Index

Note: Page numbers in *italics* refer to figures, those in **bold** refer to tables

Acropora 251, 253

Aethesolithon 173, 175

Agua Amarga Basin (Spain),
 lowstand systems tract, 4th
 order sequence 101
 subdivision into three
 sedimentary cycles 101

Amphistegina 57, 75, 80, 81, 96, 118, 133, 143, 144, 146, 154

Apostoli Basin (Crete), Tortonian
 ramp, transgressive
 cycle 101

Appenine platform, sequence
 architecture 125

Appenines, central
 depositional model of
 outcropping carbonate
 platform ix

Miocene carbonates from ix

Arbacia imporcera 219

Archaeolithothamniun 171, 174, 175

architecture, geodynamic controls
 over x–xi
 Kita-daito-jima, drill-core
 investigations x
 Sardinia Rift Basin x–xi

Asthenosoma ijimai 202

Astropecten 220

Atlantic-Mediterranean
 connections

Betic and Rifian corridors 51
 closure of the Guadix Seaway 51
 links progressively reduced
 during the Miocene 51

Messinian, progressive
desiccation of Mediterranean
 Basin 51

opening of Gibraltar Straits
during the Pliocene 51

barnamol assemblage 38, 40–1

benthic foraminifera
modern forms, appearance in
 mid-Miocene 1

and past climate change 1–2

bimol assemblage 38

Bioherm Unit 55, 56, 57

Borelis 142, 144, 146

Brissopsis gr. atlantica 220

bryomol assemblage 36, 46

bryomol association 93, 107, 123, 218

bryomol carbonates 218

Burdigalian warm-temperate and
tropical carbonates,
 deposition 130

“Calcari a Briozoi e Litotamni”
 Formation 92–100, 108
 controls on depositional
 profile 101
 distal outer ramp facies 95, 95
 omission surface at top of
 cycles 95
 vertically associated 95
 eustatic sea-level fluctuations
 during deposition 101
 inner ramp: euphotic zone 96–7
 analogue facies 96
 seagrass meadows 96, 97
 inner ramp, 3rd-order sea-level
 cyclicity 99, 101
 inner ramp facies 92–3
 balanid floatstone to
 rudstone 92
 biogenic components 93
 littoral zone 92
 unequivocal palaeshoreline
 not documented 92
 unsorted packstone to
 floatstone 92–3
 long-term simultaneous
 backstepping and
 progradation 101
 middle ramp facies 93
 bioclastic packstone 93
 coral carpets 93
 oyster–pectinid
 floatstone 93
 rhodolith floatstone to
 rudstone 93
 transition from inner ramp 93

middle ramp, oligophotic
 zone 97

red algae and foraminifera 97

Miocene rhodalgal and molechfor
sediments from 219

outer ramp facies 93–5

intermediate outer ramp 94

lithofacies of proximal outer
 ramp 93–4, 94

molechfor association 93

proximal outer ramp 93, 94–5

outer ramp, oligophotic to aphotic
 zone 97

photic zones 95–7

aphotic zone 95, 96, 102

dysphotic zone 95

euphotic zone 95

mesophotic zone 96

oligophotic zone 96, 102

proposed age for 150

“Calcari a Briozoi e Litotamni”
 Formation, stratigraphic
 architecture 97–100

facies architecture 150–1

depositional sequence SD1 150

depositional sequence SD2 150–1

high frequency cycles 99–100

cycle formation, distal outer-
 ramp deposits 100

discontinuity surfaces 99

evolution of inner-ramp
 succession 99, 99

inner-middle ramp facies
 architecture 99, 99

inner-ramp succession 99

intermediate ramp 100

lowstand phase, five high-
 frequency units 99–100, 99

middle ramp 100

proximal outer ramp
 successions 100

overall architecture and 2nd
 order sequences 97–9

absence of zooxanthellate coral
 reefs 97

283
“Calcari a Briozi e Litotamni”
Formation, stratigraphic
architecture (Cont’d)
backstepping of middle-ramp
facies 98, 98
composition of lower
sequence 95, 97–8
homoclinal ramp inferred 97
sequences dated 97
transgressive systems tract 98
upper sequence, lowstand
systems tract 98–9
carbonate assemblages, main
controls
longer timescale viii–ix
shorter time scale viii
carbonate factories: demise and
dismantling 277
Villagreca area 277
basinward migration of
productive areas
favoured 277
foramol deposits prone to
periodical removal 274, 277
carbonate factories: development
and growth 275–7
coral-dominated
factories 275–6
all investigated areas lacked a
rim 276
coral buildups 265, 276
Dolionova area 276
Porites, in coral-rich
assemblages, common
evolutional trends 275–6
Villagreca 276
foramol/rhodalgal carbonate
factories 276–7
foramol/rhodalgal carbonate
factories, Isili area 277
developed in different
physiographic settings 277
foramol carbonates dominated
by red algae 277
Perda Quaddu carbonate
factory 277
Punta Trempu–Isili village
areas 277
foramol/rhodalgal carbonate
factories, Villagreca
area 277
carbonate factories 102, 129, 130
analysis of 258
cool water, dominated by
heterotrophic
organisms 129
depositional architecture and
benthic communities 258, 280
factors favouring development
close to rift periphery 258
lacked a rim in all illustrated
areas 280
tropical, dominated by photo-
autotrophic organisms 129
carbonate grain
associations 35–46
1997 classification of carbonate
grains 38–9
carbonate deposit groupings 36
controlling parameters on grain
distribution 35
existence of descriptive
names 45–6
existing classifications 36–40, 37
hierarchy of carbonate-grain
associations 40–1
barnamol assemblage 40–1
foramol group and Heterozoan
Association 41
regrouping of previous
nomenclatures, two main
categories 41
influences on carbonate-grain
distribution 40
groupings based on benthic
components, purely
descriptive terms 40
Photozoan and Heterozoan
associations, relevant
data 40
wide range of influential
factors 40
need for descriptive
nomenclature viii
nomenclature based on latitude
and/or water
temperature 39
five sediment provinces
defined 37, 39
partitioning into two
categories 39
three zones of carbonate
sedimentation
defined 39
nomenclature based on mode
of carbonate
precipitation 39–40
classification partly descriptive
and partly interpretative 40
cool-water factory 39
mud-mound factory 39
tropical factory 39
nomenclature based on mode of
life of benthic
organisms 38–99
Heterozoan Association 38, 39
Photozoan Association 38, 39
nomenclature based on nature of
constituent grains 36, 38
importance of nutrients on
carbonate-grain
distribution 38
“mutual compensating effect”
of temperature and
salinity 38
names of groupings based on
dominant faunal
assemblage 38
nomenclatures either descriptive
or interpretive 36
other possible influences on grain
associations 35
similar deposits may develop
under different
environmental factors 45
use of first-order associations/
groupings and
nomenclature 42–5
advantages and disadvantages
of different schemes 42, 43–4
coraline algae grains 45
difficult to infer reliance (or
not) on light 45
foramol and chlorozoan
associations partly
descriptive 42, 45
possible use of two-tier
approach 45
problems in use of component-
based terms 45
provinces or factories
approach, less used 42
use of “mode of life”
terminology 45
use of second-order descriptive
groupings 41–2
creation of new descriptive
group suggested 41
LB-foralgal, signifying
importance of diverse larger
benthic foraminifera 41
naming of carbonate-grain
groups 41
preference, regard assemblages
or facies as second-order
groupings 41

