Contents

Preface

Part I Elements of Thermal Physics

1. **Fundamentals**
 1.1 *PVT* Systems
 1.2 Equilibrium States
 1.3 Processes and Heat
 1.4 Temperature
 1.5 Size Dependence
 1.6 Heat Capacity and Specific Heat
 Problems

2. **First Law of Thermodynamics**
 2.1 Work
 2.2 Heat
 2.3 The First Law
 2.4 Applications
 Problems

3. **Properties and Partial Derivatives**
 3.1 Conventions
 3.2 Equilibrium Properties
 3.3 Relationships between Properties
 3.4 Series Expansions
 3.5 Summary
 Problems

4. **Processes in Gases**
 4.1 Ideal Gases
 4.2 Temperature Change with Elevation
 4.3 Cyclic Processes
 4.4 Heat Engines
 Problems

5. **Phase Transitions**
 5.1 Solids, Liquids, and Gases
 5.2 Latent Heats
5.3 Van der Waals Model 67
5.4 Classification of Phase Transitions 70
 Problems 72

6. Reversible and Irreversible Processes 75
 6.1 Idealization and Reversibility 75
 6.2 Nonequilibrium Processes and Irreversibility 76
 6.3 Electrical Systems 79
 6.4 Heat Conduction 82
 Problems 86

Part II Foundations of Thermodynamics 89

7. Second Law of Thermodynamics 91
 7.1 Energy, Heat, and Reversibility 91
 7.2 Cyclic Processes 93
 7.3 Second Law of Thermodynamics 95
 7.4 Carnot Cycles 98
 7.5 Absolute Temperature 100
 7.6 Applications 103
 Problems 107

8. Temperature Scales and Absolute Zero 109
 8.1 Temperature Scales 109
 8.2 Uniform Scales and Absolute Zero 111
 8.3 Other Temperature Scales 114
 Problems 115

9. State Space and Differentials 117
 9.1 Spaces 117
 9.2 Differentials 121
 9.3 Exact Versus Inexact Differentials 123
 9.4 Integrating Differentials 127
 9.5 Differentials in Thermodynamics 129
 9.6 Discussion and Summary 134
 Problems 136

10. Entropy 139
 10.1 Definition of Entropy 139
 10.2 Clausius’ Theorem 142
 10.3 Entropy Principle 145
 10.4 Entropy and Irreversibility 148
 10.5 Useful Energy 151
 10.6 The Third Law 155
 10.7 Unattainability of Absolute Zero 156
 Problems 158
 Appendix 10.A. Entropy Statement of the Second Law 158
Contents

11. Consequences of Existence of Entropy 165
11.1 Differentials of Entropy and Energy 165
11.2 Ideal Gases 167
11.3 Relationships Between C_V, C_P, B_T, B_S, and α_V 170
11.4 Clapeyron’s Equation 172
11.5 Maximum Entropy, Equilibrium, and Stability 174
11.6 Mixing 178
Problems 184

12. Thermodynamic Potentials 185
12.1 Internal Energy 185
12.2 Free Energies 186
12.3 Properties From Potentials 188
12.4 Systems in Contact with a Heat Reservoir 193
12.5 Minimum Free Energy 194
Problems 197
Appendix 12.A. Derivatives of Potentials 197

13. Phase Transitions and Open Systems 201
13.1 Two-Phase Equilibrium 201
13.2 Chemical Potential 206
13.3 Multi-Component Systems 211
13.4 Gibbs Phase Rule 214
13.5 Chemical Reactions 215
Problems 217

14. Dielectric and Magnetic Systems 219
14.1 Dielectrics 219
14.2 Magnetic Materials 224
14.3 Critical Phenomena 229
Problems 233

Part III Statistical Thermodynamics 235

15. Molecular Models 237
15.1 Microscopic Descriptions 237
15.2 Gas Pressure 238
15.3 Equipartition of Energy 243
15.4 Internal Energy of Solids 246
15.5 Inactive Degrees of Freedom 247
15.6 Microscopic Significance of Heat 248
Problems 253

16.1 Velocity Distribution 255
16.2 Combinatorics 256
16.3 Method of Undetermined Multipliers 258
Contents

16.4 Maxwell Distribution 260
16.5 Mean-Free-Path 265
Problems 267
Appendix 16.A. Quantum Distributions 267

17. Microscopic Significance of Entropy 273
17.1 Boltzmann Entropy 273
17.2 Ideal Gas 274
17.3 Statistical Interpretation 278
17.4 Thermodynamic Properties 279
17.5 Boltzmann Factors 284
Problems 286
Appendix 17.A. Evaluation of I_{AN} 286

Part IV Statistical Mechanics I 289

18. Ensembles 291
18.1 Probabilities and Averages 291
18.2 Two-Level Systems 293
18.3 Information Theory 295
18.4 Equilibrium Ensembles 298
18.5 Canonical Thermodynamics 302
18.6 Composite Systems 305
Problems 308
Appendix 18.A. Uniqueness Theorem 308

19. Partition Function 311
19.1 Hamiltonians and Phase Space 311
19.2 Model Hamiltonians 312
19.3 Classical Canonical Ensemble 316
19.4 Thermodynamic Properties and Averages 318
19.5 Ideal Gases 322
19.6 Harmonic Solids 326
Problems 328

20. Quantum Systems 331
20.1 Energy Eigenstates 331
20.2 Quantum Canonical Ensemble 333
20.3 Ideal Gases 334
20.4 Einstein Model 337
20.5 Classical Approximation 341
Problems 344
Appendix 20.A. Ideal Gas Eigenstates 344

21. Independent Particles and Paramagnetism 349
21.1 Averages 349
Contents ix

21.2 Statistical Independence 351
21.3 Classical Systems 353
21.4 Paramagnetism 357
21.5 Spin Systems 360
21.6 Classical Dipoles 365
 Problems 367
 Appendix 21.A. Negative Temperature 367

22. Fluctuations and Energy Distributions 371
 22.1 Standard Deviation 371
 22.2 Energy Fluctuations 375
 22.3 Gibbs Paradox 376
 22.4 Microcanonical Ensemble 380
 22.5 Comparison of Ensembles 386
 Problems 391

23. Generalizations and Diatomic Gases 393
 23.1 Generalized Coordinates 393
 23.2 Diatomic Gases 397
 23.3 Quantum Effects 402
 23.4 Density Matrices 405
 23.5 Canonical Ensemble 408
 Problems 410
 Appendix 23.A. Classical Approximation 410

Part V Statistical Mechanics II 415

24. Photons and Phonons 417
 24.1 Plane Wave Eigenstates 417
 24.2 Photons 421
 24.3 Harmonic Approximation 425
 24.4 Phonons 429
 Problems 434

25. Grand Canonical Ensemble 435
 25.1 Thermodynamics of Open Systems 435
 25.2 Grand Canonical Ensemble 437
 25.3 Properties and Fluctuations 438
 25.4 Ideal Gases 441
 Problems 443

26. Fermions and Bosons 445
 26.1 Identical Particles 445
 26.2 Exchange Symmetry 447
 26.3 Fermi–Dirac and Bose–Einstein Statistics 452
 Problems 456
 Appendix 26.A. Fermions in the Canonical Ensemble 457
Supplementary material including detailed worked solutions can be downloaded online at http://booksupport.wiley.com