Index

Note: page numbers in italics refer to figures; page numbers in bold refer to tables.

a
absorption coefficients 9–10
absorption contrast imaging 98, 102, 103
absorption edges
 edge jump 17, 73
 and atomic number 74, 75
 and fluorescence yield 76, 77, 78
 edge position 17
 electron configurations 11–12, 12
 and electron shell 10
 maximum slope 17
Advanced Light Source (ALS) 35, 36–7
Advanced Photon Source (APS) 35, 36–7
AEY (Auger electron yield) 29, 76
air, x-ray transmission through 57, 62, 63
ALS (Advanced Light Source) 35, 36–7
analyzer crystals 86–7, 87
antiferromagnetic materials 30
APDs (avalanche photodiodes) 81, 108
APS (Advanced Photon Source) 35, 36–7
argon, ion chamber gas 68
ARTEMIS (software) 119
ATHENA (software) 119, 126
atomic number
 and absorption coefficients 10
 and attenuation lengths 74
 and edge position 17–18
fluorescence yield as function of 77, 78
attenuation lengths 62, 70, 71
air as a function of energy 62, 63
 and atomic number 74
 fluorescence detection 77–8
 germanium and iridium 77
 and sample thickness 70
Auger electron emission 28–9
Auger electron yield (AEY) 29, 76
avalanche photodiodes (APDs) 81, 108

b
background subtraction 119–23
back scattering 19–20, 23, 140–3
beamline architecture 45–57
 angular divergence 46, 54
 combined techniques 79, 105
 energy resolution 46, 47, 50, 52–4
EXAFS 40, 45, 47, 49, 55, 56, 57
 fluorescence detection 79

© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
beamline architecture (cont’d)
 mirrors 48–9
 monochromators see monochromators
near-sample focusing elements 55–7
 Kirkpatrick-Baez (KB) mirrors 55–6, 100, 121
 x-ray lenses 56
 zone plates 56–7, 97, 102
pre-monochromator slits 46, 47
STXM 102
third generation 40, 47
two-color XAFS 104, 105
TXM 97
XEOL 95
biological samples 97, 106–7
 earthworm excretions 129, 130
 mammalian cell 98
 marine magnetotactic bacteria 186
Bragg angles and photon energies 50–1, 52, 53
Bragg monochromators 49–51
Bragg’s equation 46, 50
brehmsstrahlung 43–4
bromine 80, 133, 136, 137
CEY (conversion electron yield)
detection 76
chemical processing 164–83
 liquid phase reactions 164–78
 fast reactions 166–73
 steady state or slow reactions 165–6
 ultrafast reactions 177–8
 very fast reactions 173–7
reactions of solid-state materials 178–83
 fast reactions 181–3
 steady-state or slow reactions 179–80
chromium
 absorption edges 13–15, 15, 125
 catalyst 145, 168
 crystal analyzers 87
 energies of edges and emissions 80
 vacant states 16
CIE (constant incident energy) 91
CIY (conversion ion yield)
detection 76
cobalt
 crystal analyzers 87
 energies of edges and emissions 80
 EXAFS 135
combining techniques 103–6
 two-color XAFS 103–4, 105
 XAFS in fluorescence and transmission 79
x-ray scattering (diffraction) 104, 106
compositional analysis 123–30
 least squares analysis 124–6
 mapping procedures 129
 principal component analysis (PCA) 126–8, 129
 single energy comparisons 123–4
Compton scattering 9
constant emission energy (CEE) 91
constant incident energy (CIE) 91
conversion electron/ion yield (CEY/CIY) detection 76
copper catalyst 172–3
crystal analyzers 87
energy of absorption edge 80
foil filter 80, 81
x-ray emission energies 26–7, 27, 80, 82
x-ray emission spectra 87–9, 89
copper oxides 88, 90, 91, 92, 93
copper phthalocyanine 184
cryogenic cooling 52 see also freeze quench methods
crystal analyzers 86–7, 87

