Index

a
ABET. See Accreditation Board for Engineering and Technology (ABET)
abline(coef(fm)) 253, 255
Accreditation Board for Engineering and Technology (ABET) 1
actively managed funds 384
addTA 356, 359, 360
adjustable rate mortgage (ARM) 56
affine transformation 381
algorithmic trading 17
annuity allocation 372
Annuity 2000 Basic Table 376
applied probabilistic calculus (APC) 2
arfima 462
ARIMA model 462, 463
Arima-1 463
Arima-2 464
Arima-3 465
arithmetic Brownian motion 45
GBM returns 38
simulators 36
asset class assumptions modeling 11
asset investment, pie chart 370
asset location
definition 371
and withdrawal sourcing 371–372
asset price 23
assets allocation 7, 19, 68, 69, 179
approaches 370–377
final remarks on 179
γ factors 371–376
annuity allocation 372
asset location and withdrawal sourcing 371–372
dynamic withdrawal strategy 372
liability-relative optimization 373
measurement 373–376
total wealth asset allocation 372
mortality model 376–377
process 369–370
using Black–Litterman model 177–179
sensitivity analysis
elasticity of intertemporal substitution (EOIS) 377
for set of investment data 82, 83
by using R
Black–Litterman (B–L) asset allocation model 385–389
from CRAN 390–393
worked examples 384–393
automated coding systems 237
average value at risk (AVaR) 324

b
Bayes’ law 144, 412, 415
derivation using 182–184

Bertram K. C. Chan.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/chan/appliedprobabilisticcalculus
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>bconfint</td>
<td>36, 39, 51</td>
</tr>
<tr>
<td>bivariate data analysis</td>
<td>325, 328</td>
</tr>
<tr>
<td>available R packages for</td>
<td>329</td>
</tr>
<tr>
<td>bivariate normal distribution</td>
<td>330, 331</td>
</tr>
<tr>
<td>Black–Litterman and Copula Opinion Pooling Frameworks</td>
<td>222</td>
</tr>
<tr>
<td>Black–Litterman model (BL)</td>
<td>57, 123–125, 128–137</td>
</tr>
<tr>
<td>active management</td>
<td>172–175</td>
</tr>
<tr>
<td>asset allocation model</td>
<td>190–194, 385, 393</td>
</tr>
<tr>
<td>Braga and Natale and tracking error volatility (TEV)</td>
<td>166–168</td>
</tr>
<tr>
<td>calibrated results</td>
<td>158, 159</td>
</tr>
<tr>
<td>confidence levels</td>
<td>150</td>
</tr>
<tr>
<td>extensions to the Black–Litterman model</td>
<td>155, 156</td>
</tr>
<tr>
<td>Fusai and Meucci’s measure of consistency</td>
<td>162–164</td>
</tr>
<tr>
<td>He and Litterman lambda</td>
<td>164–166</td>
</tr>
<tr>
<td>Idzorek’s extension</td>
<td>156–158</td>
</tr>
<tr>
<td>matching the results of He and Litterman</td>
<td>152</td>
</tr>
<tr>
<td>matching the results of Idzorek</td>
<td>152–155</td>
</tr>
<tr>
<td>research papers</td>
<td>155</td>
</tr>
<tr>
<td>Theil’s measure</td>
<td>160–162</td>