Index
thermacor ‘assemblage’ and zooxanthellate coral reefs 41–2
thermacor and azooxanthellate corals 41
carbonate platforms
carbonate systems x
Latium-Abruzzi carbonate platform, rhodolith movement x
molluscs underrated in interpreting circum-Mediterranean carbonate systems x
palaeoenvironmental significance of coralline red algae reviewed x
carbonate producers, temporal changes in viii
apparent paradox viii
carbonate production in rift basins 257–81
carbonate factories: development and growth 275–7
carbonate production and related architectures 275
geological framework 258–60
development of carbonate facies since the Aquitanian 260
Messinian compressional phase 260
normal (master) faults parallel to rift axis 259, 259
principal master faults probably listric 259–60
role of minor transverse faults in rifting 260
S Sardinia Rift, internal structure and deformation 259
structural evolution of S. Sardinia rift system 258–9
Transfer Zone 259, 259 volcanic events and the Sardinian Graben System 260
outcrop description 260–75
Dolianova: carbonate inception in rift valleys 260–3
Isili area: carbonate production 267–75
Villagreca: inception/growth of carbonate platforms 259, 263–7, 264
substrate colonization 274
carbonate-dominated sequences, not directly on pre-rift basin 262, 264, 270, 271, 274
pioneer communities in investigated areas 261, 264, 268, 275
substratum preparation stage 275
syn-rift (early stage) deposits 275
carbonate ramps 146
“Bahama-type” platforms 100
distally steepened 100
facies partitioning 100
Miocene 90
problem of interpretation 100–1
response to sea-level change 100
see also “Calcari a Briozoi e Litotamni” Formation, ramp sediments; Latium-Abruzzi carbonate ramp; Ragusa Ramp
carbonate sedimentation in rift basins, controlled by variety of factors 280
carbonate sediments, warm-temperate, modern, SW Australia 129–30
carbonate shelf, non-tropical, model proposed 38
carbonate systems base level for sediment accumulation 89
progradation occurred during relative sea-level falls/lowstands 280–1
sensitive recorders of changes in environmental conditions vii
carbonate terminology viii
two major terminologies in use for neritic carbonates viii
carbonates Oligo-Miocene, echinoderms as components in 217–19
shallow-water, in warmer areas, photozoan associations 49
Cariatiz Messinian Fringing Reef 59–60, 60
cyclic relative sea-level oscillations recorded 58, 59
cyclic variation in δ13C values and precession cycles 58–9, 59
lowstand inverted wedges 58, 60
Caribbean region, reef development during the Miocene 21
Carlentini Formation 73, 73, 83
Caulostrepsis 92, 96
Cenozoic buildups, latitudinal width of reef belt viii
Cenozoic reef patterns and climate 17–32
abundance and exposed volume of reefs 19–21
analysis similar when limited to tropical-style coral reefs 20, 20
calculations, differences from simple counts 20
great differences in regional patterns 20, 20
reefs, total volume for each sub-epoch calculated 20, 21
regional patterns 20–1
viewed at sub-epoch level 19–20, 20
basic stratigraphic framework used 19
database and methods 18–19
stratigraphic assignment not as good as expected 19
diversity of reef-building assemblages 24–6, 29
diversity pattern Chattian to Messinian differs in main reef areas 25, 25, 29
Cenozoic reef patterns and climate (Cont’d) expected latitudinal pattern may be altered by historical causes 29 high diversity reefs more frequent from Rupelian onwards 25 measurement of reef diversity 24–5 patterns of reef diversity 29 positively correlated with distribution of true reefs 29 preferential occurrence of high-diversity reefs in lowest latitudes 25–6 significant inverse correlation with palaeolatitude 25 dominant reef builders 22 and composition of reef-building assemblages 28 distinct reef-building communities developed at high latitude, Aquitanian onwards 22 high-latitude buildups, late Eocene onwards 22, 23 increase in coral-dominated reefs 22 latitudinal distribution of 22, 24 relatively good correlation with palaeolatitude 22, 23 fluctuations in latitudinal extension of reef belts 21–2 coral-dominated buildups, narrower belt 21, 22 distribution of buildups 21 late Messinian disappearance of Mediterranean coral framework reefs 22 reefs with tropical affinity, N Hemisphere 22 widest extension of tropical reef zone, mid-Miocene 21, 22 greenhouse–icehouse transition, Oligocene–Miocene interval 17 latitudinal trends in reef properties 22–7 any link to climate? 29–31 controls on oceanic circulation 31 and development of specific dominant reef-builders 29, 30 differentiation of reef-building communities 31 greenhouse conditions and icehouse conditions 30 link between climate and reef development indirect 31 observed variations in reef patterns, development of 31 oceanographic changes may have triggered reef expansion 31 proliferation of coral reefs in the icehouse 31 slight changes at Rupelian–Chattian boundary 29, 30 strengthened coupled atmospheric-palaeoceanographic circulation 30–1 upwelling zones, preferential development, continental west margins 31 low pCO2 levels and high saturation states of aragonite in shallow waters 32 reef properties and global physico-chemical changes 26–7 abundance of reefs probably linked to seawater temperature 27, 27 analyses show almost no significant cross-correlations 26, 26, 27 palaeotemperature data based on Mg/Ca ratios 26 use of variations of several seawater parameters 26 significance of reef properties, potential controls and interactions 28–9 size of buildups 22–4, 28–9 assessment of size suffers from biases 28–9 large exposed reef volume, tropical zone, Oligo–Miocene transition 24, 25 lateral reef extent less correlated with absolute palaeolatitude 24 negative correlations between size and absolute palaeolatitude 28 reef size 28 reef size, negatively correlated with palaeolatitude 22–3 size comparison difficult before and after Oligocene–Miocene boundary 24 thickness of reefs and their palaeolatitude 23–4, 24 use of PaleoReefs database 18 four main reporting/categorizing features 18 reef size recorded by three parameters 19 Cerithium rubiginosum 190 chloralgal association 36, 38, 46, 74 chloralgal-chlorozoan associations, characterize euphotic-mesophotic environments 83 chlorozoan association 35, 36, 42, 45, 46, 49, 74 Cibicidoides dutemplei 57 Cibicidoides mundulus 4, 5 Cibicidoides wuellerstorfi 4, 5 Clifton Formation 216 Clypeaster 75 Clypeaster altus 220 Clypeaster campanulatus 215 Clypeaster marginatus 220 coral diversity and temperature, Mediterranean Oligo–Miocene corals 229–40 coral reefs and reef corals (“z-corals”) 229 coral taxonomic richness and temperature 230–1 climatic changes as control on Phanerozoic reef development 230 discrepancies between various palaeotemperature values 230 diversity patterns of z-corals and climate 231 global patterns related to Cenozoic coral richness 231 inferring minimum seawater palaeotemperatures 230 Miocene demise of Mediterranean corals 231 response of z-corals to climate change complex 231 seasurface temperature correlated with taxonomic richness 230
detailed database currently in production 230
focused on Mediterranean region 230
diminishing regional taxonomic pool of z-corals 239
discussion 238–40, 328
diversity patterns 238
“energy hypothesis” approach 238
Rupelian, inferred
palaeotemperature increase gradually 239
uniformitarianism may introduce biases 232, 238
diversity declined during Miocene 239
“energy hypothesis” testing 231–8
period of extensive reef development 229–30
coralgal facies 36, 38, 46
coralline algae
distribution 159–60
algal flora dominated by Lithothamnion cf. macrosporangicum 159, 159
coralline branch rudstone dominated by Lithothamnion cf. macrosporangicum 159–60
rhodolith floatstone 160
rhodolith rudstone 160
coralline algae, oysters and echinoids 149–62
bindstone to framestone, developed in interval 154, 160–1
Cassino Plain 150
changes in component composition 161
coralline algae
diversity of in the five intervals 161
frequently used as palaeoecological indicators 149
growth form probably controlled by ecological conditions 161
coralline algal diversity 162
coralline algal sediments 149
coralline locality, location on middle ramp 161
geological setting 150–1
facies architecture 150–1, 152
inner ramp 150
interpreted as deposited on a carbonate ramp 150
on the Latium-Abruzzi platform 150
middle ramp 150
Monte Lungo area, Cassino Plain 150, 151
outer ramp 150
important rock constituents coralline algae 153–4, 160
main composition of rhodoliths 161
Monte Lungo Mandrella section 152–60, 162
distribution of coralline algae 159–60
rhodolith interval has clear vertical facies 153, 154
rhodoliths 162
all-side growth of 161
initiation by encrustation of a nucleus 156, 161
intense bioerosion 161, 162
coralline algae systematics 155–8
distribution of coralline algae 159–60
Family sporolithaceae 158, 158
Sporolithon 158, 158
Lithothamnion 155, 155
Lithothamnion cf. macrosporangicum 155–6, 155
Mesophyllum cf. inaspectum 156, 156
Mesophyllum cf. roveretoi 156, 157
Mesophyllum gignouxi 156, 156
Phymatolithon 155, 155
Subfamily Lithophylloideae 157–8
Lithophyllum nitorum 157, 158
Lithophyllum racemus 157–8, 158
Subfamily Mastophoroideae 157
Neogonioltihon 157, 158
Spongites albanensis 157, 158
Spongites sp. 157, 158
coralline branch rudstone 152, 153, 159–60
rhodoliths ellisoidal to subspherical 152
coralline red algae (Oligocene–Miocene), palaeoenvironmental significance of 165–76
actualistic approach used to interpret palaeoenvironments 174, 176
coralline floras from different areas, comparison difficult 175
data suggest Oligocene–Miocene interval period of maximum richness 169
encrusting or growing unattached 165
identification key 169, 170
lack of reliable fossil coral taxonomy at species level an obstacle 169
limited use in palaeoenvironmental reconstruction 166
Miocene coralline algae 171–5
assignment to chronostratigraphic units prevented 172–3
few reported from N Atlantic basin localities 173
Guam and Saurashtra, recorded algae assigned to Middle Eocene 173
many non-geniculate species described in Mediterranean deposits 168, 171
other areas with significant numbers of species 167–8, 171–2
Paratethyan assemblages 174
rough phytogeographical differentiation
Miocene 173, 173
studies concentrated on S. European localities 167–8, 169, 171
sub-tropical Mediterranean flora 173–4, 173
modern genera used to interpret palaeoenvironmental conditions 175
most genera identified in the Miocene alive today 174
Oligocene coralline algae 169–71
cluster analysis of relative abundance of species 171
coralline species from W. Pyrenean Basin 166, 168, 170
coralline red algae (Oligocene–Miocene), (Cont’d)
New Zealand, coralline genera from algal limestones 170–1
primarily reported from C. and S. Europe 166, 168, 169
recently new taxonomical concepts applied 169
reported in a wide range of depositional settings 172, 174
taxonomic descriptions/reports scarce in E. Tethys 169–70
W. India, non-geniculate and geniculate corallines 169
possible existence of temperate phytogeographic region 175–6
present-day seas, rhodoliths with living algal covers 165–6
reported over large latitude interval 166, 166, 167–8
Sarmatian corallines 174, 175
sub-tropical Mediterranean region delimited 175
tropical phytogeographical region defined 175
validity of many fossil species names questionable 166, 169
dacite ignimbrites 130
Daito Formation 249
Deep Sea Drilling Project 1, 4–5
deep sea temperatures inferred from foraminiferal Mg/Ca ratios 1–14
age models 5–6
recent obitally tuned age for some of mid-Miocene 5–6
Site 1171 Mg/Ca record 5
analytical limitations 11–12
changes in seawater geochemistry 10–11
data compilation, site 747 2, 4, 4
Cibicidoides calibration may be used 4
revision of age model 6
data compilation, Sites 926 and 806 2, 4, 5
Site 806, record consistent with Gradstein 6
Site 926, an orbitally tuned age 5
data compilation, Site 1088 2, 4, 5
age model revised 6
located on the Agulhas Ridge 5
Mg/Ca data generated at intermediate water 5
data compilation, Site 1171 2, 4, 5
located within Antarctic Circumpolar Current 5
data compilation, Site 1218 2, 4, 4
Mg/Ca cleaning procedure 4
record has orbitally tuned age 5
site just above calcium carbonate compensation depth 4
Late Miocene 8–9, 10
Mg/Ca data, Site 1088 agrees with Site 926 9
Mg/Ca derived palaeotemperature records provide a spatial view 9
Site 926 and Site 806 8–9
Site 1088, foraminal values relatively constant 8, 10
Mg/Ca derived palaeotemperature records provide spatial view 11
Mg/Ca palaeothermometry 2–4
constraining changes in seawater Mg/Ca ratios through time 3–4, 3
Middle Miocene 7
during ice growth surface waters cooled stepwise 7, 9
ocean circulation changes and mid-Miocene cooling 7
Site 1171, palaeotemperature record 7, 9
neogene overview 6–7
δ18O record 6–7, 6
Mg-derived palaeotemperatures 6, 7
return to warmer temperatures, end of Middle Miocene 7
Oligocene/Miocene boundary 7, 8
boundary event marked by decrease in Mg/Ca ratios 7, 8
Site 474, δ18O max precedes temperature minimum 6, 7
Site 1218, highly resolved palaeotemperature history 7
palaeotemperatures through time 12–14
alternative view, late Miocene and the warming event 13
beginning of enhanced carbonate preservation in the Atlantic 13
difference between Atlantic and Pacific δ13C records, use of 13
late Miocene, formation of cool North Atlantic Deep Water 13
late Oligocene–Miocene, palaeotemperatures higher than modern oceans 12–13, 12
modern ocean temperatures, deep and intermediate water sites 12, 12
North Atlantic Deep Water characterized by high carbonate-ion concentration 13–14
Northern Component Deep Water formation 13
uncertainties in palaeotemperature reconstructions 10–11, 77
Dendraster excentricus 208, 209, 211
deposition, climatic trends and controls over vii–viii
carbonate facies changes/oxygen isotope curve, flawed approach vii
palaeotemperature reconstructions vii
depositional facies and processes, environmental controls viii–ix
Diadema savignyi 216
Diadema setosum 216
diagenetic alteration 211
discontinuity surfaces (main), Latium-Abbruzzi carbonate ramp 119–21
DS1 119, 119, 121
marked by a stylolitic suture mark 119
SE sector, an undulating irregular surface 110, 119
DS2 119–20, 119
facies changes suggest increased water depth 120
first occurs inside middle-ramp facies association 119–20, 119
Heterostegina-Operculina-rich bed 120
sharp superposition of different facies 119

