Contents

List of Contributors XV

1 Introduction 1
 G. Gottstein

2 Integral Materials Modeling 5
 G. Gottstein

 Abstract 5
 2.1 Introduction 5
 2.2 The Collaborative Research Center on “Integral Materials Modeling” 9
 2.3 Through-Process Modeling 12
 2.4 Outlook 13
 References 15

3 Aluminum Through-Process Modeling: From Casting to Cup Drawing
 (TP C6) 17
 L. Neumann, R. Kopp, G. Hirt, E. Jannot, G. Gottstein, B. Hallstedt,
 J. M. Schneider, B. Pustal, and A. Bührig-Polaczek

 Abstract 17
 3.1 Introduction 17
 3.2 Casting and Solidification 18
 3.2.1 The Casting Alloys 18
 3.2.1.1 Casting 18
 3.2.2 Simulation of the Casting Process 19
 3.2.2.1 Thermodynamic Description of the Model Alloy 19
 3.2.2.2 Simulation of Grain Nucleation and Growth Using a Multiphase
 Flow and Solidification Model 20
 3.2.2.3 Simulation of Phase Fractions, Dendrite Arm Spacing, and
 Concentration Profiles Using a Microsegregation Model 21
 3.3 Homogenization 23
 3.3.1 Homogenization of Alloy AA3104 23
 3.3.2 Simulation Methods 25
4 From Casting to Product Properties: Modeling the Process Chain of Steels
(TP C7) 33
U. Prahl, W. Bleck, A.-P. Hollands, D. Senk, X. Li, G. Hirt, R. Kopp,
V. Pavlyk, and U. Dilthey

Abstract 33
4.1 Introduction 33
4.2 Continuous Casting Simulation 35
4.3 Hot Rolling Simulation 36
4.4 Simulation of Phase Transformation 38
4.4.1 Physical Modeling of Isothermal Proeutectoid Ferrite
Transformation 38
4.4.2 Semiempirical Modeling of Phase Transformation 39
4.5 Simulation of Mechanical Properties 40
4.6 Welding Simulation 42
4.7 Application 44
4.8 Summary 46
References 47

5 Status of Through-Process Simulation for Coated Gas Turbine Components
(TP C8) 49
R. Herzog, N. Warnken, I. Steinbach, B. Hallstedt, C. Walter, J. Müller,
D. Hajas, E. Münstermann, J. M. Schneider, R. Nickel, D. Parkot, K. Bobzin,
E. Lugscheider, P. Bednarz, O. Trunova, and L. Singheiser

Abstract 49
5.1 Introduction 49
5.2 Solidification and Heat Treatment of the Nickel-Based Superalloy 51
5.3 CVD Processing of an Alumina Interdiffusion Barrier 54
5.4 Magnetron Sputter Process of NiCoCrAlY Corrosion-Protective Coating 55
5.5 Atmospheric Plasma Spraying of Ceramic TBC 56
5.6 Stress Response and Crack Formation at the Bond Coat/TBC Interface During Cyclic Thermal Loading 57
5.7 Conclusions 60
References 60

6 Deformation Behavior of a Plastic Pipe Fitting (TP C9) 63
W. Michaeli, E. Schmachtenberg, M. Brinkmann, M. Bussmann, and B. Renner

Abstract 63
6.1 Introduction 63
6.2 Aims and Procedure 64
6.3 Calculation of Local Inner Part Properties Using Extended Process Simulation 65
6.3.1 Developed Software 65
6.3.2 Temperature Field Calculation 66
6.3.3 Calculation of Inner Properties 67
6.3.4 Procedure of Simulating Inner Properties 69
6.4 Integration of Inner Properties into Structural Analysis 70
6.5 Conclusions and Perspectives 72
References 72

7 Modeling of Flow Processes During Solidification (TP A1) 75
M. Bussmann, B. Renner, W. Michaeli, B. Pustal, A. Bührig-Polaczek, V. Pavlyk, O. Mokrov, and U. Dilthey

