INDEX

Note: Italic page numbers indicate figures.

A

Active earth pressures, 61–63, 62, 366
Active earth pressure theory, 365–367, 365–367
Adapted Terzaghi method (geosynthetic-reinforced column-supported embankments), 359–360, 360
Advantages/limitations of methods, 6–10
 conventional compaction, 74
 deep dynamic compaction, 89, 90
 deep replacement, 135–136
 dewatering, 198–199
 drainage, 186, 187
 filtration, 178
 geosynthetic-reinforced column-supported embankments, 354
 geosynthetic-reinforced embankments, 345
 geosynthetic-reinforced foundations, 375
 geosynthetic-reinforced roads, 383
 geosynthetic-reinforced slopes, 334
 ground anchors, 300
 grouting, 274, 275
 intelligent compaction, 83
 mechanically stabilized earth walls, 364, 364
 overexcavation and replacement, 117–118
 preloading, 212
 rapid impact compaction, 100
 vibro-compaction, 106
Allowable load (preloading), 220
Allowable long-term flow rate (filtration), 184
Anchor bonded capacity, 307, 308
Anchored walls, see Ground anchors
Anchor load, 305, 306
AOS (apparent opening size; geotextiles), 33
Apparent earth pressure diagrams, 304, 304–305, 305
Apparent opening size (AOS; geotextiles), 32, 33
Applications of methods, 6–10. See also Suitability of methods
 conventional compaction, 74
 deep dynamic compaction, 89
 deep mixing, 247–248
 deep replacement, 135
dewatering, 198
drainage, 186, 187
filtration, 178
geosynthetic-reinforced column-supported embankments, 247, 354
geosynthetic-reinforced embankments, 345
geosynthetic-reinforced foundations, 375
geosynthetic-reinforced roads, 383
ground anchors, 299, 300
intelligent compaction, 83
mechanically stabilized earth walls, 364
overexcavation and replacement, 117
preloading, 212
rapid impact compaction, 100
vibro-compaction, 106
Area of improvement:
 deep replacement, 142
 dynamic compaction, 92
 vibro-compaction, 109
Area replacement ratio (deep replacement), 141, 142
Atterberg limits, 17, 18, 19

B

Backfill:
 deep replacement, 141, 142
 pH limit of, with geosynthetic reinforcement, 371
 vibro-compaction volume:
 change without backfill, 108, 108
Barriers (groundwater control), 173
Basal reinforcement, see Geosynthetic reinforcement
Base course:
 chemical stabilization of, 8
 roadway construction, 10
 unpaved geosynthetic-reinforced roads, 387
 and water flow, 178, 179
Base heave (deep mixing), 266,
 266–267
Base sliding:
- deep mixing, 266, 266
- mechanically stabilized earth walls, 367

Base stability:
- ground anchors, 310
- soil nailing, 325

Bearing capacity:
- deep mixing, 260–261
- deep replacement:
 - concrete columns, 144, 145, 145
 - geosynthetic-encased granular columns, 153
 - granular columns, 143, 143–144
- geosynthetic-reinforced foundations:
 - against distributed foundation failure, 379
 - against general failure within reinforced zone, 379
 - against interlayer failure, 377–379, 378
 - against punching failure of reinforced zone, 380
 - against shallow failure, 377, 377
- geosynthetic-reinforced roads, 385, 385, 388, 388, 389
- with geosynthetic reinforcement, 376

Bearing failure:
- geosynthetic-reinforced embankments:
 - general, 347–348, 349
 - local, 346, 347, 348
 - mechanically stabilized earth walls, 367–368
- possible causes of: 3

Bernoulli’s equation, 174–175

Binders, chemical, 245, 250–252

Biological clogging (filters), 180

Biological treatments, 10

Borrow volume (compaction), 79–80

C

Calibration (geosynthetic-reinforced roads), 389

Catenary method (tensile strain in reinforcement), 361

CCV (compaction control value), 85, 85

Cement stabilization, 17, 245, 248, 248–255, 251–255, 259, 277. See also
- Deep mixing (DM); Grouting
- Chemical clogging (filters), 180
- Chemical solutions, 245
- Chemical stabilization methods, 8, 245. See also Deep mixing (DM); Grouting