d
Darwin widths 46, 47, 53–4, 53, 54
data analysis 117–51 see also compositional analysis; structural analysis
background subtraction 119–23
websites 117, 119
Debye-Waller factors 23–4, 25, 125, 126, 138
Demeter (software) 119
density functional theory (DFT) 131, 146, 147, 151, 152, 174
detection methods
electron yield 74–6
energy discriminating detectors 81, 83–5
fluorescence 76–94
transmission 67–74
x-ray excited optical luminescence (XEOL) 94–5
DFT see density functional theory (DFT)
diamond 94
Diamond (storage ring) 34
bending magnet beamline 53
bunch lengths 177

helical undulator 42
Microfocus Spectroscopy beamline 40, 55–6, 100, 102, 129
STXM beamline 102
transmission x-ray microscope 97
two-color XAFS 104, 105
diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) 182
diluents 73
dipole (Laporte) allowed transitions 13
double crystal monochromators 51–2, 55
drift diodes 81, 84
DRIFTS see diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS)
e
elastic (Rayleigh) scattering 9
electron emission 28–9
electron energy analyzers 76
electron mean free path 15–16, 137
electron transitions 10–11, 12, 13
electron yield detection 29, 31, 74–6
energy discriminating detectors 81, 83–5
energy dispersive XAFS 66, 104, 119–20, 123–4, 129, 168
energy dispersive x-ray emission spectrometers 109, 129
environmental materials 186–8
ESRF (Grenoble) 41, 56
ethanol 97, 165
European XFEL 45
EXAFS see extended x-ray absorption fine structure (EXAFS)
extcitation energies and emission spectra 90, 91, 92, 93, 129
experimental methods see also detection methods
combining techniques 103–6
effect of photon energies 57–8
experimental methods see also detection methods (cont’d)
 planning 61–2
 sample characteristics 62–3
 spatial resolution 95–103
 x-ray free electron lasers (XFELs) 106–10
 extended x-ray absorption fine structure (EXAFS) 3, 19–21
 beamline architecture 47, 49, 55, 56, 57
 compositional analysis 123–4
 data analysis 117–19
 electron transitions 12
 information content 3–4, 5, 21–4
 interatomic distance 21, 24, 25
 photo-electron wave model 19–20, 21–4, 131
 Quick EXAFS mode 65, 169, 174
 spectrum regions 64–5
 structural analysis 130–43

f
 FDMNES (software) 151
 FEFF (software) 119, 131, 146, 148, 153
 FELs see free electron lasers (FELs)
 Fermi energy 15, 17
 ferromagnetic materials 30, 184
 filters for fluorescence detection 79–81, 80, 82, 83
 fluorescence detection methods 76–94 see also resonant inelastic x-ray scattering/spectroscopy (RIXS); x-ray emission spectroscopy (XES)
 filters 79–81, 80, 82, 83
 high-resolution fluorescence detection (HERFD) 86–8, 86–90, 91, 151, 152
 ion chambers 79–81
 photodiode detectors 81
 sample orientation variation 85–6
 total fluorescence yield 79–86
 yield as function of atomic number 77, 78
 yield available for detection 77
 focused-beam microscopies 99–100
 scanning micro- and nano-focus microscopy 100
 scanning (transmission) x-ray microscopy (STXM) 102–3, 121
 Fourier transform method 21, 22, 24, 26, 96, 117, 122–3
 free electron lasers (FELs) 44–5, 106–10, 178
 laser-pump measurements 107–8
 sampling environments 108–9
 XAS and XES 109–10
 x-ray beam intensity 109
 freeze quench methods 124, 168, 174
 Fresnel zone plate (FZP) 56
 full field transmission x-ray microscopy (TXM) 96–8, 120–1
 functional materials 184–5

g
 gas-solid reactions 181–3
 germanium
 absorption edges 96, 104
 diodes 81, 83
 energies of edges and emissions 80
 fluorescence attenuation
 lengths 77–8
 monochromator 50
 multiple ionizations 109
 photon energies for different Bragg angles 50
 GNXAS (software) 131
 gold 27, 82
 graphite 94

h
 hard x-ray photoelectron spectroscopy (HAXPES) 104
 harmonic rejection 48, 55
 helical undulators 41, 42, 103
helium, ion chamber gas 68
HEPHAESTUS (software) 119
heritage materials 186–9
high harmonic generation 44
high-resolution fluorescence detection (HERFD) 86–90, 91, 151, 152
historical perspective 2
Hund’s rules 10–11
huntingtin gene 98
hydrogenase 150

