138, 182, 213, 300
– solvent extraction, 213
Sontheimer, 248, 342, 343
Sorption, 21, 47, 52, 53, 69, 104, 184, 185, 203, 357, 362
– biosorption, 47, 52, 54, 100, 183, 335
– onto activated carbon, 53
– ion exchange, 66, 300, 302
SOUR. See Specific Oxygen Uptake Rate (SOUR)
South Caboolture Water Reclamation Plant, 141, 142
Speciation, 79, 113, 295
Specific Cake Resistance (SCR), 85–86
Specific Oxygen Uptake Rate (SOUR), 58
Specific ozone dose, 251, 253
Specific Resistance to Filtration (SRF), 82, 83
Specific surface area, 18, 20–21, 27, 273, 338
Specific Ultraviolet Absorbance (SUVA), 239, 245, 250, 252, 253, 272, 302, 323
Spectral measurements, organic matter expression by, 239
Speitel, 205, 220, 221, 227
Sphingomonas, 109, 307
Spirillum sp. strain NOX, 241
SRF. See Specific Resistance to Filtration (SRF)
SRT. See Sludge retention time (SRT)
SSF. See Slow sand filtration (SSF)
Stanton number. See Dimensionless numbers
Stenhouse, 2
Ste Rose treatment plant, in Quebec, 323
Stewartby Landfill Site, 138
Stripping, 7, 54, 96, 102, 134, 184, 185
STPs. See Sewage treatment plants (STPs)
Styrum-East Water Works, 320
Submerged membrane bioreactors (sMBRs), 74, 303
Substituent groups, 19, 200
Substrate and biomass associated products, of biodegradation, 207–208
Substrate–carbon contact time, 203–204
Substrate removal and biofilm formation, 173–174, 331–333
– behavior and removal of, 59, 60–61
– chemical properties of, 200
Substrates’ concentration on the surface of activated carbon, 58
Sulfate, 15, 135, 300, 301
Sulfonol, 210
Surface acidity, 21, 203, 290
Surface diffusion, 23
Surface diffusion coefficient, 153, 166, 178, 221
Surface functional groups, 15, 20, 21, 196
Surface loading rate, 33
Surface runoff waters, 139–140, 285
Surfactants, 5–6, 128, 195, 200
Surfactants mixture, 210
SUVA. See Specific Ultraviolet Absorbance (SUVA)
SVOCs. See Semi-volatile organic compounds (SVOCs)
Synthetic carbonaceous adsorbent, 66
Synthetic fiber manufacturing industry, wastewater of, 130
Synthetic organic compounds (SOC), 5, 30, 175, 209, 237, 331
T
Tannic acid, 111
Taste and odor, 3, 4, 5, 238, 245, 246, 247, 288, 292, 320, 326–327
TCA. See Trichloroethane (TCA)
TCAA. See Trichloroacetic acid (TCAA)
TCB. See Trichlorobenzene (TCB)
TCE. See Trichloroethylene (TCE)
TDS. See Total dissolved solids (TDS)
Tertiary treatment, activated carbon in, 46
– GAC, 47
– PAC, 46–47
Tetrahydrofurane, 96
Textile wastewaters, treatment of, 99–100, 111
Thermally activated PACs, 202
Thermal volatilization, 38
Thiocyanate, biological removal of, 102, 103
THMs. See Trihalomethanes (THMs)
THMFP, 10, 295, 303
Tertiary treatment, activated carbon in, 46
– GAC, 47
– PAC, 46–47
Tetrachloroethylene (PCE), 105, 110, 134, 138, 210, 217
Tetrahydrofuran, 96
Textile wastewaters, treatment of, 99–100, 111
Thermally activated PACs, 202
Thermal volatilization, 38
Thiocyanate, biological removal of, 102, 103
THMs. See Trihalomethanes (THMs)
THMFP, 10, 295, 303
Three-phase fluidized bed reactor, modeling step input of substrate in, 177
Throughput volume, 34
TiO2/UV/O3, 111
TKN. See Total Kjeldahl Nitrogen (TKN)
TMP. See Transmembrane pressure (TMP)
TN. See Total Nitrogen (TN)
TOC. See Total Organic Carbon (TOC)
Toluene, 50, 96, 102, 104, 105, 118, 134, 138, 182, 183, 202, 210, 224, 225, 289
Total dissolved solids (TDS), 135
Total Kjeldahl Nitrogen (TKN), 96, 139
Total Nitrogen (TN), 100, 141, 287, 288
Total Organic Carbon (TOC), 239, 243
Total THM (TTHM), 295, 297, 348
Total volatile hydrocarbons (TVH), 99
Toxic algal metabolites, 288, 293
Trace organics, 47, 347
Transient-state, multiple-species biofilm model (TSMSBM), 341–342
Transmembrane pressure (TMP), 75, 85
Transport mechanisms
– adsorption, 24
– boundary layer, 22–23
– bulk solution transport (Advection), 22–23
– external diffusion, 23
– external film, 23
– intraparticle (internal) diffusion, 23
– liquid film, 23
– molecular diffusion, 23
– pore diffusion, 23
– surface diffusion, 23
T-RFLP. See Terminal-restriction fragment length polymorphism (T-RFLP)
T-RFs. See Terminal-restriction fragments (T-RFs)
Trihalomethanes (THMs), 10, 244, 294–295, 297, 348
Trichloroacetic acid (TCAA), 295, 297
Trichlorobenzene (TCB), 134, 182, 290
Trichloroethane (TCA), 112
Trichloroethylene (TCE), 54, 105, 134, 138, 208, 210, 215, 290, 304
Trihalomethanes (THMs), 10, 244, 294–295, 297, 348
- bromodichloromethane, 298, 348
- cometabolism
 -- nitrifiers, 298
- dibromochloromethane, 298, 348
- trihalomethane formation potential (THMFP), 10, 295, 303