Chimney drains, 186, 187

Circular slip failure (geosynthetic-reinforced embankments), 349, 349

CMV (compaction meter value), 84, 85, 85

Cohesionless geomaterials, 17, 21, 26, 50

Cohesionless intermediate geomaterials, 1

Cohesive geomaterials, 17, 23, 26, 50

Cohesive intermediate geomaterial, 1

Columns. See also specific types of columns
- deep mixing, 246, 246–248, 247, 257–260, 258, 260
- column penetration method, 262, 262–263
- column-reinforced foundations, 263, 263–264, 264
- column shapes and dimensions, 250, 260

deep replacement:
- concrete columns, 134, 136, 142, 144, 145, 145, 151, 156–157
- geosynthetic-encased granular columns, 136, 139, 152–155, 153, 155, 157, 164, 167
- granular columns, 134–136, 139–141, 143, 143–151, 146–151, 155–156

jet-grouted, 282–283, 283

Column penetration method (deep mixing), 262, 262–263

Column-reinforced foundations:
- composite, 136, 139
- deep mixing, 263, 263–264, 264

Column-supported embankments:
- conventional, 353, 354, 358–359
- geosynthetic-reinforced, see Geosynthetic-reinforced column-supported embankments
- stability of, 264, 264–265, 265

Combined drains, 186, 186

Compacted fill, 131

Compaction, 73–113. See also specific types of compaction
- conventional, 73–82
- deep, 6, 73
- deep dynamic, 89–100
- densification principles, 73
- of geomaterials, 25–28, 26–28
- intelligent, 82–89
- intermediate, 73
- overexcavation and replacement, 130–131
- rapid impact, 100–104
- shallow, 6, 73
- vibro-, 104–113

Compaction control value (CCV), 85, 85

Compaction curve, 74, 74

Compaction grouting, 245, 273, 274, 275, 279, 280, 286–287, 289, 290

Compaction meter value (CMV), 84, 85, 85

Compaction tests, 26–27, 28

Compensation grouting, 245, 273, 274, 275, 288, 290

Composite foundations, column-reinforced, 136, 138–140

Compound failure (geosynthetic-reinforced slopes), 336, 336

Compound stability analysis:
- geosynthetic-reinforced slopes, 340
- ground anchors, 309, 309–310
- mechanically stabilized earth walls, 370

Computer-assisted design:
- geosynthetic-reinforced embankments, 351
- geosynthetic-reinforced slopes, 341

Concrete, 17

Concrete columns (deep replacement), 134, 136, 142

- bearing capacity, 144, 145, 145
- consolidation, 151
- design parameters and procedure, 156–158
- stability, 151