DS3 112, 120 expressed as a hardground 120
isotopically dated 120 marks beginning of Miocene sedimentation 120

DS4 120, 121 dramatic facies contrast in eastern area 119, 120
located between dated discontinuities 120 presumed to be Serravallian in age 120 western sector 120

DS5 120 CN8 nanofossil zone indicated 120 isotope ages 112, 120 not very evident in easternmost sector 120 in NW and SE sectors represents drowning of the platform 120

DS6 120–1 corresponds to a mineralized hardground 120 defines end of Miocene carbonate sedimentation in E of platform 120 involvement of eastern platform in flexural downwarp of foreland basin 121 marked by sharp facies changes 119

Ditrupa 76, 100 Dolianova: carbonate inception in sheltered rift valleys 260–3 basal unit overlain by breccias and conglomerates 260–2 coral assemblages form colonies with different morphologies 261 coral-dominated lenses, top surfaces of 261–2 occurrence of carbonate lenses 260–1, 262

red algae encrust top of shell concentrations 261 small pioneer colonies grade upward 261, 262 interpretation 263 bioconstrucion development periodically interrupted by flash floods 263 mobile sediment sheets periodically colonized by corals 262, 263 siliclastic deposits interpreted as fan-delta deposits 263, 263 logged section 260, 261 coarse conglomerate basal unit 260, 261 syn-rift and post-rift sequences, fills of narrow palaeovalley 259, 260, 261 faulted valley margins draped/onlapped 260, 261, 262 upsection are matrix-supported siliclastic conglomerates 262–3 sharp erosion surface cuts through logged succession 263