</tr>
<tr>
<td>derivation of 180</td>
<td>180–184</td>
</tr>
<tr>
<td>using Theil’s mixed estimation</td>
<td>180–184</td>
</tr>
<tr>
<td>efficient frontier</td>
<td>124</td>
</tr>
<tr>
<td>formula</td>
<td>144, 186, 189</td>
</tr>
<tr>
<td>alternative formulation</td>
<td>186–188</td>
</tr>
<tr>
<td>inputs</td>
<td>189</td>
</tr>
<tr>
<td>Markowitz’s theory</td>
<td>125</td>
</tr>
<tr>
<td>matrices for alternative reference model</td>
<td>146–150</td>
</tr>
<tr>
<td>Bayes’ theorem for estimation model</td>
<td>143–146</td>
</tr>
<tr>
<td>calibration likelihood estimator</td>
<td>150</td>
</tr>
<tr>
<td>canonical Black–Litterman reference model</td>
<td>129–131</td>
</tr>
<tr>
<td>capital market line</td>
<td>132–135</td>
</tr>
<tr>
<td>computing equilibrium</td>
<td>131, 132</td>
</tr>
<tr>
<td>returns</td>
<td>131, 132</td>
</tr>
<tr>
<td>confidence interval</td>
<td>138</td>
</tr>
<tr>
<td>estimation model</td>
<td>139, 140</td>
</tr>
<tr>
<td>goals of</td>
<td>128</td>
</tr>
<tr>
<td>illustrating and specifying views</td>
<td>136, 137</td>
</tr>
<tr>
<td>matrices for</td>
<td>137–150</td>
</tr>
<tr>
<td>mean-variance optimization</td>
<td>133</td>
</tr>
<tr>
<td>reverse optimization</td>
<td>133</td>
</tr>
<tr>
<td>risk-adjusted Bayesian efficient frontier</td>
<td>135, 136</td>
</tr>
<tr>
<td>sharpe ratio</td>
<td>134</td>
</tr>
<tr>
<td>specifying variance</td>
<td>138</td>
</tr>
<tr>
<td>Theil Mixed estimation model</td>
<td>140–143</td>
</tr>
<tr>
<td>total return on the market portfolio</td>
<td>133</td>
</tr>
<tr>
<td>using Idzorek method</td>
<td>139</td>
</tr>
<tr>
<td>using variance of residuals from factor model</td>
<td>139</td>
</tr>
<tr>
<td>Woodbury matrix identity</td>
<td>146</td>
</tr>
<tr>
<td>Black-Scholes model</td>
<td>27, 32, 66, 221</td>
</tr>
<tr>
<td>arbitrage</td>
<td>196</td>
</tr>
<tr>
<td>Brownian motion</td>
<td>198</td>
</tr>
<tr>
<td>derivation of Black–Scholes equation</td>
<td>203</td>
</tr>
<tr>
<td>hedging</td>
<td>196</td>
</tr>
<tr>
<td>option pricing</td>
<td>125, 126, 194–209</td>
</tr>
<tr>
<td>solution for a European call</td>
<td>204–209</td>
</tr>
<tr>
<td>stochastic or probabilistic calculus</td>
<td>199</td>
</tr>
<tr>
<td>stock price model</td>
<td>197</td>
</tr>
<tr>
<td>BLASH theory. See buy low and sell high (BLASH) theory</td>
<td></td>
</tr>
<tr>
<td>bonds</td>
<td>55</td>
</tr>
<tr>
<td>bootstrapping</td>
<td>11</td>
</tr>
<tr>
<td>Brownian bridge</td>
<td>33, 36</td>
</tr>
<tr>
<td>Brownian motion</td>
<td>33, 36, 198</td>
</tr>
<tr>
<td>geometric (See geometric Brownian motion (GBM) model)</td>
<td></td>
</tr>
<tr>
<td>paths</td>
<td>198</td>
</tr>
<tr>
<td>properties</td>
<td>198</td>
</tr>
</tbody>
</table>
Index 507