Conditions, problematic, 1, 2

Cone penetration test (CPT), 42–44, 43

- deep replacement, 166
- modified, with deep mixing, 273

Consolidation, 20

- deep mixing, 263, 263–264, 264
- deep replacement:
 - concrete columns, 151
 - granular columns, 148–150, 148–151
dynamic, 90–91
fill preloading, 8
methods for, 8
and preloading:
 accumulated degree of consolidation, 221–222, 222
time for consolidation, 221
shallow foundations, 52, 52–54
vacuum preloading, 8
Consolidation tests, 20, 20–21
Consolidation test-based method (settlement), 51–52, 51
Consolidation theory, 214–217, 215–217
Construction, 13
 conventional compaction, 81–82
deep dynamic compaction, 99, 100
deep mixing, 270–272
deep replacement, 163–165
dewatering, 205–206
 drainage, 195
filtration, 185
geosynthetic-reinforced column-supported embankments, 363
geosynthetic-reinforced embankments, 352–353, 353
geosynthetic-reinforced foundations, 382
geosynthetic-reinforced roads, 396
geosynthetic-reinforced slopes, 344–345
ground anchors, 313
grouting, 290, 291
intelligent compaction, 88
mechanically stabilized earth walls, 374
method selection and conditions for, 12
overexcavation and replacement, 130–131
preloading, 235–238, 236, 237
rapid impact compaction, 104
slope stability during, 55
specifications for, 13
 vibro-compaction, 112, 113
Construction cost, 12
Construction materials, 12
Construction specifications, 13
Construction time, 12
Controlled modulus columns (deep replacement), 134, 135, 136, 142, 164, 167
Conventional (traditional) compaction, 6, 73–82
 advantages/limitations, 74
 applications, 74
 basic concept, 73, 74
 borrow volume, 79–80
 compaction curve, 74, 74
 construction, 81–82
 design considerations, 77–80
 design example, 80–81
 design parameters and procedure, 80
 equipment selection, 77–79
 influence depth, 76, 76
 influence factors, 76
 maximum dry unit weight, 77–79, 78
 one-point method, 75, 75–76
 optimum moisture content, 77–79, 78
 performance requirements, 77, 77
 principles, 74–76
 quality control and assurance, 82
 relative compaction, 75, 76
 suitability, 73, 74
Core sampling (deep mixing), 272
Coulomb’s theory, 63, 63–64
CPT, see Cone penetration test
Creep deformation (ground anchors), 310
Creep strength, 34, 36, 36
Creep tests:
 geosynthetics, 35, 35
ground anchors, 313
Critical failure mode (geosynthetic-reinforced foundations), 380
Critical height (geosynthetic-reinforced column-supported embankments), 356
Critical potential failure surface (ground anchors), 305
Curtain walls, at excavations, 197
Cut-off walls, at excavations, 197
Cutter soil mixing, 246, 246, 260
Cut walls, 61, 62
D
Damage models (geosynthetic-reinforced roads), 386, 387
Deep compaction, 6, 73. See also individual methods
Deep dynamic compaction, 73, 89–100
 advantages/limitations, 89, 90
 applications, 89
 area of improvement, 92
 basic concept, 89
 construction, 99, 100
 degree of improvement, 95, 95
 depth of improvement, 92
 design considerations, 91–97
 design example, 98–99
 design parameters and procedure, 97–98
 dynamic consolidation, 90–91
 dynamic replacement, 91, 91
 elapsed time, 97
 environmental impact, 96–97
 and groundwater table, 97
 and hard soil layer, 97
 induced settlement, 95–96
 influence factors, 91–92
 principles, 90–91
 quality control and assurance, 99, 100
 site investigation, 91
 and soft soil layer, 97
 soil types for, 92, 92,93
 suitability, 89, 90
 tampers, 92–94
Deep-footing effect (geosynthetic reinforcement), 376
Deep improvement, 5
Deep mixing (DM), 8, 245–273
 advantages/limitations, 248
 applications, 247–248
 basic concept, 245, 245–246, 246
 bearing capacity, 260–261
 chemical reactions, 248–250, 249, 250
 column shapes and dimensions, 250, 260
 consolidation, 263, 263–264, 264
 construction, 270–272
 cutter soil mixing, 246, 246, 260
 design considerations, 259–267
 design example, 268–270
 design parameters and procedure, 268
 dry method, 245, 246, 246, 256, 259, 260, 270, 271, 272
D
Deep mixing (DM), (continued)
in excavation design, 265–267, 265–267
failure modes, 257, 258
jet grouting as, 245. See also Jet grouting
liquefaction mitigation, 267
principles, 248–259
quality control and assurance, 272–273
settlement, 261, 261–263, 262
stability of column-supported embankments, 264, 264–265, 265
stabilized soils properties, 250–257, 251–257, 259, 259–260, 260
stress transfer, 257–259, 258
suitability, 246–247
T-shaped DM columns, 246, 246
Deep replacement, 7, 133–167. See also individual methods
advantages/limitations, 135–136
applications, 135
area of improvement, 142
area replacement ratio, 141, 142
backfill, 141, 142
basic concepts, 133–134
bearing capacity:
 concrete columns, 144, 145, 145
geosynthetic-encased granular columns, 153
 granular columns, 143, 143–144
consolidation:
 concrete columns, 151
 granular columns, 148–150, 148–151
correlating, 163–165
densification, 136–137
densification effect, 142–143, 143
depth of improvement, 142
design considerations, 141–155
design examples, 158–163
design of geosynthetic-encased granular columns, 152–155, 153, 155
design parameters and procedure, 155–157
diameter of columns, 141, 142
failure modes, 140–141, 141
functions, 136
liquefaction, 152, 153
load transfer mechanisms, 137–140, 137–140
principles, 136–141
quality control and assurance, 164–167
settlement:
 concrete columns, 147, 147–148
geosynthetic-encased granular columns, 154, 154–155, 156
 granular columns, 145–147, 146, 147
stability:
 concrete columns, 151
 granular columns, 151, 151
suitability, 134–135
Deep-seated failure (geosynthetic-reinforced slopes), 336, 336
Deep stabilization, chemical, 8. See also individual methods
Deep wells, 196, 197, 197, 202, 203, 205–206
Deformation:
 creep, with ground anchors, 310
 of geosynthetic-reinforced roads, 385–386, 386
 of soil nailed walls, 326
Degree of influence (vibro-compaction), 107, 107–108, 108
Degree of saturation, 18
Densification. See also Compaction; Consolidation
deep replacement, 136–137, 142–143, 143
 dynamic, 90
 methods for, 6. See also individual methods
 principles of, 73, 136
 vibro-compaction, 106, 107
Density, 18
Depth of drawdown (dewatering), 201, 201
Depth of improvement:
 dynamic compaction, 92
 rapid impact compaction, 101
Design considerations, 12–13, 77–80. See also Geotechnical design
deep dynamic compaction, 91–97
depth mixing, 259–267
depth replacement, 141–155
dewatering, 200–203
drainage, 188–193
filtration, 180–184
geosynthetic-reinforced column-supported embankments, 359–362
geosynthetic-reinforced embankments, 346–351
geosynthetic-reinforced foundations, 377–380
geosynthetic-reinforced roads:
 paved, 390–392
 unpaved, 387–389
geosynthetic-reinforced slopes, 336–341
ground anchors, 303–311
grouting, 283–289
intelligent compaction, 86–88
mechanically stabilized earth walls, 367–370
overexcavation and replacement, 119–124
preloading, 218–226
rapid impact compaction, 101–103
vibro-compaction, 109–110
Design examples:
 conventional compaction, 80–81
depth dynamic compaction, 98–99
deep mixing, 268–270
deep replacement, 157–162
dewatering, 204–205
drainage, 194–195
filtration, 185
geosynthetic-reinforced column-supported embankments, 362–363
geosynthetic-reinforced embankments, 351–352
geosynthetic-reinforced foundations, 381–382
geosynthetic-reinforced roads:
 paved, 395–396
 unpaved, 393–395
geosynthetic-reinforced slopes, 341–344
ground anchors, 311–313
grouting, 289–290
mechanically stabilized earth walls, 372–374
overexcavation and replacement, 125–131
preloading, 227–235
rapid impact compaction, 103–104
vibro-compaction, 111–112
Design parameters and procedure:
 conventional compaction, 80
depth dynamic compaction, 97–98
deep mixing, 268
deep replacement, 155–157
dewatering, 203–204
drainage, 193–194
filtration, 184–185
geosynthetic-reinforced column-supported embankments, 362
geosynthetic-reinforced embankments, 351
geosynthetic-reinforced foundations, 380–381
geosynthetic-reinforced roads:
paved, 392–393
unpaved, 389–390
ground anchors, 303–304, 311
grouting, 289
mechanically stabilized earth walls, 370–372
preloading, 225–227
rapid impact compaction, 103
soil nailing, 318, 320
vibro-compaction, 110–111