Trovafloxin mesylate, 292

TSMSBM. See Transient-state, multiple-species biofilm model (TSMSBM)

TTHM. See Total THM (TTHM)

TVH. See Total volatile hydrocarbons (TVH)

‘Two-liquid film’ model, 221–222

U

UASB. See Upflow anaerobic sludge blanket (UASB)

UF. See Ultrafiltration (UF)

Uhl’s model, 335–337

Ultrafiltration (UF), 74, 75, 85, 118, 302, 323

Upflow anaerobic sludge blanket (UASB), 81, 100

Upflow fixed-bed reactors packed with GAC (GAC-UFB), 105

Use of activated carbon, 1, 3–4

UV absorbance, 8, 239, 251, 295

-- specific ultraviolet absorbance (SUVA), 239, 245, 250, 252, 253, 272, 283, 295, 302, 323, 325
 -- UV\textsubscript{254}, 96, 141, 239, 253, 255, 277, 303, 325
 -- UV\textsubscript{280}, 96, 111

V

Valeric acid, 173, 218, 219

van der Kooij, 241, 306

van der Waals forces, 15, 17, 21, 27, 196

Very low substrate (fasting) conditions, modeling the case of, 176–177, 336

Vinyl chloride-containing wastewater, 133

Virgin GAC, 177, 205, 208

VOCs. See Volatile organic compounds (VOCs)

Void ratio, 160, 164

Volatile organic compounds (VOCs), 7, 38, 58, 96, 102, 104–106, 128, 135, 185, 294

Volatility, 54, 59, 104

-- Henry constant, 54, 184

Volatilization, 38, 54, 183

von Ostreijko, 2

W

Wang and Summers, model of, 337–338

WAO. See Wet air oxidation (WAO)

WAR. See Wet Air Regeneration (WAR)