quadratic variation 199
S3 generic function for simulation 36
buy and hold strategy 408
buy low and sell high (BLASH) theory 408

C

capital allocation line (CAL) 91, 92
capital asset pricing model (CAPM) 63–65, 133, 221, 372
capital preservation 408
certainty equivalent 379
chain rule 28
Chan-Karolyil-Longstaff-Sanders (CKLS) model 34
data(irates) 46
format 46
output 48–52
R domain 47
short-term interest rates 46
chartSeries(YHOO) 354, 361, 363, 364, 366
chartTheme 356, 359, 360
CKLS model. See Chan-Karolyil-
Longstaff-Sanders (CKLS) model
classical Black–Litterman model I 389
stockportfolio-1 389
classical Black–Litterman model II 392
stockportfolio-2 392
stockportfolio-3 392
stockportfolio-4 392
clearing service subscribers 406
coding 237
automated coding systems 237
combinatorial optimization problems 404
comprehensive R archive network (CRAN) 35, 67, 226, 243, 410, 438
documentation 248, 250
mirror 39, 323, 459

R codes version for DE 410
DEoptim 410
DEoptimR 410
computational finance 1
concomitant gains 19
conditional value at risk (CVaR) 10, 324
conflicts of interest
broker/dealer-inspired 406
constant relative risk aversion (CRRA) 374
constraints 224, 401
continuous models 19
financial model, using probabilistic calculus 26
contour map 87
cost of money 55
covariance 74
Cox–Ingersoll–Ross (CIR) model 34
CRAN. see comprehensive R archive network (CRAN)
creative financing 56
CRRA. see constant relative risk aversion (CRRA)
Crystal Cove Advisors 407–408

d

data analysis 236
raw 237
using R programming 235
databases 241
data capture 238
batch keying 238
interactive capture 238
magnetic recordings 239
optical character readers/bar code scanners 238
tally charts 238
data coding 237
data editing 239
macroediting 239
microediting 239
data.frame() 318
data input devices 239
bar code reader 239
light pen 239
mouse 239
optical mark reader 239
scanner used in desktop publishing 239
trackball 239
data processing 236, 237
raw 237
steps 237
data quality 240
day trading 17
DE algorithm. see differential evolution (DE) algorithm
population 409
DEoptim 404
DEoptim-1 446
DEoptim-2 447
DEoptim-3 447
NA or NaN value, role of 439
DEoptim.control 438
derivative-free global optimizer 404
deterministic calculus 26
deterministic model vs. probabilistic model 20, 34
deterministic model, calculus of 20–23
Geometric Brownian Motion (GBM) Model 23
random walk model 23
Taylor formula 23
differential evolution (DE) algorithm 404
DEoptim implementation 404
diffusion coefficient 203
discrete model vs. continuous model 19
dispersion coefficient 377
diversification 75
Dow Jones industrial average (DJIA) 15
stock market index 19
drift coefficient 203
drift factor 23, 25
efficient portfolios, analyses and interpretation of 119
assets allocation 119–123
elasticity of intertemporal substitution (EOIS) 374
environment 242
ES. See expected shortfall (ES)
Euclidean space (R^n) 401
evolutionary algorithms (EA) 404
expected excess return 90
expected shortfall (ES) 321, 324
expected tail loss (ETL) 324
expected utility theory 379–380
financial advisors 369, 404
financial data 19
Apple, Inc., AAPL 19, 20
Dow Jones 19
financial engineering 383
challenge in 3
definition 1
volatility 3, 4
financial institutions 406
interest rates 55
financial modeling 411
analyst buy/sell recommendations 411
applications 411
business valuation 411
capital budgeting 411
capital calculations, cost of 411
financial statement analysis 411
management decision making 411
mergers and acquisitions 411
project finance 411
financial news media 55
financial planning decisions 371
financial risk modeling 405–408
financial statement forecasting 411
fixed rate mortgage 56
forecast-accuracy 460
forecast-accuracy-1 461
forecast-accuracy-2 461
F-statistic 253
function
BB 37
GBM 38
maxima, locating in portfolio optimization process 402–403
minima, locating in portfolio optimization process 402–403
function list() 318
funding risks 373

general mean value theorem 21
genetic algorithm 404
geometric Brownian motion (GBM) model 24, 27, 36
effective financial model from 24
numerical study 33
observation 27
probabilistic calculus 24
getDividends 348
getOption(“getSymbols.env”) 352
getSplits 348
getSymbols(“YHOO”) 360, 361
global and local optimal values 401–402
(absolute) maximum point 401
(absolute) minimum point 401
graphical illustrations 402
minimum value 401
global minimum-variance portfolio 83
method of auxiliary Lagrange multipliers 84–86
method of substitution 83
global optimization, genetic algorithms role 404
Gompertz law of mortality 376
Milevsky–Robinson form 376
governmental stocks 55

h
heteroskedasticity 255
higher mean value theorems 21

i
imputations methods 239, 240
cold deck 240
estimator 240
hot deck 240
imputation 240
substitution 240
independent brokerage services 406
index funds 384
individual asset VaR 78
inflation 15–17
information 236
institutional equities 369
interest rates, monthly 46
International Association of Quantitative Finance 1
investment 4–6
with one risk-free asset and one risky asset 93–97
with one risk-free asset and two risky assets 97, 98
investment decision, fundamental components 371
alpha 371
beta 371
investors, net equity mutual fund flows 384
Ito calculus 28–33
Ito integrals 199, 200
Ito Lemma 28, 29
probabilistic (or stochastic) calculus and 32
proof 29, 30
worked example 30–32

j
Johnson model 12

k
kurtosis 256
Index

I
Langrangian multipliers 86
legal regulations 1
liability-relative optimization 373
LIBOR (London InterBank Offered Rate) 56
library(Sim.DiffProc) 39
liquidity crisis 66
local regression line 253
Lognormal models 11, 12
LPL (Linsco Private Ledger)
Financial 405
external links 407
recent timeline 406–407
acquisitions 406
advisor online tool suite certification 407
agreement 407
client base expansion 406
mergers 406
statistics 407
ls("package:Sim.DiffProc") 39
luck/skill-based residual component 371

