Contents

Preface XIII
About the Companion Website XV

1 Introduction to Financial Engineering 1
1.1 What Is Financial Engineering? 1
1.2 The Meaning of the Title of This Book 2
1.3 The Continuing Challenge in Financial Engineering 3
1.3.1 The Volatility of the Financial Market 3
1.3.2 Ongoing Results of the XYZ–LPL Investment of the Account of Mr. and Mrs. Smith 4
1.4 “Financial Engineering 101”: Modern Portfolio Theory 6
1.4.1 Modern Portfolio Theory (MPT) 7
1.4.2 Asset Allocation and Portfolio Volatility 7
1.4.3 Characteristic Properties of Mean-Variance Optimization (MVO) 8
1.5 Asset Class Assumptions Modeling 11
1.5.1 Examples of Modeling Asset Classes 11
1.5.1.1 Modeling Asset Classes 11
1.6 Some Typical Examples of Proprietary Investment Funds 14
1.7 The Dow Jones Industrial Average (DJIA) and Inflation 15
1.8 Some Less Commendable Stock Investment Approaches 17
1.8.1 Day Trading 17
1.8.2 Algorithmic Trading 17
1.9 Developing Tools for Financial Engineering Analysis 18

2 Probabilistic Calculus for Modeling Financial Engineering 19
2.1 Introduction to Financial Engineering 19
2.1.1 Some Classical Financial Data 19
2.2 Mathematical Modeling in Financial Engineering 19
2.2.1 A Discrete Model versus a Continuous Model 19
2.2.2 A Deterministic Model versus a Probabilistic Model 20
2.2.2.1 Calculus of the Deterministic Model 20
2.2.2.2 The Geometric Brownian Motion (GBM) Model and the Random Walk Model 23
2.2.2.3 What Does a “Random Walk” Financial Theory Look Like? 23
2.3 Building an Effective Financial Model from GBM via Probabilistic Calculus 24
2.3.1 A Probabilistic Model for the Stock Market 25
2.3.2 Probabilistic Processes for the Stock Market Entities 25
2.3.3 Mathematical Modeling of Stock Prices 26
2.3.4 A Simple Case 26
2.4 A Continuous Financial Model Using Probabilistic Calculus: Stochastic Calculus, Ito Calculus 26
2.4.1 A Brief Observation of the Geometric Brownian Motion 27
2.4.2 Ito Calculus 28
2.4.2.1 The Ito Lemma 28
2.5 A Numerical Study of the Geometric Brownian Motion (GBM) Model and the Random Walk Model Using R 33
2.5.1 Modeling Real Financial Data 33
2.5.1.1 The Geometric Brownian Motion (GBM) Model and the Random Walk Model 33
2.5.1.2 Other Models for Simulating Random Walk Systems Using R 34
2.5.2 Some Typical Numerical Examples of Financial Data Using R 35