Warburg’s apparatus, 215

Wastewaters
 -- hazardous landfill leachates, 6, 8, 43, 50, 69, 127
 -- industrial
 -- acrylonitrile manufacturing, 103
 -- alcohol distillery wastewater, 104
 -- bactericide wastewater, 101
 -- caustic hydrolysate wastewater, 101
 -- coke oven plant wastewater, 103
 -- dyes and pigments processing wastewater, 102
 -- metal finishing industry wastewater, 112
 -- mining industry wastewater, 112
 -- organic chemicals production industry wastewater, 5, 8, 19, 127, 128, 129, 130, 134, 136, 182, 242
 -- paint and ink industry wastewater, 112
 -- paper and pulp wastewater, 97–98
 -- pesticide manufacturing wastewater, 107, 128
 -- petrochemical wastewater, 131–134
 -- petroleum refinery wastewater, 98–99
 -- pharmaceutical wastewater, 95–97, 135–136
 -- phenolic wastewater, 101, 358
 -- propylene oxide/styrene monomer (PO/SM) production wastewater, 130–131
 -- steel mill coke plant wastewater, 102
 -- synthetic fiber manufacturing industry wastewater, 130
 -- tannery wastewater, 101
 -- textile industry wastewater, 63, 214
 -- municipal, domestic, 50, 63
 -- reuse, 6, 50, 76, 127, 139
 -- sanitary landfill leachates, 80, 82, 113
 -- treatment, 355–358
 -- activated carbon adsorption in, 7
 -- activated carbon in, 5–6
 -- advanced, 141
 -- biological, 59, 60, 69, 127, 355, 358, 363
 -- industrial, 6, 31, 43, 46, 47, 50, 56, 62, 63, 68, 74, 76, 95, 99
 -- municipal, 6, 43, 63, 79, 354, 356, 357
 -- physicochemical, 6, 30, 62, 110, 238
 -- primary, 44, 45, 46, 76
 -- secondary, 43–45, 46
 -- tertiary, 43–45, 46

Wastewater treatment plants (WWTPs), 6, 52, 75, 76, 101, 185, 354

Water preparation, for industrial purposes, 7

Water treatment
 -- activated carbon adsorption in, 8
 -- activated carbon in, 246–247
– coagulation, 6, 30, 101, 118, 141, 237, 245, 249, 277, 292, 295, 308, 324, 326
– disinfection, 4, 140, 141, 237, 244, 248, 285, 309, 322, 324
– double layer filtration, 248, 321
– flocculation, 63, 237, 245, 246, 248, 277, 292, 322, 323
– infiltration for groundwater recharge, 248, 321
– Müllheim process, 5, 247–248, 320

– sedimentation, 63, 139, 140, 245, 248, 277, 292, 308, 324
– plants
 -- Bendigo, Castlemaine & Kyneton (Victoria, Australia), 326–327
 -- Leiden Plant (the Netherlands), 320–322
 -- Müllheim (Germany), 320
 -- Ste Rose Plant (Quebec, Canada), 323
 -- suburbs of Paris, 322–323
 -- Weesperkarspel (the Netherlands), 324–326, 327
 -- Zürich-Lengg (Switzerland), 323-324
Weber, 63, 64, 69, 173, 174, 182, 221, 222
Weesperkarspel Plant, 276, 283, 324–326, 327
Wet air oxidation (WAO), 38, 86, 103, 130, 363–364
Wet Air Regeneration (WAR), 71, 87, 128, 131, 363, 364
WWTPs. See Wastewater treatment plants (WWTPs)

X
Xenobiotic organic compounds (XOCs), 43, 208, 288

-- brominated flame retardants, 43
-- endocrine disrupting compounds (EDCs), 5, 53, 76, 109, 140, 288, 290, 291, 354
-- hormones, 43, 62, 354, 356, 359, 362
-- personal care products (PCPs), 43, 109, 110, 206, 217, 288
-- pesticides, 5, 43, 100, 103, 107, 109, 112, 128, 140, 288, 291, 320, 321, 346, 347
-- pharmaceuticals, 43, 52, 75, 76, 95–97, 109, 135, 288, 290, 354, 357, 358
-- pharmaceuticals and personal care products (PPCPs), 109, 288, 356, 359, 362
Xenobiotics, 43, 49, 207, 208, 288, 354
XOCs. See Xenobiotic organic compounds (XOCs)
Xylenols, 108

Z
Zernel Road Municipal Solid Waste Landfill, 137
Zero-order kinetics inside biofilm, 167–168
Zimpro® WAR, 70, 87
Zürich-Lengg, plant in, 323–324