dewatering, 8, 173, 196–206
advantages/limitations, 198–199
applications, 198
basic concept, 196, 196–197, 197
construction, 205–206
depth of drawdown, 201, 201
design considerations, 200–203
design example, 204–205
design parameters and procedure, 203–204
drawdown curve, 199, 200, 200, 201
electroosmosis method, 8
pipe size, 202
principles, 199–200
pump size, 202, 203
quality control and assurance, 206
recharge, 200, 201
suitability, 197, 198
technique selection, 200, 201
well penetration, 202
well systems, 8, 8
multiwells, 201, 201, 202
single well, 201
spacing of wells, 202, 202
water flow into a well, 199, 199
well points, 196, 197, 199
direct shear test, 21, 22, 23
distance of influence (vibro-compaction), 107, 107–108, 108
distributed failure:
geosynthetic-reinforced foundations, 375, 376, 379
through replaced zones, 119
dm, see deep mixing
downward seepage, 177, 177
drainage, 173, 185–196
advantages/limitations, 186, 187
applications, 186, 187
basic concept, 185–186, 186
construction, 195
design considerations, 188–193
design examples, 194–195
design parameters and procedure, 193–194
dewatering vs., 196
drainage geosynthetics, 7
effective porosity, 188
filter criteria for drainage layer, 193
groundwater inflow, 189, 190
hydraulic gradient, 188, 188
maximum height of flow, 191, 192
mechanically-stabilized earth walls, 364
methods for, 7
open pumping, 7
paved geosynthetic-reinforced roads, 391
pavement infiltration, 189
pipe drains, 193, 193
principles, 187–188
quality control and assurance, 195–196
quality of, 188, 189
retaining walls, 188, 189, 189
soil nailed walls, 326, 327
steady-state capacity of drainage layer, 189, 190, 190
suitability, 186
unsteady-state capacity of drainage layer, 190–191, 191

