CONTENTS

List of Contributors xiii
Foreword xvii
Preface xix

1 Definitions and Classifications of MBFTs 1
Damien Bonne and Jean Rodriguez

1.1 Introduction, 1
1.2 Definitions, 4
1.3 Conclusion and Outlook, 6
References, 7

PART I STEREOSELECTIVE SYNTHESIS OF HETEROCYCLES 9

2 Five-Membered Heterocycles 11
Hanmin Huang and Pan Xie

2.1 Introduction, 11
2.2 Monocyclic Targets, 12
2.2.1 1,3-Dipolar Cycloaddition, 12
2.2.2 Michael Addition-Initiated Domino Process, 20
2.2.3 Multicomponent Reactions, 23
2.2.4 Carbohalogenation Reactions, 26
CONTENTS

2.2.5 Radical Processes, 26
2.3 Fused Polycyclic Targets, 28
 2.3.1 Cycloaddition Reactions, 28
 2.3.2 Domino Cyclization Reactions, 32
2.4 Bridged Polycyclic Targets, 34
2.5 Conclusion and Outlook, 36
References, 37

3 Six-Membered Heterocycles 45
 Gianmarco Tenti, M. Teresa Ramos, and J. Carlos Menéndez
 3.1 Introduction, 45
 3.2 Monocyclic Targets, 47
 3.2.1 Nitrogen-Only Heterocycles, 47
 3.2.2 Oxygen-Containing Heterocycles, 58
 3.3 Fused Polycyclic Targets, 62
 3.3.1 Nitrogen-Only Fused Polycyclic Targets, 62
 3.3.2 Oxygen-Containing Fused Polycyclic Targets, 70
 3.3.3 Sulfur-Containing Fused Polycyclic Targets, 74
 3.4 Bridged Polycyclic Targets, 74
 3.4.1 General Procedure for the Preparation of
 2,6-DABCO-Derived Compounds 138, 76
 3.5 Polycyclic Spiro Targets, 77
 3.6 Summary and Outlook, 79
 References, 79

4 Other Heterocycles 87
 Qian Wang and Jieping Zhu
 4.1 Introduction, 87
 4.2 Synthesis of Medium-Sized Monocyclic, Fused and Bridged
 Polycyclic Heterocycles, 88
 4.2.1 Ring Synthesis by Ring Transformation via
 Rearrangements/Ring Expansions, 88
 4.2.2 Ring Synthesis by Annulation, 99
 4.3 Summary and Outlook, 109
 References, 109

PART II STEREOSELECTIVE SYNTHESIS OF CARBOCYCLES 115

5 Three- and Four-Membered Carbocycles 117
 Renata Marcia de Figueiredo, Gilles Niel, and Jean-Marc Campagne
 5.1 Introduction, 117
 5.2 Cyclopropane Derivatives, 118
CONTENTS

5.2.1 Organocatalysis and Related Reactions [Michael-Initiated Ring-Closure (MIRC) Reactions], 118
5.2.2 Organometallics and Metal Catalysis, 123
5.2.3 Lewis Acid-Promoted Sequences, 133
5.2.4 Pericyclic Domino Strategies, 134
5.2.5 Radical Domino Strategies, 135
5.3 Cyclobutane Derivatives, 136
5.3.1 Organocatalyzed Cyclobutanations, 136
5.3.2 Organometallics and Metal Catalysis, 137
5.3.3 Acid- or Base-Promoted Transformations, 143
5.3.4 Multicomponent Reactions (MCRs), 145
5.4 Summary and Outlook, 146
References, 146

6 Five-Membered Carbocycles
Vijay Nair and Rony Rajan Paul

6.1 Introduction, 157
6.2 Monocyclic Targets, 158
6.2.1 Metal-Catalyzed Reactions, 158
6.2.2 Organocatalytic Reactions, 158
6.2.3 Miscellaneous Reactions, 167
6.3 Fused Polycyclic Targets, 169
6.3.1 Metal-Catalyzed Reactions, 169
6.3.2 Organocatalytic Reactions, 170
6.3.3 Lewis Acid-Catalyzed Reactions, 172
6.3.4 Miscellaneous Reactions, 173
6.4 Bridged Polycyclic Targets, 177
6.5 Conclusion and Outlook, 179
References, 179

7 Stereoselective Synthesis of Six-Membered Carbocycles
Muriel Amatore, Corinne Aubert, Marion Barbazanges, Marine Desage-El Murr, and Cyril Ollivier

7.1 Introduction, 185
7.2 Metal-Catalyzed Stereoselective Multiple Bond-Forming Transformations, 186
7.2.1 Introduction, 186
7.2.2 Cycloadditions, 186
7.2.3 Metal-Catalyzed Cascades as Formal [2+2+2] Cycloadditions, 191
7.2.4 Metal-Catalyzed Cycloisomerization Cascades, 192
7.3 Enantioselective Organocatalyzed Synthesis of Six-Membered Rings, 195
References, 195
CONTENTS

7.3.1 Organocatalyzed Miscellaneous Reactions, 195
7.3.2 Organocatalyzed Cascade and Multicomponent Reactions, 197
7.3.3 Polycyclization Cascade Reactions, 201
7.4 Stereoselective Multiple Bond-Forming Radical Transformations, 202
 7.4.1 Intermolecular Cascade Reactions, 202
 7.4.2 Intramolecular Cascade Reactions, 203
7.5 Conclusions, 204
References, 205