3 Classical Mathematical Models in Financial Engineering and Modern Portfolio Theory 55
3.1 An Introduction to the Cost of Money in the Financial Market 55
3.2 Modern Theories of Portfolio Optimization 57
3.2.1 The Markowitz Model of Modern Portfolio Theory (MPT) 57
3.2.1.1 Risk and Expected Return 57
3.2.1.2 Diversification 59
3.2.1.3 Efficient Frontier with No Risk-Free Assets 59
3.2.1.4 The Two Mutual Fund Theorem 60
3.2.1.5 Risk-Free Asset and the Capital Allocation Line 61
3.2.1.6 The Sharpe Ratio 61
3.2.1.7 The Capital Allocation Line (CAL) 61
3.2.1.8 Asset Pricing 63
3.2.1.9 Specific and Systematic Risks 63
3.2.2 Capital Asset Pricing Model (CAPM) 63
3.2.2.1 The Security Characteristic Line (SCL) 65
3.2.3 Some Typical Simple Illustrative Numerical Examples of the Markowitz MPT Using R 66
3.2.3.1 Markowitz MPT Using R: A Simple Example of a Portfolio Consisting of Two Risky Assets 67
3.2.3.2 Evaluating a Portfolio 76
3.2.4 Management of Portfolios Consisting of Two Risky Assets 80
3.2.4.1 The Global Minimum-Variance Portfolio 83
3.2.4.2 Effects of Portfolio Variance on Investment Possibilities 88
3.2.4.3 Introduction to Portfolio Optimization 89
3.2.5 Attractive Portfolios with Risk-Free Assets 89
3.2.5.1 An Attractive Portfolio with a Risk-Free Asset 90
3.2.5.2 The Tangency Portfolio 113
3.2.5.3 Computing for Tangency Portfolios 116
3.2.6 The Mutual Fund Separation Theorem 118
3.2.7 Analyses and Interpretation of Efficient Portfolios 119
3.3 The Black–Litterman Model 123
3.4 The Black–Scholes Option Pricing Model 125
3.4.1 Keep on Modeling! 126
3.5 The Black–Litterman Model 128
3.6 The Black–Litterman Model 180
3.6.1 Derivation of the Black–Litterman Model 180
3.6.1.1 Derivation Using Theil’s Mixed Estimation 180
3.6.1.2 Derivation Using Bayes’ Theory 182
3.6.2 Further Discussions on The Black–Litterman Model 184
3.6.2.1 An Alternative Formulation of the Black–Litterman Formula 186
3.6.2.2 A Fundamental Relationship: \(r_A \sim N\left(\prod, (1 + \tau)\sum\right) \) 187
3.6.2.3 On Implementing the Black–Litterman Model 189
3.7 The Black–Scholes Option Pricing Model 194
3.8 Some Worked Examples 209

4 Data Analysis Using R Programming 235
4.1 Data and Data Processing 236
4.1.1 Introduction 237
4.1.1.1 Coding 237
4.2 Beginning R 242
4.2.1 A First Session Using R 245
4.2.2 The R Environment – This is Important! 257
4.3 R as a Calculator 260
4.3.1 Mathematical Operations Using R 260
4.3.2 Assignment of Values in R and Computations Using Vectors and Matrices 261
4.3.3 Computations in Vectors and Simple Graphics 262
4.3.4 Use of Factors in R Programming 263
4.3.5 Simple Graphics 265
4.3.6 x as Vectors and Matrices in Statistics 268
4.3.7 Some Special Functions that Create Vectors 269
4.3.8 Arrays and Matrices 270
4.3.9 Use of the Dimension Function \texttt{dim()} in R \hspace{1em} 271
4.3.10 Use of the Matrix Function \texttt{matrix()} In R \hspace{1em} 271
4.3.11 Some Useful Functions Operating on Matrices in R: \texttt{Colnames,}
\hspace{1em} \texttt{Rownames, and t (for transpose)} \hspace{1em} 272
4.3.12 NA “Not Available” for Missing Values in Data sets \hspace{1em} 273
4.3.13 Special Functions That Create Vectors \hspace{1em} 273
4.4 Using R in Data Analysis in Financial Engineering \hspace{1em} 286
4.4.1 Entering Data at the R Command Prompt \hspace{1em} 286
4.4.1.1 Creating a Data Frame for R Computation Using the EXCEL
\hspace{1em} Spreadsheet (on a Windows Platform) \hspace{1em} 287
4.4.1.2 Obtaining a Data Frame from a Text File \hspace{1em} 289
4.4.1.3 Data Entry and Analysis Using the Function \texttt{data.entry()} \hspace{1em} 291
4.4.1.4 Data Entry Using Several Available R Functions \hspace{1em} 291
4.4.1.5 Data Entry and Analysis Using the Function \texttt{scan()} \hspace{1em} 293
4.4.1.6 Data Entry and Analysis Using the Function \texttt{Source()} \hspace{1em} 295
4.4.1.7 Data Entry and Analysis Using the Spreadsheet Interface in R \hspace{1em} 296
4.4.1.8 Financial Mathematics Using R: The CRAN Package
\hspace{1em} FinancialMath \hspace{1em} 298
4.4.2 The Function \texttt{list()} and the Construction of \texttt{data.frame()} in R \hspace{1em} 318
4.4.3 Stock Market Risk Analysis: ES (Expected Shortfall) in the
\hspace{1em} Black–Scholes Model \hspace{1em} 321
4.5 Univariate, Bivariate, and Multivariate Data Analysis \hspace{1em} 325
4.5.1 Univariate Data Analysis \hspace{1em} 325
4.5.2 Bivariate and Multivariate Data Analysis \hspace{1em} 328