drainage geosynthetics, 7
drawdown curve (dewatering), 199–201, 200, 201
durability, method selection and, 12
dynamic compaction, 6, 89. see also deep dynamic compaction
dynamic consolidation (dynamic compaction), 90–91
dynamic densification (dynamic compaction), 90
dynamic penetration test (deep mixing), 273
dynamic replacement:
deep dynamic compaction, 91, 91
deep replacement, 133, 134, 135

turbidity, 343

E
Earthquake loading:
deep replacement, 152
maximum shear stress induced by, 64
mechanically stabilized earth walls, 370
settlement induced by, 66–67, 67
and slope stability, 55
earth retaining structures, options for, 5, 10, 11
Earth retaining wall analysis, 61–64
coulomb’s theory, 63, 63–64
lateral earth pressure coefficient, 61, 62
rankine’s theory, 61–63, 62
and type of wall, 61, 62

earth walls:
geosynthetic-reinforced, 367
mechanically stabilized, see mechanically stabilized earth walls
reinforced cut-and-fill, 5, 10, 11
unreinforced cut-and-fill, 5, 10, 11
edge drains, 186, 187
edge slope stability (geosynthetic-reinforced column-supported embankments), 362, 362
effective porosity, 188, 193
elastic modulus, 24, 24, 25, 41, 43, 47, 48, 50–53
elastic-plastic method (column settlement), 147
elastic solution (settlement), 50–51, 50
electroosmosis, 8, 196, 197, 197
embankments:
column-supported, 247, 248, 248, 257–259, 258, 264–265, 265
defined, 345
geosynthetic-reinforced, see geosynthetic-reinforced embankments
geosynthetic-reinforced column-supported, see geosynthetic-reinforced column-supported embankments
pile-supported, 353
encased granular columns (deep replacement), 135

Encased granular columns (deep replacement), 135
Encased soil columns (deep replacement), 134
Environmental impact:
 and choice of ground improvement method, 12
dynamic compaction, 96–97
rapid impact compaction, 102–103
Erosion:
 geosynthetic-reinforced slopes, 334
 possible causes of, 3
Excavation(s):
 bottom stability of, 203, 203
curtain or cut-off walls at, 197
deep mixing, 265–267, 265–267
deep replacement, 133
dewatering, 196
ground anchors in, 299
overexcavation and replacement, 130
Excavation and replacement, 6. See also Overexcavation and replacement
Extended creep test (ground anchors), 313
Extensile reinforcement, see Geosynthetic reinforcement
External loads (mechanically stabilized earth walls), 370
External overturning (deep mixing), 266, 266
External sliding analysis (soil nailing), 324, 325, 326
External stability analysis:
 deep mixing, 266, 266
 mechanically stabilized earth walls, 365–368, 367

F
Factors of safety (FSs):
 mechanically stabilized earth walls, 369
 minimum:
 overexcavation and replacement, 122
 slope stability, 56–59, 59
 soil nailing, 320
 overexcavation and replacement, 122
 slope stability, 55
Failures. See also specific types of failure, e.g.: Bearing failure
 causes of, 2, 3
 distributed foundations, 121
 water-related, 173
Failure modes:
 deep mixing, 257, 258
deep replacement, 140–141, 141
 concrete columns, 151
 granular columns, 151
 geosynthetic-reinforced column-supported embankments, 358–359
 geosynthetic-reinforced embankments, 345–346, 346
 geosynthetic-reinforced foundations, 375–376
 geosynthetic-reinforced slopes, 336, 336
 ground anchors, 301, 302
 mechanically stabilized earth walls, 364, 365
 overexcavation and replacement, 119, 119
 of slopes, 55, 55–56
 soil nailing, 315–316, 316, 317
Fatigue failure (geosynthetic-reinforced roads), 386
FHWA filter criteria, 181–183, 182
Field compression test (deep mixing), 273
Field tests, 103
 deep dynamic compaction, 99, 100
 geosynthetic-reinforced slopes, 345
 intelligent compaction measurement values, 86, 87
 preloading, 238–240, 239