Duplicata duplicata 184

Eastern Lessini Shelf 239 Echinocardium orthonotum 219 echinoderm skeleton 202–8 crystallography of echinoderm ossicles 208 crystallographic orientation mostly non-random 208 most of skeleton monocryllaline 208 polycrystaline parts, hardest parts 208 mineralogy of 207–8 composed of high Mg-calcite 207 “stone zone” of echinoid teeth 207 TEM studies of crinoid stereom 207–8 morphology 202–7 made of stereom 202 ossicle shape mainly functionally controlled 203 rather straightforward identification 203, 206 varies due to position and function of ossicle 202, 202 morphology, asteroid skeleton 204–5 common in Oligocene and Miocene marine sediments 205 described 204–5, 204 morphology, crinoid skeletons 205, 206–7 calyx contains small number of ossicles 206–7 often consists of large number ossicles 203, 206 morphology, echinoid skeleton 203–4 characterized by a corona 203 heart urchins 203, 204 identification based mainly on corona morphology 204 “regular” echinoids 203, 204 sand dollars and sea urchins 203, 204 morphology, holothuroid skeleton 207 body fossils very rare 207 highly reduced skeleton 205, 207 morphology, ophiuroid skeleton 205–6 basket stars 205 research focused on complete specimens 206 structure of arms highly repetitive 205 reproduction and growth 207 age may have been seriously underestimated 207 by continuous addition of new ossicles 207 ossicle shape changes during growth 207, 208 usually reproduce by external fertilization 207 study of skeletal remains potentially useful 220 echinoderm skeleton, geochemistry of 209–12 an unexploited source of original data 209 carbon and oxygen isotopes 211–12 δ13C and δ18O largely genetically controlled 211 δ13C negatively correlated with depth 211
echinoderm skeleton, geochemistry of (Cont’d)
diagenesis, a potential severe problem 211–12
fractioning of stable isotopes in coronal plates 211
isotope analysis, application in wide range of issues 212
stable-isotope studies rare 211
use of 18O/16O in shell material 211
magnesium content as palaeotemperature proxy 209–10, 209
crinoids, MgCO$_3$ content decreases with depth 210, 210
echinoid skeletal elements less Mg-rich 210
factors influencing Mg content in the skeleton 209
particular problems, Mg-uptake exists 209
regeneration, and Mg-uptake in the skeleton 210
MgCa-ratio as monitor of ancient seawater composition 210–11
potential of echinoderms as a “seawater archive” 211
potential investigative tool 209
Sr/Ca ratio 211
diagenetic alteration 211 as a palaeotemperature proxy 211
echinoderm taphonomy 212–17
biostratinomy 212
examples of exceptional preservation (“Lagerstätten”) 212, 217
indicator for reef proximity 212, 213
preservation as denuded coronas 212
skeletons can rapidly fall apart after death 212
transport recognized by ossicle wear 212
diagenesis of the echinoderm skeleton 213–16
cement coatings 214
cementation with syntaxial cement 216
changes in isotopic signature of skeletal remains may occur 215
diagenetic changes associated with ossicles 216
growth of cement crystals begins early 213
individual cement crystals can attain considerable size 213–14, 214
macro- and microscopic structure of stereom often preserved 214
material, altered along different diagenetic pathways 214
mineralogy of skeleton changes during diagenesis 214
ossicles may be subject to micritization during diagenesis 215, 215
texture formed due to open-system transformation 215
transformation usually not perfect 214–15
two types of cement recognized 214
identification of disarticulated material 212–13
often identifiable to family or genus level 212
recognizable by peculiar skeletal structure 212
typical size classes of skeletal remains 203, 213
sediment production, erosion and reworking 216–17
dramatic evolution of teeth form and efficiency through time 216
echinoids, can cause intensive bioturbation 217
echinoids, major bioeroders 216
production of distinct recognizable burrows 217
echinoderms affected by Permo-Triassic extinction event 202
high fossilization potential 202
strictly stenohaline organisms 202
ecinoderms as components in Oligo-Miocene carbonates 217–19
echinoderms in aphotic sediments generally not restricted by depth 219
facies associations increasing role in facies models 218–19
more detailed classification, non-tropical carbonates 219
mass occurrences of clypeasteroids 217
modal distribution of echinoderms 217–18, 218
more abundant in non-tropical settings 217
echinoderms and Oligo-Miocene carbonate systems: potential applications 201–20
addendum 227–8
echinoderms as palaeoecological tools in Oligo-Miocene sediments 219–20
studies focused on echinoids 219
echinofor assemblage 38, 219
echinofor facies 217
Echinometra mathaei 210, 216
Echinostrephus molaris 217
Echinothrix diadema 216
encrinites 217
“energy hypothesis”, testing 231–8
discussion 238–40
diversity patterns 232, 237
z-coral richness, generic, each locality 232, 237
methods and dataset 231–2
only z-corals used to obtain palaeotemperatures 231
palaeotemperatures, method of calculation 231–2, 232
richness values from 102 localities 231, 233–6
patterns of inferred palaeotemperatures 232, 237–8, 238
cooling from the Chattian–Aquitanian boundary 237
inferred from each locality plotted for each stage 232, 237
Rupelian increase not observed in isotope curves 237
Entobia 92, 96, 154
Ervilia dissita podolica 184, 190
Ervilia Zone 183–4

Favites 130, 261, 276
foramol association(s) 35, 36, 41, 42, 46, 49, 74, 83, 123
inner Ragusa ramp 76–7
number of skeletal groupings expanded rapidly 36, 38
replacing coral dominated assemblages 280
foramol factories 280, 281
Fringing Reef Unit 55, 57
Gambier Limestone 216
Gastrochaenolites 144, 154
Gastrochaenolites lapidicus 92, 96
Gebel Gharra section, Egypt, echinoid assemblage recognized 220
Genna Siustas section 264, 265, 266
chaotic breccias 264, 266
final upsection, bioclastic debris forms stacked clinostatified units 266
location 266
log section capped by hemipelagic marls 266
major erosion surface truncates coral-rich bed 266
overlain by oyster-bank 266
Palaeozoic basement overlain by andesites then conglomerates 266
shows mainly branching colonies in lower beds 264, 265, 266
upsection, fine-grained bioclastic sandy-silty deposits 265, 266
global cooling, Oligocene and Miocene vii
see also Mediterranean cooling
Globigerina bulloides 5
Globorotalia magaritae 62
Globorotalia puncticulata 62
Goniolithon 173
Gornji Grad Beds, Slovenia 217
Granulolabium bicinctum 190
Grotta Su Coloru transect 132, 140–2, 141
base of Sedini Limestone not exposed 140
interpretation 140–2