i
indium antimonide 50, 50
inelastic (Compton) scattering 9
inelastic x-ray Raman scattering (XRS), 91, 94 see also resonant inelastic x-ray scattering/spectroscopy (RIXS)
information content 3–4, 5
inhomogeneous samples 70, 72, 95–6
powdered materials 58, 179
textured materials 96–7, 100, 179, 189
insulating samples 75
interatomic distance 21, 24, 25 see also Debye-Waller factors
measurement 132, 133
International X-Ray Absorption Society 117, 119
ion chambers 67, 68, 79–81
iridium
absorption edges 77–8, 170
energies of edges and emissions 82
zone plates 57
iron
crystal analyzers 87
energies of edges and emissions 80
fluorescence 100, 101
x-ray transmission through 57
iron oxide, magnetic dichroism 31, 150

j
Johann geometry 86

k
Kirkpatrick-Baez (KB) mirrors 55–6, 100, 121
krypton
energies of edges and emissions 80
ion chamber gas 68

l
laboratory x-ray sources 43–4
Laporte allowed transitions 13
laser-pump measurements 107–8
Laue lenses 56
Laue monochromators 51, 52
LCLS (Stanford, Calif.) 45, 109, 178
lead 24–5, 82
least squares analysis 124–6, 127
linear absorption coefficient 9
liquid phase reactions 164–78
fast reactions 166–73
steady state or slow reactions 165–6
ultrafast reactions 177–9
very fast reactions 173–7
liquid solutions 72–3
lithium ion cathodes 104

m
magnetic dichroism 30, 31, 99–100, 150, 184, 186
magnetic domains 99
magnetic materials 184–5
manganese
absorption edges 99
crystal analyzers 87
energies of edges and emissions 80
photosystem II 109
pigments 188
mass absorption coefficients 9
MCA (multichannel analyzers) 84, 100, 129
metal-to-ligand charge transfer (MLCT) 174–7, 177–8
metamorphic materials 186
Microfocus Spectroscopy beamline
40, 55–6, 100, 102, 129
micro XANES 129
micro x-ray diffraction analysis
(μXRD) 129
Miller index 46
mineral speciation 186
MLCT (metal-to-ligand charge transfer) 174–7, 177–8
MLL (multilayer Laue lenses) 56
molybdenum 31, 144, 145
monochromators 49–55
choice of crystals 54
cryogenic cooling 52
crystal planes and energy ratings 49, 53, 54
double-crystal 51–2, 55
focusing gratings 49
harmonic rejection 55
multilayer materials 49–50
order-sorting 55
photon energies for different Bragg angles 50–1, 52, 53
transmission (Laue) geometry 51, 52
muffin-tin model 131–2
multichannel analyzers (MCA) 84, 100, 129
multilayer Laue lenses (MLL) 56
multiple scattering 16, 131, 134–8, 145
multipole wigglers 38