G
GCL, see Geosynthetic clay liner
General failure within reinforced zone (geosynthetic-reinforced foundations), 375, 379
Geocells, 29, 32, 32, 33, 383
Geocomposites, 30, 31, 173
Geocomposite drains, 185, 186, 191–193
Geofoam, 29, 30
Geogrids, 29, 30, 31–34, 34
Geogrid separators, 179
Geomaterials, 17–28
classifications, 17
compaction of, 25–28, 26–28
hydraulic properties, 25
mechanical properties, 19–25, 20–23
physical properties, 18–19, 18, 23
problematic, 1, 2
Geomembranes, 29, 31, 32–34, 37
in groundwater control, 173
in preloading, 238
Geomembrane separators, 179
Geonets, 29, 30, 31, 32
Geosynthetics, 17, 29–39
defined, 28
functions of, 30–32
in groundwater control, 173
hydraulic properties, 32–33, 33
interaction between fill and, 37–38, 37
mechanical properties, 33–36, 34–41
physical properties, 32
types of, 28–29, 29–31
Geosynthetic clay liner (GCL), 29, 31, 32
Geosynthetic drains, 186, 188, 189
Geosynthetic-encased granular columns (deep replacement), 7, 136, 139, 142
casing selection, 155
construction, 164
design, 152–155, 153, 155
design parameters and procedure, 157–158
installation parameters, 167
Geosynthetic filters, 178
Geosynthetic-reinforced column-supported embankments, 9, 353–364
advantages/limitations, 354
applications, 247, 354
basic concept, 353–354, 354
construction, 363
critical height, 356
design considerations, 359–362
design example, 362–363
design parameters and procedure, 362
design parameters and procedure, 362
edge slope stability, 362, 362
failure modes, 358–359
foundation soil resistance, 356, 356–357, 357, 361
global slope stability, 362
influence factors, 358
lateral spreading, 361
load transfer mechanisms, 354, 354–355
percent coverage, 358–359, 359
principles, 354–359
quality control and assurance, 363–364
soil arching, 355, 355–356
strain in geosynthetic reinforcement, 361
stress above geosynthetic reinforcement, 359–361, 360
suitability, 354
tension in reinforcement, 357, 357–358, 358, 361
Geosynthetic-reinforced earth walls:
mechanically stabilized, see Mechanically stabilized earth [MSE] walls
performance requirements for, 367
Geosynthetic-reinforced embankments, 9, 345–353
advantages/limitations, 345
applications, 345
basal reinforcement mechanism, 346
basic concept, 345
column-supported, see Geosynthetic-reinforced column-supported embankments
computer-assisted design, 351
construction, 352–353, 353
design considerations, 346–351
design example, 351–352
design parameters and procedure, 351
failure:
circular slip, 349, 349
general bearing, 347–348, 349
local bearing, 346, 347, 348
translational, 349
failure modes, 345–346, 346
lateral spreading, 348, 348–349
performance requirements, 346, 347
principles, 345–346, 347
quality control and assurance, 353
simplified design method, 349–351, 350, 352
suitability, 345
Geosynthetic-reinforced foundations, 375–382
advantages/limitations, 375
applications, 375
basic concept, 375
bearing capacity:
against distributed foundation failure, 379
against general failure within reinforced zone, 379
against interlayer failure, 377–379, 378
against punching failure of reinforced zone, 380
against punching failure through reinforced zone, 379–380
against shallow failure, 377, 377
construction, 382
critical failure mode, 380
design considerations, 377–380
design example, 381–382
design parameters and procedure, 380–381
effects of geosynthetic reinforcement, 376, 376–377, 377
failure modes, 375, 375–376
principles, 375–377
quality control and assurance, 382
settlement, 380
suitability, 375
Geosynthetic-reinforced roads, 9, 382–396
advantages/limitations, 383
applications, 383
basic concept, 382
bearing capacity, 385, 385
construction, 396
design considerations for paved roads, 390–392
benefit of geosynthetic reinforcement, 392
equivalent traffic, 390–391
resilient modulus, 391
structural number, 391, 392
design considerations for unpaved roads, 387–389
applied pressure vs. bearing capacity, 388–389
bearing capacity, 388, 388, 389
calibration, 389
quality of base course, 387
stress distribution, 387–388
design examples, 393–396
paved roads, 395–396
unpaved roads, 393–395
Geosynthetic-reinforced roads, (continued)
design parameters and procedure:
paved roads, 392–393
unpaved roads, 389–390
fatigue failure, 386
load transfer, 383–385, 384
Mechanistic-Empirical Pavement Design, 387
principles, 383–387
quality control and assurance, 396
resilient behavior and permanent deformation, 385–386, 386
roadway structure, 383, 383
serviceability and reliability, 386, 387
suitability, 382