Abstract 75
7.1 Introduction 75
7.1.1 Aluminum Cup 76
7.1.2 Plastics Pipe Fitting 77
7.1.3 Steel Profile 77
7.2 Software Development 78
7.2.1 Aluminum Cup 78
7.2.2 Plastics Pipe Fitting 79
7.2.3 Steel Profile 80
7.3 Experiments and Results 80
7.3.1 Aluminum Cup 80
7.3.2 Plastics Pipe Fitting 81
7.3.3 Steel Profile 82
7.4 Discussion 83
7.4.1 Aluminum Cup 83
7.4.2 Plastics Pipe Fitting 83
7.4.3 Steel Profile 84
References 85
8 Microstructure Modeling During Solidification of Castings (TP A2) 87
B. Pustal, A. Bührig-Polaczek, N. Warnken, I. Steinbach, M. Bussmann, B. Renner, W. Michaeli, A.-P. Hollands, D. Senk, C. Walter, B. Hallstedt, and J. M. Schneider

Abstract 87
8.1 Introduction 87
8.2 Experiments 88
8.2.1 Turbine Blade 88
8.2.2 Aluminum Cup 89
8.2.3 Plastics Pipe Fitting 90
8.2.4 Steel Profile 91
8.3 Models 92
8.3.1 Turbine Blade 92
8.3.2 Aluminum Cup 92
8.3.3 Plastics Pipe Fitting 92
8.3.4 Steel Profile 93
8.4 Simulations and Results 94
8.4.1 Turbine Blade 94
8.4.2 Aluminum Cup 95
8.4.3 Plastics Pipe Fitting 96
8.4.4 Steel Profile 97
8.5 Summary 98
8.5.1 Turbine Blade 98
8.5.2 Aluminum Cup 99
8.5.3 Plastics Pipe Fitting 99
8.5.4 Steel Profile 99
References 100

9 Coating of Turbine Blades (TP A3) 103

Abstract 103
9.1 Introduction 103
9.2 Modeling and Simulation of Al₂O₃ Chemical Vapor Deposition 103
9.3 Modeling and Simulation of the Magnetron Sputter Process 107
9.4 Modeling and Simulation of Atmospheric Plasma Spraying and Thermal Barrier Coating Characterization 110
9.4.1 Plasma Torch/Plasma Free Jet Simulation 110
9.4.2 Powder Particles Characteristics 112
9.4.3 Coating Formation Simulation 113
9.4.4 APS Coating Properties/Homogenization Methods 119
References 122
10 Hot and Cold Rolling of Aluminum Sheet (TP B1) 125

Abstract 125
10.1 Introduction 125
10.2 Hot and Cold Rolling of Aluminum 126
10.2.1 Three-Internal-Variable Model (3IVM) 126
10.2.2 Full Constraints Taylor Texture Model 127
10.2.3 Grain Interaction Texture (GIA) Model 128
10.2.4 Recrystallization Nucleation (ReNuc) 128
10.2.5 Statistical Recrystallization Texture Model (StaRT) 129
10.2.6 Coupling GIA and 3IVM 129
10.2.7 Through-Process Model (TPM) 129
10.2.8 Texture Predictions 130
10.2.9 Hot Rolling 131
10.2.10 Cold Rolling 131
10.3 Database “StoRaDat” and Interfaces 133
10.4 Conclusions and Outlook 136
References 136

11 Modeling of the Hot Rolling Process of a C45 Steel (TP B1) 139
X. Li, R. Kopp, G. Hirt, B. Zeislmair, and W. Bleck

Abstract 139
11.1 Introduction 139
11.2 Experimental Procedure 140
11.2.1 Casting and Rolling in One Heat 140
11.2.2 Determination of Flow Curves 141
11.3 Modeling of the Hot Rolling Process 142
11.3.1 Phenomenological Modeling of the Grain Size Development During Hot Rolling 142
11.3.2 Modeling Precipitation During Hot Rolling 143
11.3.3 Microstructure Simulation of the Hot Rolling Process 144
11.4 Summary 147
References 148

12 Simulation of Phase Changes During Thermal Treatments of Various Metal Alloys (TP B2) 149

Abstract 149
12.1 Introduction 149
12.2 Aluminum Sheet AA3104: Precipitation Kinetics and Solute Distribution During Homogenization 150

12.2.1 Challenge 150
12.2.2 DICTRA Calculations 151
12.2.3 Statistical Precipitation Model: ClaNG 151
12.2.4 Evolution of the Primary Phases 152
12.2.5 Precipitation of Dispersoids 153
12.2.6 Conclusion on Al Sheet AA3104 153
12.3 Turbine Blades: Ni-Base Superalloys 154

12.3.1 Challenge 154
12.3.2 Simulation Models and Experiments 154
12.3.3 Results 155
12.4 C45 and S460 Steel: Isothermal Phase Transformation and Austenite Conditioning 157