n
natural materials 186–9
near-edge x-ray fine structure
(NEXAFS) 145 see also x-ray absorption near-edge structure
(XANES)
nickel
absorption edges 48–9
crystal analyzers 87
energies of edges and emissions 80
EXAFS 133, 136, 137, 141, 142–3
fluorescence detection 77, 83, 84
mirror coatings 48–9
nitrogen, ion chamber gas 68
nonresonant inelastic x-ray scattering
(NIXS) see inelastic x-ray Raman scattering (XRS)
o
opto-electronic materials 184–5
ORCA (software) 145, 147, 150
order-sorting monochromator 55
organic materials
from historical shipwrecks 188
manganese pigments 188
wood from historical shipwrecks 100, 101, 189, 190
p
PCA (principal component analysis) 126–8, 129
phase-contrast imaging 103
photodiode detectors 69, 81
photoelectron(s)
back scattering 19–20, 23, 140–3
electron emission 28–9
wave model 19–20, 21–4, 131
photo-excited states 174–8
photon energies
and crystal planes 49, 53, 54
for different Bragg angles 50–1, 52, 53
effect on experiment design 57–8
and transmission through different materials 57–8
pigment analysis 188–9, 190
pin diodes 69, 81
planar undulators 38–41
plasma sources 44
platinum
absorption edges 104, 123, 141, 183
energies of edges and emissions 82
platinum-germanium catalyst 104
polarization effects 30
polyimide windows 63, 64
potassium 2, 80
powdered materials 58, 179
pre-edge features 12, 13, 14, 18, 22
circular dichroism 30
in EXAFS 64
in HERFD 88, 91
principal component analysis (PCA) 126–8, 129
pulsed mode 43, 44–5, 107–8, 164, 174
PyMCA (software) 129
quick extended x-ray absorption fine structure (QEXAFS) 65, 169, 174
Raman scattering 29, 91, 94 see also resonant inelastic x-ray scattering/spectroscopy (RIXS)
Raman spectroscopy 1, 9, 29
Rayleigh scattering 9
reactor cells 181, 182
reference samples 45–6, 67, 120
resonant inelastic x-ray scattering/spectroscopy (RIXS) 29, 90–1, 92, 93, 109, 150–3, 152, 153
resonant x-ray emission spectroscopy (RXES) see resonant inelastic x-ray scattering/spectroscopy (RIXS)
rhodium absorption edges 48–9, 127, 128, 166, 167
catalyst 181
mirror coatings 48–9
RIXS see resonant inelastic x-ray scattering/spectroscopy (RIXS)
Russell Saunders coupling 28, 148–9
RXES (resonant x-ray emission spectroscopy) see resonant inelastic x-ray scattering/spectroscopy (RIXS)
S
SACLA (Japan) 45
sample characteristics 62–3
absorbance and relative signal intensity in ion chambers 70, 71
attenuation lengths 62, 70, 71
air as a function of energy 62, 63
and atomic number 74
fluorescence detection 77–8
and sample thickness 70
effect of pinholes on transmission 72
experimental layouts 63
hard or high-energy x-ray region 63
inhomogeneous 70, 72
insulating 75
medium-energy x-ray region 63
in situ studies 63
soft or low-energy x-ray region 63
solutions 72–3
thickness 70, 179
volatile samples 63
x-ray absorption of samples 62, 70
sample preparation 73
scanning micro-and nano-focus microscopy 100
scanning modes 64–6
energy dispersive XAFS 66
scanning XAFS 64–6
step intervals 64
scanning transmission x-ray microscopy (STXM) 102–3, 121, 186
secondary emissions 24–9
electron emission 28–9
x-ray fluorescence 26–8
semiconductor diode detectors 68–9, 81
shell coordination number estimation 138–9
signal/noise ratio 65
fluorescence detection method 79
transmission method 70, 71
silicon
absorption efficiency 69, 70
Darwin width and core-hole lifetimes 54
electron mean free path 16
energy resolution and monochromator slit size 47
monochromator 49–54, 53
photon energies for different Bragg angles 50, 50
silicon diode(s) 81, 83, 84
silicon diode detectors 68–9
silicon dioxide 180
silicon nitride 57, 103
simulation methods
K edge XANES 145–6
L edge XANES 146–50
XES and RIXS 150–3
situ studies 63
SLS (Swiss Light Source) 37, 47, 53, 107–8, 177
sodium chromate 72, 73
soft x-ray scanning transmission microscopy (STXM) 186
solid-state materials 178–83
fast reactions 181–3
powdered materials 58, 179
sample preparation 72–3
steady-state or slow reactions 179–80
textured materials 96–7
Soller slits 81, 83
spatial resolution 95–103
focused-beam microscopies 100–3
methods of studying textured materials 95–6
TXM 96–8
X-PEEM 99–100
stopped-flow techniques 168, 169
storage rings
architecture 37
bending magnet radiation 34–8
brightness 36
brilliance 37, 38, 40
electron bunches 43, 174
emittance 37
filling modes 43, 173–4
insertion devices (IDs) 38–41
deflection factor 38
helical undulators 41, 42, 103
multipole wigglers 38
planar undulators 38–41
wave-length shifter/wiggler 38
second and third generation sources 33–4
spectral range 38
time structure 41, 43, 174, 177–8
structural analysis 130–51, 163
EXAFS analysis 130–43
bond angle estimation 133–8
goodness of fit 143–5
interatomic distance measurement 132, 133
shell coordination number estimation 138–9
speciation of back-scattering elements 140–3
XANES simulations
K edge XANES 145–6
L edge XANES 146–50
XES and RIXS simulations 150–3
STXM (scanning transmission x-ray microscopy) 102–3, 121, 186
sulfur 165
absorption edges 18, 24, 62
fluorescence 100, 101
multiple ionizations 109
vacant states 19
SuperXAS 37, 47, 53, 107–8
SwissFEL 45
Swiss Light Source (SLS) 37, 47, 53, 107–8, 177
synchrotron sources see storage rings