forced regression suggested 140–1, 141
high-frequency sequences separated by sharp surface 140, 141
most of transect consists of sequence 1 limestone 140
renewed base-level lowering indicated 141–2, 141
top of succession show a base-level rise 142
lowest part of cliff, bedded packstones to wackestones 140, 141
packstones truncated by erosion incisions 140, 141
infills of erosive depressions 140
Guadagnolo Formation 118
Halimeda 75, 81
Halimeda bioherms 55
Halimeda gravels 58
Heterostegina 57, 75, 80, 81, 96, 118, 133, 143, 144, 146, 154
Heterozoa Association 38, 39, 40, 41, 45
heterozoan carbonate platforms 102
heterozoan carbonate-sedimentation episode 60–4
closing of Rifian corridors, development of Gibraltar Straits 63–4
closure of connections to Indian Ocean 63
final closure, isolation of Mediterranean Sea 64
last gateway, the Guadalhorce corridor 63–4
marine reflooding, latest Messinian, no major change in surface water temperature 64
Mediterranean cooling 50, 63, 64, 64
post-evaporitic reflooding, W Mediterranean Basin 64
several Betic corridors closed 63
ODP site 976 61–3
lithology and biostratigraphy 61–2
stable isotope data 61, 62–3
striking paradox: Early Pliocene Mediterranean cooling 60–1
Hole 976B, Mediterranean surface water temperature decrease, early Pliocene 61
seawater temperatures 60, 61
zoanthellate coral reefs, disappearance of 60, 64
heterozoan carbonate-sedimentation episodes, alternating 57–60
carbon isotopes 58–60
Δ13C values, fluctuations in planktonic forams 59
Δ13C values and temperature changes, variations in 59, 60
Cariatiz Section 58–9, 59
Late Miocene Carbonate Shift, decrease in Δ13C values 58
and laterally equivalent shallow-water carbonates 58
oxygen isotopes 57–8
average Δ18O values 57, 58
cooling of Mediterranean waters at Tortonian–Messinian boundary detected 57
early Messinian rise in sea surface temperature 57
expansion of N hemisphere polar ice caps suggested 57
ice cap expansion reported in S hemisphere 57–8
lateral facies changes traceable in well-exposed sections 57, 58
stable-isotope data 57–60
heterozoan carbonates, biogenic components 49
heterozoan carbonates, shallow-water, Neogene Betic basins 52–4
all comprise bioclastic limestones 52
all units formed in ramps 52, 53
carbonate production in areas seaward of the shoals 52–3
coralline algae predominate, deeper factory areas 52, 53
distal ramp carbonates change laterally 53, 54
“factory” facies 52–3
heterozoan carbonates, shallow-water, Neogene Betic basins, (Cont’d)
foreshore, beach and lagoonal deposits 52
lack of early lithification, effect of 54
minor production of carbonate at submarine cliffs 53–4
originally aragonitic skeletons, poor representation of 52
submarine lobes 54 to seaward shoal belt of packstone
to rudstones 52
Himerometra robustipinna 203, 203
Hydrobia frauenfeldi 190
Hydrolithon 173, 175
Indo-Pacific region, reef expansion
Early to Late Miocene 21
Isili area: carbonate production on outer margin of main rift-basin periphery 267–75
Isili sub-basin 259, 267, 268
bioclastic sediments periodically funnelled towards deeper part of the lake 268
foramol/rhodalgal carbonate sequences laid down since Early Aquitanian 268
located in proximity to “transfer zone” 259, 267
Perda Quaddu section: carbonate inception and production at rift edge 268–9
Punta Trempu section: carbonate platform development at top of isolated fault block 269–73
Riu Corrigas section: slope channel and related fan 273–4
structural highs partially and locally periodically exposed 267, 268
Isili carbonate platform, development and dismantling of 274–5
carbonate deposits on NE margin of trough 268, 274, 274
carbonate factories developed on structural highs 270, 274, 274
deposition since Middle Burdigalian 275
displaced sediments redeposited or funnelled towards the basin 271, 274, 274
Isili Channel System 274–5, 274
NW and W sectors, large foramol/rhodalgal carbonate factories 268, 274, 274
sediments produced periodically removed 274
shelf to basin sediment transport patterns 274–5
Ispilunca valley transects 132–7
valley cross-cuts Sedini Limestone unit 132–3, 132
Kaigunbo Formation 249
Kita-daito-jima, Late Oligocene to Miocene reef formation 247, 251
2003, detailed chronology of borehole carbonates published 246
borehole carbonates 249–52
four depositional units 247, 249
Subunit C3a, coral rudstone, some Microdium textures 251
Subunit C3b, more porous and permeable nature 250, 251
Subunit C3c, mainly coral rudstone 251
Unit C1, described 251–2, 251, 254
Unit C2, coral bafflestone and framestone, dolomitization pervasive 251, 251
Unit C3, locally dolomitized coral rudstone 249
Unit C4, recovered material, carbonates not dolomitized 249, 250
borehole drilled in 1934 245–6
Daito Formation 249
Unit 1, dominated by coral framestone 249
Unit 2, lower subunit, reef core facies 249
Unit 2, upper subunit, crops out around peak of the island 249
Unit 3, exposed sporadically on the eastern coast 249, 253, 253
geological setting 246–9
located on lithospheric bulge of Philippine Sea Plate 246
phosphate ores now mined out 249
reef deposits veneered by soil, interior basin 246, 247, 249
history of reef formation not fully reconstructed 246
integration of reported data 246, 247, 248
Kaigunbo Formation abuts Unit 3 249
lithology implies gradual shallowing of lagoon 254
two modes of reef formation recognized 255
materials and methods 249
borehole drilled near island centre 249
classification of the carbonate rocks 249
reef formation since 25 Ma 252–4
atoll drowned immediately after 18.6 Ma, causes unknown 254
cooling and subsidence of volcanic edifice 252, 253
dolomitization, and depositional history, Units C1 and C2 253
inference, Units C2 and C1 accumulated during Miocene 254
meteoric diagenesis zones, tops of Subunit C3b and C3c 248, 252
Middle Miocene, effects of sea-level fall 252, 253
more recent uplift rate 253, 253
reef growth kept pace with tectonic subsidence 252
sea-level falls, key events in reef rejuvenation 254
Sr ages of Subunit C3c fall in a narrow range 252
Sr-isotope age, non-dolomitized coral framestone, Unit 2 253–4
two major volcanic events identified 252
two modes of reef formation recognized 254
vertical lithological change implies lagoon shallowing 254
reefs formed during periods of sea-level lowstands 254

Late Miocene Carbonate Shift, decrease in δ13C values 58
Latium-Abruzzi platform 102, 107–8
Adria plate, lithospheric folding and compressional deformation, Middle Eocene 121
carbonate factory 102
geological setting 90, 91
“Calcari a Briozoi e Litotamni” Formation 90
interpretation following tectonic subsidence 90, 92
logged sections 90–2, 91
WNW-dipping ramp 125
see also “Calcari a Briozoi e Litotamni” Formation

LB-foralgal assemblage 41, 45, 46
Lenticulina 100
Lithophyllum 133, 136, 138, 161, 174, 176
Lithophyllum cf. macrosporangicum 155–6, 155, 160
Lithophyllum nitorum 157, 158, 160
Lithophyllum racemusum 157–8, 158, 160
Lithoporella 171, 174, 175
Lithoporella pseudotubulata 174
Lithothamnion 77, 80, 81, 100, 155, 155, 160, 161, 174, 175
Lithothamnion cf. macrosporangicum 159, 159, 160–1, 162
Lower Globigerina Limestones 220
“maërl facies” 97, 116, 150, 272, 277
Maiella Platform 124
Malta 216, 219–20
Lower Coralline Limestone 217
Mediterranean cooling 50, 57, 60–1, 63, 64, 64
Mediterranean region corals, development of ecological adaptations 29
Oligo-Miocene corals 229–40
subtropical 173–4, 173, 175
Melilla Basin (NE Morocco), Upper Miocene carbonate ramp 101
Mellita aclinensis 219
Melobesia caspica 174
Meoma ventricosa 217
Mesophyllum 77, 80, 100, 133, 136, 138, 161, 174, 175
Mesophyllum cf. inaspectum 156, 156, 159, 160, 162
Mesophyllum cf. roveretoi 156, 157, 160
Mesophyllum gignouxi 156, 156, 159, 160, 162
Messinian Salinity Crisis 51, 63–4, 173–4
Mg/Ca palaeothermometry 2–4
‘carbonate-ion effect’ 3
limitations associated with 2–3
mitigation of some factors possible 3
widely used to reconstruct absolute sea-surface temperatures 2
Microcodium 92, 99
Mid-Miocene Climatic Optimum 239, 240
Middle Miocene, perturbations in global carbon cycle 124
Milankovitch cycles 101
Miocene carbonate platform, N Sardinia 129–46
carbonate platform facies and stratigraphy 144–5
geological setting and stratigraphy 130–1
the Sedini Limestone Unit 131–2
selected transects 132–44, 132
turnover in geometry 145–6
see also carbonate production in rift basins
Miocene carbonate systems vii–xi
carbonates producers and palaeoecology ix–x
carbonate terminology viii
climatic trends and controls over deposition vii–viii
geodynamic controls over architecture x–xi
key issues addressed vii in Mediterranean-linked basins, facies and sedimentary models 52–7
possible future research topics xi
temporal changes in carbonate producers viii
Miogypsina cf. globulina 97, 111, 119
Miogypsina spp., 98
Miogypsinoides spp., 98
Mistelbach tectonic block 184, 185
molechfor association 93, 107, 218
molechfor facies 217
molechfor lithofacies 36, 46, 74
molluscs as a major part of shallow-water carbonate production 183–98
biofacies interpretation 193, 194–5
predominance of single taxa varies 193, 194
biota 190–1
mollusc fauna recorded from shell dunes 190, 192
small number of species contribute most of biogenes 190
comparable depositional systems 195–6
comparative information for interpretation lacking 195
model for internal structure of flood-tidal delta foresets 195–6
tidal dune from Swiss Molasse 195
upper shell bed (Fort Thomson Formation) 195
geological setting 184–5
basis for dating 184
N Vienna Basin, pull-apart basin 184, 185
Nexing deposits 184, 185
Nexing section 184
Upper Ervilia Zone/ Sarmatimactra vitaliana Zone boundary 184, 186
lithofacies interpretation 191–4