8 Seven- and Eight-Membered Carbocycles 211
Gérard Buono, Hervé Clavier, Laurent Giordano, and Alphonse Tenaglia

 8.1 Introduction, 211
 8.2 Cycloheptenes, 212
 8.3 Cycloheptadienes, 219
 8.4 Cycloheptatrienes, 221
 8.5 Cyclooctenes, 222
 8.6 Cyclooctadienes, 225
 8.7 Cyclooctatrienes, 229
 8.8 Cyclooctatetraenes, 234
 8.9 Concluding Remarks, 235
References, 235

PART III STEREOSELECTIVE SYNTHESIS OF SPIROCYCLIC COMPOUNDS 241

9 Metal-Assisted Methodologies 243
Gaëlle Chouraqui, Laurent Commeiras, and Jean-Luc Parrain

 9.1 Introduction, 243
 9.2 Quaternary Spirocenter, 244
 9.2.1 Copper-Assisted Methodologies, 245
 9.2.2 Gold-Assisted Methodologies, 247
 9.2.3 Palladium-Assisted Methodologies, 247
 9.2.4 Rhodium-Assisted Methodologies, 251
 9.2.5 Platinum-Assisted Methodologies, 252
 9.3 α-Heteroatom-Substituted Spirocenter, 252
 9.3.1 Zinc-, Magnesium-, and Copper-Assisted Methodologies, 253
 9.3.2 Titanium-Assisted Methodologies, 254
 9.3.3 Gold- and Platinum-Assisted Methodologies, 255
 9.3.4 Palladium-Assisted Methodologies, 258
 9.3.5 Rhodium-Assisted Methodologies, 259
CONTENTS

9.4 α,α'-Diheteroatom-Substituted Spirocenter, 261
9.5 Conclusion and Outlook, 264
References, 265

10 Organocatalyzed Methodologies
Ramon Rios

10.1 Introduction, 271
10.2 Enantioselective Synthesis of All-Carbon Spirocenters, 275
10.2.1 Organocatalytic Enantioselective Methodologies for the
Synthesis of Spirooxindoles, 275
10.2.2 Other Spirocycles, 292
10.3 Enantioselective Synthesis Spirocenters with at Least One
Heteroatom, 299
10.3.1 Synthesis of Spirooxindoles, 299
10.3.2 Synthesis of Other Spirocycles, 301
10.4 Conclusion and Outlook, 301
References, 302

PART IV STEREOSELECTIVE SYNTHESIS OF ACYCLIC
COMPOUNDS

11 Metal-Catalyzed Methodologies
Gabriela Guillena and Diego J. Ramón

11.1 Introduction, 309
11.2 Anion Relay Approach, 310
11.3 Mannich Reaction, 312
11.3.1 Diastereoselective Approach, 312
11.3.2 Enantioselective Approach, 312
11.4 Reactions Involving Isonitriles, 314
11.4.1 Diastereoselective Passerini Reaction, 314
11.4.2 Enantioselective Passerini Reaction, 315
11.4.3 Diastereoselective Ugi Reaction, 316
11.5 1,2-Addition-Type Processes, 317
11.5.1 Diastereoselective Approach, 317
11.5.2 Enantioselective Approach, 320
11.6 Michael-Type Processes, 324
11.6.1 Diastereoselective Approach, 324
11.6.2 Enantioselective Approach, 327
11.7 Summary and Outlook, 331
References, 332
CONTENTS

12 Organocatalyzed Methodologies 339
Vincent Coeffard, Christine Greck, Xavier Moreau, and Christine Thomassigny

12.1 Introduction, 339
12.2 Aminocatalysis, 340
 12.2.1 Enamine–Enamine Activation, 340
 12.2.2 Iminium–Enamine Activation, 343
12.3 N-Heterocyclic Carbene (NHC) Activation, 354
12.4 H-Bonding Activation, 357
12.5 Phase-Transfer Catalysis, 358
12.6 Summary and Outlook, 359
References, 359

PART V MULTIPLE BOND-FORMING TRANSFORMATIONS: SYNTHETIC APPLICATIONS 363

13 MBFTs for the Total Synthesis of Natural Products 365
Yanxing Jia and Shiqiang Zhou

13.1 Introduction, 365
13.2 Anionic-Initiated MBFTs, 366
13.3 Cationic-Initiated MBFTs, 371
13.4 Radical-Mediated MBFTs, 375
13.5 Pericyclic MBFTs, 379
13.6 Transition-Metal-Catalyzed MBFTs, 385
13.7 Summary and Outlook, 388
References, 390

14 Synthesis of Biologically Relevant Molecules 393
Matthijs J. van Lint, Eelco Ruijter, and Romano V.A. Orru

14.1 Introduction, 393
14.2 Organocatalyzed MBFTs for BRMs, 394
14.3 Multicomponent MBFTs for BRMs, 404
14.4 Palladium-Catalyzed MBFTs for BRMs, 413
14.5 Conclusion and Outlook, 418
References, 419

15 Industrial Applications of Multiple Bond-Forming Transformations (MBFTs) 423
Tryfon Zarganes-Tzitzikas, Ahmad Yazbak, Alexander Dömling

15.1 Introduction, 423
15.2 Applications of MBFTs, 424
CONTENTS

15.2.1 Xylocaine, 424
15.2.2 Almorexant, 424
15.2.3 (−)-Oseltamivir (Tamiflu®), 427
15.2.4 Telaprevir (Incivek®), 429
15.2.5 Ezetimibe (Zetia®), 431
15.2.6 Crixivan (Indinavir®), 433
15.2.7 Oxytocine Antagonists: Retosiban and Epelsiban, 436
15.2.8 Praziquantel (Biltricide®), 439
15.3 Summary and Outlook, 442

References, 442

Index 447