Geosynthetic-reinforced slopes, 9, 333–345
advantages/limitations, 334
applications, 334
basic concept, 334
computer-assisted design, 341
construction, 344–345
design and analysis, 336–341
design example, 341–344
design parameters and procedure, 341
failure modes, 336, 336
principles, 334–336
quality control and assurance, 345
suitability, 334
types of, 335–336

Geosynthetic reinforcement, 31, 38, 55, 333
above columns, 247
benefit of, 392
effects of, 376, 376–377, 376
mechanically stabilized earth walls, 364
mechanism of, 346, 347
pH limit of backfill, 371
strain and tension in, 361
stress above, 359–361, 360

Geosynthetic separators, 178

Geotechnical conditions:
problematic, 1, 2
and selection of ground improvement method, 11, 11–12

Geotechnical design:
considerations in, see Design considerations
earth retaining wall analysis, 61–64
Coulomb’s theory, 63, 63–64
lateral earth pressure coefficient, 61, 62
Rankine’s theory, 62, 61–63
and type of wall, 61, 62
examples of, see Design examples
liquefaction analysis, 64–67
earthquake-induced settlement, 66–67, 67
liquefaction potential, 64–66, 66
parameters and procedure for, see Design parameters and procedure
shallow foundation design, 48–54
bearing capacity, 48–49, 48, 49
consolidation, 54, 54–55
settlement, 50–51, 50–53
slope stability analysis, 55–60
earth retaining wall analysis, 61, 62
infinite slope, 565–57, 57
minimum factor of safety, 59, 59–60, 60
numerical methods, 60
ordinary (Swedish) method of slices, 57–58, 58
safety map, 60, 60
simplified Bishop method, 58
Spencer method, 58–598, 59
stability conditions for, 55

Geotechnical problems, 2, 3
with conditions, 1, 2
with geomaterials, 1, 2

Geotextiles, 29, 29, 32–33
in groundwater control, 173
survivability, 180–181

Geotextile filters, 178, 178, 179, 181, 183–185
Geotextile separators, 179

Giroud’s filter criteria, 183, 183–184

Global failure:
geosynthetic-reinforced slopes, 336, 336
slopes, 55, 55–56

Global slope stability:
depth mixing, 267
geosynthetic-reinforced column-supported embankments, 362
geosynthetic-reinforced slopes, 340, 340
ground anchors, 309, 309–310

Global stability analysis (mechanically stabilized earth walls), 370
Grain size distribution, 17

Granular columns (deep replacement), 134–136, 139–141, 143, 143–144
consolidation, 148–150, 148–151
design parameters and procedure, 156–157
geosynthetic-encased, 136, 139, 153–158, , 164, 166
settlement, 145–147, 146, 147
stability, 151, 151

Granular drains, 185–186, 186

Granular fill, 1, 133, 134, 185

Granular filters, 178, 178, 180, 183, 184

Gravity walls, 61

Ground anchors, 9, 297–313
advantages/limitations, 300
anchor bonded capacity, 307, 308
anchor load, 305, 306
apparent earth pressure diagrams, 304, 304–305, 305
applications, 299, 300
base stability, 310
basic concept, 297, 298, 299, 299
compound and global slope stability, 309, 309–310
construction, 313
creep deformation of, 310
critical potential failure surface, 305
design considerations, 303–311
design example, 311–313
design of wall facing structure, 309
design parameters and procedure, 303–304, 311
failure modes, 301, 302
internal stability of anchored wall, 301, 302
lateral earth pressure, 300–303, 303
load transfer, 300–301, 301
principles, 300–303
quality control and assurance, 313
suitability, 299
tendon and trumpet opening sizes, 308, 309
tensile strength of steel tendon, 307, 308
unbonded anchor length, 305, 306
wall and ground movement, 310, 310–311