Index 293
molluscs as a major part of shallow-water carbonate production (Cont’d)
episode of emergence and vegetation 189, 192
gravel and reworked oolites, base of Unit 3 191–2
initiation of development of second foresets unit 192
large foresets interpreted as flood tide delta foresets 192
Nexing locality, situation 192, 194
possible washover deposits 194
problems of interpreting dune geometry 192–4
rhizoliths document episode of emergence and vegetation 192
sedimentological interpretation 192
Unit 2 foreset slipfaces, seem tectonically accentuated 191, 194
Unit 2 top, interpretation of morphological shift 192
lithofacies unit 1 185–6
scarce macrofauna 186
lithofacies unit 2 186–8
carbonate content of sediment 186, 187
coarse mollusc shell-hash 185, 186
foreset thickness 186, 188
general steepening of foresets from base to top 188
poorly sorted coquinas 186
lithofacies unit 3 188–9, 193–4
represents a marker interval 188
reworked rhizoliths 189, 189
sedimentological characteristics 188, 188
wave ripples in lower part 188–9, 188
lithofacies unit 4 189
sharp lower boundary 189
materials and methods 184–5
area of outcrop 184–5, 185
seven sections logged 185, 186
Skalica Formation 185
mollusc-carbonate factory, palaeogeographic setting 194, 196, 197, 197
Mistelbach block, acting as submarine shoal 196
Steinberg elevation 196
production of large-scale foresets internally structured 197
shell dunes 197
shell ripple 197
Sarmatian ecosystem, high productivity, low diversity 197–8
Sarmation stage 183–4, 184
Central Paratethys Sea, open ocean connection restricted 183
fully endemic development 183, 184
Lower Sarmation, Ervilia Zone 183–4
Nexing, holostratotype of Sarmatian Stage 184
rock-forming shell-hash deposits 184
sedimentary structures 189–90
shell dunes and shell ripples 189
subaqueous dune 189
sedimentary structures, bedform type 1 186, 189
composite bedform comprising foresets 186, 189
single sets separated by drapes 189
sedimentary structures, bedform type 2 189, 190
separating layers of shell-hash and sand 187, 189
shelly dunes bundled into bedform type 1 189, 190
sedimentary structures, bedform type 3 190
elongated shell ripples 190
few ripples appropriate for granulometric analysis 190, 191
ripples composed of shell-hash and mollusc shells 190
shell ripples 187, 190, 194
shells become imbricated on stoss side of ripples 190
sorting for bimodal and unimodal samples 190
Monastir Fault 260
Montagna Maiella (Italy), Oligocene-Upper Miocene ramp succession 101
Montastrae 130, 261, 276
Monte Carruba Formation 73, 73
Monte Casino section, Italy 57
decrease in δ18O values beginning of Chron C3Ar 57–8
Monte Lungo Mandrella section 152–60
rhodolith interval 152–4
coralline algal-oyster rudstone to bind/framestone 154, 154
coralline branch rudstone 152, 153
rhodolith floatstone, size and shape 153–4, 153
rhodolith rudstone 154, 154
systematics of coralline algae 155–8
Monte Su Crucuri section 259, 263–6, 264, 265
basal deposits overlain 263, 264
intercalations of thick oyster-banks 263
exposed sedimentary sequences overlie volcanic basement 5, 263
finally upsection, coral-rich rudstones and floatstones 265–6
upsection are bioclastic limestones 263, 265
Monterey Event 124
Monti Climiti Formation 73, 73, 76
Melilli Member and Siracusa Member 73, 73, 80
Murray Supergroup 218
nannofor assemblage 38
Neogene shelf carbonates, Betic Cordillera 49–65
alternating heterozoan–photozoan carbonate-sedimentation episodes 57–60
carbon isotopes 58–60
oxygen isotopes 57–8
Atlantic-Mediterranean connections 51
Betic Neogene basins: Atlantic- and Mediterranean-linked 50–1
Atlantic-Mediterranean connections 51
Guadalquivir Basin 50, 50
inner and outer basins 51, 51
outer basins connected to Mediterranean Sea 50, 51
fining upwards cycles 133, 134–5
sharp surface (iv) overlain by floatstone and rudstone lens 134
Section S8 133, 135
nutrient levels, high, favour development of heterozoan components 49–50

Obsoletiforma obsoleta vindobonensis 190
ODP Site 976, comparative data from 61–3, 61
lithology and biostratigraphy 61–2
Miocene–Pliocene boundary 62
top of interval corresponds to MPI 2 zone 62
stable-isotope data 62–3
change to heavier δ18O values 62, 63
methods, results and interpretation 62–3
three distinct intervals of δ18O values 62
zooxanthellate coral reefs, disappearance of 62–3
Oligocene–Miocene climatic transition, no drastic changes in reef characteristics 29
Operculina 75, 80, 81, 118
Orbulina Marls 90, 120, 123, 150
Orbulina universa 57, 62, 97, 111, 120
Oregon sea-lily fauna 212
Oridorsalis umbonatus 4, 5

Palaeopesliastraæa 55
palaeotemperature, foraminiferal Mg/Ca ratios as proxy for 2
palaeotemperature reconstruction, uncertainties in 10–11
additional uncertainty added to temperature reconstructions 10
seawater ratios possibly lower during the Neogene 10
Sites 926 and 1088, and temporal change in carbonate-ion concentration 10
underestimate of palaeotemperatures by factor of 2 possible 10

Palazzolo Formation 73–4, 73, 80, 83
PaleoReeﬁs database 18
analyses of pre-Pleistocene Cenozoic reefs recorded 31–2
Paracentrodus lividus 202, 203
Paragloborotalia partimlabiata 73
Paraporolithon 173
Pentacrinites 212
Perda Quaddu section: carbonate inception and production at the rift edge 268–9
base of Tertiary sedimentary succession overlies Jurassic dolostones 268–9, 268
tuffaceous sandstones suggest shallow-marine conditions 269
conglomerates crop out to E and SE 269
interpretation 269
succession forms large sedimentary wedge 269
towards W and SW tuffaceous sandstones overlie by rudstones 269

Photozoan Association 38, 39, 40, 45
photozoan carbonates, characteristic elements 49
photozoan carbonates, Neogene basins of SE Spain 54–7
Messinian coral reefs appear at three levels 52, 55
Bioherm Unit 55, 56
Fringing Reef Unit 55
reef core, coral-stromatolite framework 55, 56
Tortonian reefs 218
occur as patch reefs in delta complexes 55
related to fan deltas 55, 55
zoanthellate coral reefs present 52, 54–5, 54

Phymatolithon 155, 155, 159, 160, 174

Planorbulina 96
platform architecture, determined mainly by ecological accommodation 89–90
platform carbonates in Mediterranean-linked basins 51–7
facies and sedimentary models 52–7
platform carbonates in Mediterranean-linked basins (Cont’d)
photozoan carbonates 54–7
shallow-water heterozoan carbonates 52–4
heterozoan and photozoan units 51
alternate in infill of the basins 51
coral-reef development 51, 52
rapid decline in coral diversity, Late Miocene, in Betic basins 56