m
market
interest rate 377
returns 382
Markowitz model 57
asset pricing 63
capital allocation line (CAL) 61–63
diversification 59
efficient frontier with no risk-free assets 59, 60
MPT model 66
MPT using R 67
risk and expected return 57–59
risk-free asset
and capital allocation line 61
Sharpe ratio 61
specific and systematic risks 63
two mutual fund theorem 60, 61
MarkowitzR 67
mathematical modeling 19
mathematical programming problem 401
mean value theorem 21
mean-variance optimization (MVO) 7, 10
characteristic properties of 8–11
conditional value at risk (CVaR) 10
mathematical framework 10
symmetric bell-shaped curve 9
minriskPortfolio 223
modeling asset classes 11
Johnson model 12
Lognormal models 11, 12
modern portfolio theory (MPT) 6, 7, 57, 66, 126
information science 127
other nonfinancial assets 127
social psychology 126, 127
Monte Carlo simulations 66
multivariate data analysis 325, 328, 331, 332, 347
analysis of variance (ANOVA) 334, 335
coefficient of multiple determination 332
multiple correlation coefficient 334
multiple correlation model analysis 333
multiple linear regression analysis 331
mutual funds 55
classification 384
broker-sold 384
institutional 384
investor 384
retirement 384
separation theorem 118, 119

n
NASDAQ stock market 407
net equity mutual fund flows 382
Newtonian calculus 28
Newtonian characteristic term 25
numerical financial modeling 411
accounting and corporate finance applications 411
quantitative finance applications 411

o
octatherp/octathorp/octathorpe 244
OHLC charts 359
open-source computer software 2
optimalPortfolios 223, 224
optimalPortfolios.fPort 223, 224
optimal solution 401
optimization process
 algorithms 7, 404
 argument 451
 DEoptim 451
 GenSA 451
global optimal values 401–402
glpk 451
local optimal values 401–402
problem solving 401
psd 451
quadprog 451
random 451
ROI 451
optimize. portfolio 451
optimize.portfolio.rebalancing 451
optimizer 224
option.call 281
option.put 281