5 \hspace{1em} \textbf{Assets Allocation Using R} \hspace{1em} 369
5.1 Risk Aversion and the Assets Allocation Process \hspace{1em} 369
5.2 Classical Assets Allocation Approaches \hspace{1em} 370
5.2.1 Going Beyond α and β \hspace{1em} 371
5.2.2 γ Factors \hspace{1em} 371
5.2.2.1 Measuring γ \hspace{1em} 373
5.2.2.2 How to Measure γ \hspace{1em} 373
5.2.3 The Mortality Model \hspace{1em} 376
5.2.4 Sensitivity Analysis \hspace{1em} 377
5.2.4.1 The Elasticity of Intertemporal Substitution (EOIS) \hspace{1em} 377
5.3 Allocation with Time Varying Risk Aversion \hspace{1em} 378
5.3.1 Risk Aversion \hspace{1em} 378
5.3.1.1 Example of a Risk-Averse/Neutral/Loving Investor \hspace{1em} 378
5.3.1.2 Expected Utility Theory \hspace{1em} 379
5.3.1.3 Utility Functions \hspace{1em} 380
5.3.2 Utility of Money \hspace{1em} 381
5.4 Variable Risk Preference Bias \hspace{1em} 382
5.4.1 Time-Varying Risk Aversion \hspace{1em} 383
5.4.1.1 The Rationale Behind Time-Varying Risk Aversion 383
5.4.1.2 Risk Tolerance for Time-Varying Risk Aversion 383
5.5 A Unified Approach for Time Varying Risk Aversion 384
5.6 Assets Allocation Worked Examples 385
5.6.1 Worked Example 1: Assets Allocation Using R 385
5.6.2 Worked Example 2: Assets Allocation Using R, from CRAN 390
5.6.3 Worked Example 3: The Black–Litterman Asset 393

6 Financial Risk Modeling and Portfolio Optimization Using R 401
6.1 Introduction to the Optimization Process 401
6.1.1 Classical Optimization Approach in Mathematics 401
6.1.1.1 Global and Local Optimal Values 401
6.1.1.2 Graphical Illustrations of Global and Local Optimal Value 402
6.1.2 Locating Functional Maxima and Minima 402
6.2 Optimization Methodologies in Probabilistic Calculus for Financial Engineering 403
6.2.1 The Evolutionary Algorithms (EA) 404
6.2.2 The Differential Evolution (DE) Algorithm 404
6.3 Financial Risk Modeling and Portfolio Optimization 405
6.3.1 An Example of a Typical Professional Organization in Wealth Management 405
6.3.1.1 LPL (Linsco Private Ledger) Financial 405
6.4 Portfolio Optimization Using R 409
6.4.1 Portfolio Optimization by Differential Evolution (DE) Using R 409
6.4.2 Portfolio Optimization by Special Numerical Methods 411
6.4.3 Portfolio Optimization by the Black–Litterman Approach Using R 412
6.4.3.1 A Worked Example Portfolio Optimization by the Black–Litterman Approach Using R 413
6.4.4 More Worked Examples of Portfolio Optimization Using R 434
6.4.4.1 Worked Examples of Portfolio Optimization – No. 1 Portfolio Optimization by PerformanceAnalytics in CRAN 434
6.4.4.2 Worked Example for Portfolio Optimization – No. 2 Portfolio Optimization using the R code DEoptim 436
6.4.4.3 Worked Example for Portfolio Optimization – No. 3 Portfolio Optimization Using the R Code PortfolioAnalytics in CRAN 450
6.4.4.4 Worked Example for Portfolio Optimization – Portfolio Optimization by AssetsM in CRAN 457
6.4.4.5 Worked Examples from Pfaff 459

References 497
Index 505