Platygyra 55
Plicatiforma latisulca 184
Porites 55, 75, 81, 93, 130, 261, 265, 275, 276
Porosononion granosum 186
Posidonian shales 212
Psammechinus philanthropus 219
Punta Trempu section: carbonate platform development at top of isolated fault block 269–73
algal assemblages dominated by Melobesioideae and Mastophoroideae 272
bryozoan-dominated deposits occur in deeper parts of the shelf 272
carbonate succession, vertically stacked, redenned and heavily bored surfaces 269
complex internal geometries often formed 271, 272
coralline red algae dominate skeletal debris 269
evidence for early cementation processes widespread 272
foramol limestones logged 268, 269, 270
interpretation 272–3
carbonate lithofacies with coarse rudstones and floatstones 272
ENE incisions built up an efficient sediment drainage system 271, 272–3
exported sediments deposited in marginal high-energy settings 271, 272
sediments periodically removed from productive areas 272
temperate-type carbonate factory in the Aquitanian 272
rapid facies transitions and complex strata geometries towards the E. 269, 271
scours and channels recognized in the marginal area 269, 271, 271
algal assemblages 272
channel-fill, coarse gravelly deposits 272
channels commonly associated with mound-shaped units 271, 272
channels deeply eroded into previous deposits 271, 271
rhodoliths spheroidal or sub-spheroidal 272
syn-rift breccias, rich in shallow-marine skeletal remains 269
local ostreid banks 268, 269
mixed deposits grade upsection into pure bioclastic limestone 269

Ragusa Formation 73, 73
Ragusa Island, echinoid content high in samples from 218
Ragusa Platform, facies models and geometries of 71–85
changes in ecological parameters, potential factors 83, 85
carbonate mineralogy, possible controls on 83, 85
change of carbonate production across the Ser4/Tor1 sequence boundary 83
chemical properties of seawater, a limiting factor in carbonate production 83
high salinity values, limiting factor for chlorozoan and chloralgal associations 83
facies-zone models and platform geometry 76–81
Ragusa Ramp during the early Tortonian 80–1
Ragusa Ramp during the Late Serravallian 76–80
two modes of carbonate production 76
geological setting 72–3
deposition at front of NW Sicilian-Maghrebian foreland 73
location 72–3, 72
slow and homogenous tectonic subsidence before uplift 73
internal architecture/depositional profile evolution 83
basinward extension of euphotic carbonate production 82, 83
carbonate production at Serravallian/Tortonian boundary 83
low-angle, distally steepened ramp geometry 83, 84
major change in carbonate production 81
middle ramp (chlorozoan-rhodalgal assemblage) 81
minor changes in carbonate production, profound consequences for platform geometry 85
processes of carbonate production and distribution 81–3
accumulation of rhodalgal sediments 82
carbonate production, early Tortonian 82–3, 82
foramol sediments, Late Serravallian 81–2, 82
internal architecture and depositional profile evolution 83
patch reefs of encrusting Vermetidae 83
potential factors responsible for changes in ecological parameters 83–5
sediment nomenclature 74
deposition of rhodalgal and foramol assemblages 74
“heterozoan” and “photozoan” associations defined 74
terminologies adopted 74, 75
sequence correlation and depositional profile definition 76
and sea-level fall at Serravallian/Tortonian boundary 76
stratigraphic analysis 75–6
data used to reconstruct facies models 72, 75
sequence stratigraphic interpretation 76
three sectors defined along the ramp 76
stratigraphic framework 73–4, 73
two palaeogeographic
domains 72, 73
trophic resource and temperature
influence 74
water-depth estimation 74–5
cannot rely on shallow-water
indicators 74–5
estimates of water depth in
present study 75
Ragusa Platform study, two
different facies models ix, 72
Ragusa Ramp during the early
Tortonian 80–1
inner ramp (chlorozoan
assemblage) 80–1
in-situ Vermetidae constrain
water depth 81
muddy sediments reflect low-
energy euphotic
conditions 81
sediments poorly
represented 80
vertical transition related to
third-order sea-level fall 80
middle ramp (chlorozoan-
rhodalgal assemblage) 81
basinward transition to
rhodalgal floatstones
79, 81
deeper outer algal
pavement 81
inner algal pavement 81
three facies zones defined
78, 81
outer ramp (molechfor
assemblage) 81
Ragusa Ramp during the Late
Serravallian 76–80
inner ramp (foramol
assemblage) 76–7
outer shallow-water
zone 76–7
sediments poorly
represented 76
two facies zones
recognized 76, 77, 85
middle ramp (rhodalgal
assemblage) 77–80
current sweeping of inner algal
pavement 80
deposition of inner and outer
algal pavement 80
inner algal pavement, metre-
scale buildups 77
outer algal pavements 78, 79
red-algal accumulations,
protective armoured
pavement 80
red-algal assemblage changes
basinwards 77–8
sediments easily
recognizable 77
steeper slope marks transition
to outer ramp 78, 80
three facies zones defined
77, 77
outer ramp (molechfor
assemblage) 72, 80
faunal assemblage 79, 80
Palazzolo and Tellaro
formations 80
sediments possibly deposited
in aphotic zone 80
reef development, two contrasting
behaviours
distinguished 32
reefs as climatic tracers 17
rhodalgal association 83, 93, 123,
218
rhodalgal facies 107
in modern settings 102
rhodalgal lithofacies 36, 38, 46, 74
rhodechfor assemblage 38, 219
rhodolith floatstone 153–4
bioerosion 154
bryozoan colonies 153–4
matrix, unsorted bioclastic
sediment 154
size and shape 153, 153
rhodolith rudstone 154, 154
Rifian Corridor(s) 51, 57, 63–4
Riu Corrigas section: slope channel
and related fan 273–4
Channel Complex A 271, 273
Channel Complex B 271, 273
interpretation 273–4
Channel Complex A 270, 271,
273
Channel Complex B, complex
channel-fill
architectures 271, 273
fan complexes correlated to
Channel Complexes A and
B 271, 274
Isili channel, distributary
network in distal
reaches 273–4
Isili channel, mixed erosional
depositional channel 273
Isili Channel fill sequences
extensively exposed 268, 270, 273
channel fill divided into two
complexes 270, 273
S of Is Cungiadiuras area
Fan A and Fan B, separated
by sharp erosion
surface 271, 273
frontal splay complexes 273
internal splay complexes
complex 271, 273
Isili Channel splits into
distributary channels 268, 273
Sa Rocca Manna transect 132,
137–40
bioclastic floatstone bed 138,
138
clinoforams, complex internal
geometries 138, 139
coralline algal debris increase
upsection 137
coralline algal growth 138
interpretation 140
additional high-frequency
sequence forms youngest
deposits 140
bindstone embedded in large-
scale trough cross-bedded
deposits 140
rhodolith cliniform
toplaps 140
upper slopes 138, 139, 140
lower part, packstone and
grainstone beds 137
rhodolith size and shape 138
significant increase in dip of
upper beds 138, 139
topsets of clinoforams, beds have
wavy surfaces 138, 139
zone with inclined bedding
138
Sardinia, central and south
bed-to-bed analyses performed on
individual areas 258, 259
exposures offer good window of
observation 258
Sardinia Rift System, good
examples of carbonate
factories 258
Sardinia rift-basin, factors
influencing carbonate
sedimentation on fault
blocks 277–80
Sardinia rift-basin, factors influencing carbonate sedimentation on fault blocks (Cont’d)
climate vs. ecological controls 280
no evidence for ecological reefs found 280
spread of foramol assemblages 280
collected data shows controls on rift basin carbonate production 277–8
eustatic sea-level variation 278
Burdigalian times, all investigated carbonate factories drowned 278
palaeophysography 278–80
tectonic 278
carbonate rocks thicker on peripheral blocks! 265, 274, 278
largely controls sedimentary patterns in syn-rift basins 278
lithostratigraphic correlation between blocks may be misleading 278
Punta Trempu foramol factory, high production rates 278
very sparse and ambiguous evidence for syn-sedimentary tilting 278
Sarmatimactra eichwaldi 184
Sarmatimactra vitaliana 190
Sarmo the corallines 174, 175
Sarmo the stage 183–4
Sarreoch Fault 260
Schizaster 220
Schizaster parkinsoni/Ditremaster/ Pecten assemblage 220
Scolicia burrows 52
Sedini Limestone (N Sardinia), case study ix
Sedini Limestone Unit 131–2
carbonate platform facies and stratigraphy 144–5, 145
inner ramp 144, 145
latest stage of platform evolution poorly recorded 132, 145
middle to outer ramp deposits 144–5
reef deposits and bindstone 137, 138, 139, 145
sequence 2 deposits 145
two depositional sequences 144, 144
small carbonate platform dissected by NNE–SSE faults 132, 132
stratigraphic architecture 131–2, 132
turnover in geometry 145–6
change of buildup geometry and carbonate factory 146
goes from warm-temperate to tropical 146
up-section change, ramps to reef-rimmed platforms 148
two depositional sequences 131, 132, 144, 144
Sedini transect 142–4
interpretation 143–4
boundary hardground in part of transect 143
facies changes in sequence 1a 143–4
formation of hardground, top of sequence 1a 144
middle ramp environment 144
middle to outer ramp 144
Section 5, bindstone in topmost part 144
reconstructed 132, 142, 142
Section 1 deposits 142–3, 142
Section 4 142, 143
Sections 5–7, limestone strongly bioturbated 143, 143
Sections 6–7
floatstone to rudstone layer 142, 143
limestone coarsens upwards 143
transition, unit and underlying fluvial conglomerate 142
Seioicrinus 212
sequence stratigraphy, “Calcari a Briozi e Litotamni” Formation 121–3
detrital glauconite grains mark LST-TST boundary (DS5) 123
lower sequence 121–2, 123–4, 125
above DS3 Miocene sedimentation extended to East 124
bounding surfaces 119, 121
genometry and stacking pattern of facies belts 119, 124
warm phase peak 124
lower sequence, highstand systems tract (HST) 122
change in carbonate factory 124
developed above DS3 122
NW and SE, accelerated tectonic subsidence 122, 124–5
progressive decrease in thickness towards NW 119, 122
rhodolithic limestones, grading to west 122
shows a primary eustatic control 124
lower sequence, lowstand systems tract (LST) 121
aggradation geometry 121
composed of inner-, middle- and outer ramp facies 121
DS2, represents a transgressive surface 121
“Palaeogene hiatus”, variable duration 121
presence of discontinuous conglomerates 119, 121
lower sequence, transgressive systems tract (TST) 119, 121–2
carbonate body grading SE into the rhodolithic facies 121–2
maximum-flooding surface (glauconitized) 122
rapid spread of bryomol lithofacies, results 122
significant change in the carbonate factory 124
reconstruction of 121 reflects two second-order depositional sequences 119, 121
strongly influenced by tectonics 123
upper sequence 122–3, 124–5
DS4, interpreted as a sequence boundary 122
eastward-younging 122
exposed in almost entire Latium-Abruzzi region 122
geometry strongly influenced by tectonics 125
lower boundary of DS4 sequence 124–5
lower boundary (DS4), W and S sectors 122
significant change in central sector 122
tentatively interpreted in terms of sequence stratigraphy 122
upper sequence, lowstand systems tract (LST) 123
conditioned by tectonic subsidence 123
NE sector, discontinuity surface 113–15, 117, 123
sea-level fall at base of sequence 123
technically-induced termination of 123
upper sequence, transgressive systems tract (TST) 123
deep conditions suggested 113–15, 117, 123
interpretation 123
rests on rhodolith floatstone 123
shallow-water carbonate production, molluscs as major part of 183–98
shelf carbonates composed of heterozoan associations 49
cool-water, today extend to the Arctic shelf 50
temperate, echinoderms one of major groups of skeletal fragments 217
shelf-carbonate component associations, two types 49