p
package index 247
patient investors 56
PDF-based approach 184
PerformanceAnalytics 226
plot function 367
generic X-Y plotting 367
plot 367
R documentation 367
portfolio
 attractive, with risk-free assets 89, 90
covariance 92
management, consisting of two risky assets 80
 outputting 82
 R domain 81, 82
mean-standard deviation 93
optimization 89
standard deviation 91
 of return 93
total return on market 133
two-asset 92
effects of imperfectly correlated risky assets 107, 108
effects of shorting risky asset B 106, 107
1 risk-free and 1 risky 98
tangency portfolios and computation 113–118
two perfectly positively correlated risky assets 108–113
two risky assets 102–106
use of leveraging 98–102
VaR 78
variance 91, 92
volatility 7
portfolio optimisation
 by AssetsM in CRAN 457
 by Black–Litterman approach 412–434
 BL-1 431
 BL-2: 431
 BL-3. 431
 BL-4. 433
 BLCOP 412
 BL-5, density plot. 434
goals 412
 weights pie output 431
 by differential evolution
 (DE) 409–410
financial risk modeling 405–408
 professional organization in wealth management 405–408
fPortfolio package 418
methodologies
portfolio (continued)
 differential evolution (DE)
 algorithm 404
 evolutionary algorithms (EA) 404
 in probabilistic calculus, for
 financial engineering 403–404
 process 401–403
 locating functional maxima and
 minima 402–403
 in Mathematics 401–402
R code DEoptim, application of 410
RmCTWu09 418
Rmetrics project 418
by special numerical
 methods 411–412
 using R 409–465
 worked examples of 434–465
post-modern portfolio theory
 (PMPT) 126
postPFolioWeights 224
priorPFolioWeights 224
probabilistic calculus 26, 40, 41
 portfolio optimization methodologies
 in, for financial
 engineering 403–404
probabilistic differential equation 32, 33
probabilistic model, for the stock
 market 25
probabilistic risk assessment (PRA) 66
proprietary investment funds 14
p-value 250
q
 quality assurance 240
 quality control 240
 elements of 241
 quality management in statistical
 agencies 241
 accessibility 241
 accuracy 241
 coherence 241
 interpretability 241
 relevance 241
 timeliness 241
quant 2
quantitative asset pricing 412
quantitative finance 412
quantitative financial
 management 412
quants 412
questions, in survey 237
 closed 237
 open 237
r
 R 2.9.1 244
 random walk
 concept 33
 hypothesis test 23
 model 33, 36
 R Archive Network 243
 R, as calculator 260
 arrays and matrices 270, 271
 assignment of values in R and
 computations 261
 code segment 73, 248, 250, 320
 computations in vectors and simple
 graphics 262
 development core group 242
 mathematical operations
 using R 260
 NA “not available” for missing values
 in data sets 273
 simple graphics 265–268
 special functions that create
 vectors 269, 270, 273, 274
 use of dimension function dim()
 In R 271
 use of factors in R
 programming 263
 use of matrix function matrix()
 In R 271–273
 x as vectors and matrices in
 statistics 268, 269
 R command, output 246
 R domain 39, 73, 76
 real financial data, modeling 33
 real numbers (R) 401
real-valued function \((f) \) 401
 maximum value of 401
 minimum value of 401
reChart 354, 356, 357
regression function lrf 250
relative expected return (RER) 75
R environment 242, 243, 244, 245, 246, 257
 for statistical computing 409
residuals Rankit plot 255, 256
retiree 371
 risks associated 371
retirement planning 371
R icon 244
R 3.3.2 icon 244
R, in data analysis in financial engineering 286
 creating data frame for R
 computation using EXCEL spreadsheet 287–289
 data entry and analysis using function data.entry() 291
 data entry and analysis using the function scan() 293–295
 data entry and analysis using the function source() 295, 296
 data entry and analysis using the spreadsheet interface in R 296–298
 data entry using several available R functions 291–293
 entering data at R command prompt 286
 financial mathematics using R 298–318
 obtaining data frame from text file 289–291
risk attitudes 381
risk-averse/risk-avoiding investor 379
 utility function of 380–381
risk aversion 369–370
 determination 369
 investor attributes, role of 369
 net equity flows, relation with 383
 reasons 383
 historical experiences/past returns 383
 stock market performance, future expectations of 383
 time-varying 369
risk-free rate 91
risk-neutral investor 379
risk preference bias 369
risk premium 90, 91, 379
risk reduction 75
 via diversification 75
risk-seeking
 individual, utility function of 378
 investor 379
risk tolerance questionnaires (RTQs) 369, 370, 383
risk-tolerant investors 89
risk vs. reward 370
R language 404
R package 390
 PerformanceAnalytics 434
 PortfolioAnalytics 434
 R package BLCOP 414
R Program 35, 67, 243, 404
R session 245
R source code 242
RTQs. see risk tolerance questionnaires (RTQs)
R version 3.2.2 408
R version 3.3.2 244
R window 244
R workspace 248, 250, 251
s
 security characteristic line (SCL) 65
 seller-financing 56
setTA 356
sharpe ratio (SR) 92
Signif. codes 249
Sim.DiffProc-1-9 35, 36, 42–45
skewness 256
solve.QP 224
specialized programs 241
spreadsheets 241
S/S-Plus languages 242
stochastic differential equations (SDEs) 35
stock investment approaches 17
algorithmic trading 17
day trading 17
stock markets 24, 55
entities, probabilistic processes for 25
risk analysis 321
stock prices, mathematical modeling 26
straddle 278, 279
short 280
strangle.bls 281
supported optimization methods 451
differential evolution 451
generalized simulated annealing 451
linear and quadratic programming routines 451
particle swarm optimization 451
random portfolios 451
systematic risk exposures 371

tax-efficient assets 372
Taylor’s theorem 21
functions of several variables 21–23
for functions of several variables 21–23
T-bills 90
Theil’s mixed estimation model 140, 141
time varying risk aversion allocation with 378–382
expected utility theory 379–380
money utility 381–382
risk-averse/neutral/loving investor example 378–379
utility function 380–381
unified approach 384–385
tools, for financial engineering analysis 18
tracking error volatility (TEV) 166
traddle.bls 280
trail compensation 385
two-asset portfolio 74

u
univariate data 325
analysis 325–328
utility function 380–381
adjusted income 373
calculation, parameter θ role 374
concavity 380
key properties 380
upward slope 380

v
variable risk preference bias 382–384
time-varying risk aversion 383–384
rationale behind 383
risk tolerance 383–384
variance 66, 70, 78, 87
Venn diagram 2
vignette 439
visible ts object 38
volatility 89, 197

w
wealth management corporations 405
Wiener process 37
withdrawal sequencing 372
Woodbury matrix 146