Text

textured materials 95–6, 100, 179, 189
time-dependent density functional theory (TDDFT) 145–6
titanium crystal analyzers 87
total electron yield (TEY) 74–5
total fluorescence yield (TFY) 79–86
transmission methods 67–74
transmission (Laue) monochromators 51–5
transmission x-ray microscopy (TXM) 96–8 see also scanning transmission x-ray microscopy (STXM)
tungsten absorption edges 3, 11, 13, 14, 15, 26, 65
energies of edges and emissions 82
EXAFS effect 21, 22–3, 24, 26, 65, 122
two-color XAFS 103–4, 105

Valence

valence to core (VtC) emissions 151
vanadium crystal analyzers 87
van Hamos geometry 109
volatile samples 63

Water

water, x-ray transmission through 57
wave-length shifter/wiggler 38
websites, data analysis 117, 119
wood, from historical shipwrecks 100, 101, 188, 189, 190

XEOL see x-ray excited optical luminescence (XEOL)

XES see x-ray emission spectroscopy (XES)
XFELs see x-ray free electron lasers (XFELs)
XMCD see x-ray magnetic circular dichroism (XMCD)
XMLD see x-ray magnetic linear dichroism (XMLD)
X-PEEM see x-ray photoelectron emission microscopy (X-PEEM)
x-ray absorption near-edge structure (XANES) 2–3 see also extended x-ray absorption fine structure (EXAFS)
edge position 16–19
alternative definitions 17
and atomic number 17–18
electron transitions 12
features 13–16
K absorption edge 13–15, 145–6
L₃ and L₁ absorption edges 13, 14, 146–50
X-ray Data Booklet 11
x-ray diffraction 104, 106
x-ray emission energies 2, 26–7, 27, 80, 82, 87, 90–1, 92
x-ray emission spectroscopy (XES) 86–91, 150–3
energy dispersive x-ray emission spectrometers 109, 129
simulation methods 150–3
x-ray excited optical luminescence (XEOL) 94–5
x-ray fluorescence 9, 26–8, 76–94 see also fluorescence detection methods; resonant inelastic x-ray scattering/spectroscopy (RIXS); x-ray emission spectroscopy (XES)
absorption edge energies and emission energies 27
emission energies 26–7, 27
fluorescence yield 27–8
x-ray free electron lasers (XFELs) 106–10
x-ray lenses 56
x-ray light sources 4–5 see also
storage rings
free electron lasers (FELs) 44–5
high harmonic generation 44, 48
laboratory x-ray sources 43–4
plasma sources 44
x-ray magnetic circular dichroism (XMCD) 30, 31, 99–100, 150, 184, 186
x-ray magnetic linear dichroism (XMLD) 30
x-ray mirrors 48–9
x-ray photoelectron emission microscopy (X-PEEM) 99–100, 104
x-ray Raman scattering (XRS) 91, 94
x-ray scattering (diffraction) 104, 106
x-ray sources and beamlines
beamline architecture 45–57
effect of photon energy on experiment design 57–8
free electron lasers (FELs) 44–5
high harmonic generation 44
laboratory x-ray sources 43–4
plasma sources 44
storage rings see storage rings
x-ray transmission methods 67–74

Z
zeolite de-alumination 179–80
zinc
crystal analyzers 87
energies of edges and emissions 80
fluorescence 80, 81
interatomic distance 138
XMCD 185
zinc oxide 184–5
zone plates 56–7