Siderastrea 55
Sinis Fault 260
Skalica Formation 185
Sorbas Basin 57, 58
Messinian irregular echinoids 220
Sorbas Member 55
Southern Hemisphere
buildups 21–2
Southern Ispilunca Valley Transect 132, 136–7
above Surface II, thick package of large-scale trough-bedding 138
evidence in SE for a dividing surface 136
cliniforms overlie Surface VI 136–7
coral deposits 137, 137
floatstones and rudstones 136
following unit displays no visible sedimentary structures 136
Surface V 136
interpretation 137
depositional relief above the sequence boundary 137
Surface II divides succession into two sequences 137
mainly depositional geometries shown 136, 136
Spatangus 220
Spatangus glenni 219
Sphaeroidinellopsis 62
Spongites 77, 80, 81, 157, 158, 161, 173, 174, 175
Spongites albanensis 157, 158, 159, 160, 162
Sporolithon 81, 138, 158, 158, 171, 174, 175
Strongylocentrotus pallidus 208
Tarbellastraea 55, 130, 261, 276
tectonic subsidence 73, 123, 252
accelerated 122, 124–5
Latium-Abruzzi platform 90, 92
Tellaro Formation 73, 73
Thalassanoidea burrows 94, 140
Thalassinoides nitzschiodes 39
Thegioastrea 130
thermacor facies 45, 46
transgressive systems tracts 98, 101, 123
tropical foram-rhodalgal carbonate ramp, facies and sequence architecture of 107–25
depositional environment 111–19
depositional environment, inner ramp 116
carbonate production in the euphotic zone 116
conglomerate layers described 116
coral carpets/coral colonies 116
facies represents seagrass meadow environment 116
lithofacies included in this association 113–15, 116, 117
depositional environment, middle ramp 118
bioclastic packstone-grainstones 118
depositional environment, oligophotic zone 118
facies represented by rhodolithic limestones 109, 110, 116, 118
made up from different microfacies 113–15, 117
oyster-pectinid-bearing levels 118
tabular bodies from rhodolithic facies 118
depositional environment, outer ramp 118–19
benthic foraminifera-echinoid limestones 113–15, 117
distal outer-ramp lithofacies limestones 113–15, 116, 118
intermediate outer-ramp zone 116, 118
placed in aphotic zone 119
proximal outer ramp, bryozoan-echinoid limestones 113–15, 116, 117, 118
sub-division of 118
upper lithofacies divides into two subunits 113–15, 118
widely represented throughout the platform 118
geological setting 108, 116
age of Miocene transgression 108
“Calcari a Briozoi e Litotamni” Formation 108
carbonate deposition 108
tropical foramol-rhodalgal carbonate ramp, facies and sequence architecture of (Cont’d)
Latium-Abruzzi platform 108, 109
main lithological lithofacies associations 108
main discontinuity surfaces 119–21, 119
DS1, an undulating irregular surface 119, 119
DS2, sharp superposition of different facies 119–20, 119
marked by sharp facies changes 119
methods 108–11
sequence stratigraphic interpretation 108–11
important facies characteristics 113–15
measured sections across the platform 109, 110, 111
recognized lithofacies associations 111, 116
sample reproducibility estimates 111
samples analyzed for Sr isotope composition 111, 112
strontium-isotope stratigraphy used 109–11
use of petrographic and geochemical criteria 111
sequence stratigraphy 121–3
tropical foramol-rhodalgal carbonate ramp, sensitivity of relative to sea-level change 89–102
geological setting 90
ramp sediments, “Calcari a Briozoi e Litotamni” Formation 92–100
Uintacrinus socialis 215
Upper Bryozoan Limestone 124
Uvigerina peregrina 57
Venerupis gregarius 184, 190
Villagreca: inception and growth of carbonate platforms on isolated tilted blocks 259, 263–7, 264
carbonate factories developed on structural highs 264
Genna Siustas section 264, 265, 266
interpretation 267
development of carbonate factories on fault blocks 267, 267
discontinuity surfaces may correspond to relative sea-level falls 267
erosional surface overlain by foramol carbonates 264, 265, 267
vertically stacked hardgrounds truncate coral-dominated sequences 267
location of Villagreca area 259, 263, 264
Monte Su Crucuri section 259, 263–6, 264, 265
other blocks 266–7
coral-rich bodies, tabular bodies prograding eastwards 266
sequences recognizable N and E of Villegreca area 266, 266
Werlberg Member, Paisberg Formation 217
Yorktown Formation 219
Zogelsdorf Formation, “Echinoderm-Foraminiferal Facies” 218
zoanthellate coral reefs 41–2, 52, 54–5, 54
disappearance of 60, 62–3, 64
zoanthellate scleractinian corals 28
present day northern distribution limit 28