12.4.1 Challenge 157
12.4.2 Simulation Models and Experiments 157
12.4.3 Results 158

References 159

13 Deep Drawing Properties of Aluminum Sheet (TP C6) 161

L. Neumann, R. Kopp, G. Hirt, M. Crumbach, and G. Gottstein

Abstract 161

13.1 Introduction 161
13.2 Modeling Setup for Prediction of Texture-Induced Anisotropy 162
13.2.1 Interfacing Texture to Plastic Anisotropy 162
13.2.2 Orthotropic Viscous Flow Approach 163
13.2.3 Update of the Yield Locus 164
13.3 Results and Discussion 165
13.4 Conclusions and Outlook 167

References 167

14 Simulation of Stress Response to Cyclic Thermal Loading in Thermal Barrier Composites for Gas Turbines (TP C8) 169

R. Herzog, P. Bednarz, E. Trunova, and L. Singheiser

Abstract 169

14.1 Introduction 169
14.2 Experimental 170
14.3 Finite Element Simulation 172
14.3.1 Mesh and Boundary Conditions 172
14.3.2 Material Data and Bond Coat Oxidation 172
14.3.3 Load Parameters 173
14.3.4 Simulated Stress Response 174
14.4 Conclusions 178

References 179
15 Through-Process Multiscale Models for the Prediction of Recrystallization Textures 181
D. Raabe

Abstract 181

15.1 Introduction to Recrystallization Models for Process Simulation 181
15.2 Models for Predicting Recrystallization Textures with Discretization of Space and Time 183

15.2.1 Introduction 183
15.2.2 Cellular Automaton Models of Recrystallization 183
15.2.3 Potts Monte Carlo Models of Recrystallization 189
15.3 Statistical Models for Predicting Recrystallization Textures 191

15.3.1 The Sebald–Gottstein Model 191
15.3.2 A New Texture Component-Based Avrami Model 192
15.4 Input to Recrystallization Models for Texture Prediction 194

15.4.1 Incorporation of Stored Deformation Energy into Recrystallization Models 194
15.4.2 Grain Boundary Input Parameters into Recrystallization Models for Texture Prediction 195

References 195

16 Analytic Interatomic Potentials for Atomic-Scale Simulations of Metals and Metal Compounds: A Brief Overview 197
K. Albe, P. Erhart, and M. Müller

Abstract 197

16.1 Introduction 197
16.2 Overview of Established Potential Schemes 198
16.3 Analytic Bond-Order Potentials (BOP) 202
16.4 Concluding Remarks 204

References 205

17 Selected Problems of Phase-Field Modeling in Materials Science 207
H. Emmerich and R. Siquieri

Abstract 207

17.1 Introduction to Phase-Field Modeling in Materials Science 207
17.2 Overview on Recent Issues in the Further Development of Phase-Field Modeling 209

17.2.1 Evolution of Nanostructures in Condensed Matter Systems 210
17.2.2 Dynamics in Soft-Matter Systems at the Micro- and Nanoscale 210
17.3 “Quantitative Phase-Field Simulations” of Nucleation and Growth in Peritectic Material Systems 211

17.3.1 A Quantitative Phase-Field Model for Peritectic Growth Taking Into Account Hydrodynamic Convection in the Molten Phase 213
21 Minimal Free Energy Density of Annealed Polycrystals 253
M. E. Glicksman and P. R. Rios

Abstract 253

21.1 Introduction 253

21.2 Construction and Properties of ANHs 255

21.3 Assessing Network Partitioning: Isoperimetric Quotient and
Dimensionless Energy Cost 258

21.4 Conclusions 262

References 263

22 Modeling Dynamic Grain Growth and its Consequences 265
P. S. Bate

Abstract 265

22.1 Introduction 265

22.2 Mechanical Behavior in Superplasticity 266

22.3 Dynamic Grain Growth 268

22.4 Microstructural Modeling of Dynamic Grain Growth 270

22.5 Conclusion 272

References 274

23 Modeling of Severe Plastic Deformation: Evolution of Microstructure,
Texture, and Strength 275
Y. Estrin

Abstract 275

23.1 Introduction 275

23.2 Fundamentals of the Model 276

23.3 Application of the Model to the ECAP Process 279

23.4 Conclusion 283

References 283

Subject Index 285