Ground freezing, 10

Ground heave, possible causes of, 3
Ground improvement methods, 2–14. See also individual methods and topics
classification, 3–5
construction specifications for, 13
description, function, and application, 5–10
design of, 12, 13
historical developments, 2, 3
and need for ground improvement, 5, 10, 10, 11
quality control and assurance, 14
recent advances in, 14
selection factors, 10–12, 11
selection procedure, 12, 13
for transportation infrastructure, 3, 4
trends for future development, 14
Ground movement:
with ground anchors, 310, 310–311
with preloading, 238
Groundwater control, 173. See also Dewatering; Drainage
Groundwater inflow (drainage), 189, 190
Groundwater table:
and dynamic compaction, 97
and rapid impact compaction, 101
recharge, 200
Grouted stone columns (deep replacement), 134
Grouting, 8, 245, 273–291
advantages/limitations, 274, 275
basic concept, 245, 273–274, 274, 275
compaction grouting, 245, 273, 274, 275, 279, 280, 286–287, 289, 290, 290
compensation grouting, 245, 273, 274, 275, 288, 290
construction, 290, 291
design considerations, 283–289
design example, 289–290
design parameters and procedure, 289
gROUT MATERIALs, 277, 278
permeation grouting, 245, 273, 274, 275, 283–286, 284–286, 289
principles, 275–283
quality control and assurance, 291
rheological behavior, 275–277, 275–277
setting, 277
suitability, 274, 276
theory of injection, 278–279, 278–280
Grout materials, 277, 278

H
Han Great Wall, 333
Hard soil layer, dynamic compaction and, 97
Hewlett and Randolph method (geosynthetic-reinforced column-supported embankments), 360–361
High-energy impact roller compaction, 6
High plasticity soils, 17
Hollow concrete columns (deep replacement), 134
Hydraulic gradient (drainage), 188, 188
Hydraulic properties:
geomaterials, 25
gEosynthetics, 32–33, 33
HydrocompresSion, possible causes of, 3

I
IC, see Intelligent compaction
ICMVs, see Intelligent compaction measurement values
Improved geomaterials, 1, 17
Improvement factor method (column settlement), 146, 147
Induced settlement (dynamic compaction), 95–96
Inextensile reinforcement, 364
Infinite slope, slope stability analysis for, 56, 57, 57
Influence depth (compaction), 76, 76
Influence factors:
deep dynamic compaction, 91–92
gEosynthetic-reinforced column-supported embankments, 358
relative compaction, 76
settlement calculation, 50
Injection, theory of (grouting), 278–279, 278–280
In situ ground reinforcement, 9, 297–330. See also individual methods
defined, 5
ground anchors, 9, 297–313
micropiles, 9, 297, 298
soil nailing, 9, 314–330
In situ testing, 39–47
cone penetration test, 42–44, 43
depth mixing, 273
plate load test, 47, 47
pressuremeter test, 46, 46, 47
standard penetration test, 39–41, 40
vane shear test, 45
Instability, possible causes of, 3
Intelligent compaction (IC), 6, 73, 82–89
advantages/limitations, 83
applications, 83
basic concept, 82–83, 83
construction, 88
design considerations, 86–88
intelligent compaction measurement values, 83–86
field correlation of, 86, 87
target, selecting, 87, 87–88, 88
principles, 83–86
quality control and assurance, 88, 89
rollers, 86
suitability, 83
test section, 86, 87
Intelligent compaction measurement values (ICMVs), 83–86
field correlation of, 86, 87
target, selecting, 87, 87–88, 88
Interceptors (drains), 186, 187
Interface shear tests (geosynthetics), 36, 36–38, 37
Interlayer failure (geosynthetic-reinforced foundations), 375, 376–379, 378
Intermediate compaction, 73. See also individual methods
Intermediate geomaterials, 1
Internal failure (geosynthetic-reinforced slopes), 336, 336
Internal overturning (deep mixing), 266
Internal sliding analysis:
deep mixing, 265, 265–266, 266
soil nailing, 323, 324, 325
Internal stability:
anchored walls, 301, 302
soil, 180
Internal stability analysis:
mechanically stabilized earth walls, 366, 368, 368–370, 369
J

L
Ladd method (secondary compression), 224–225, 225
Lateral confinement effect (geosynthetic reinforcement), 376
Lateral earth pressure:
 ground anchors, 300–303, 303
 soil nailing, 318, 319
Lateral earth pressure coefficient, 61, 62, 366–367, 367
Lateral restraint effect (geosynthetic reinforcement), 376
Lateral spread, 66
 geosynthetic-reinforced column-supported embankments, 361
 geosynthetic-reinforced embankments, 348, 348–349
Layer coefficient ratio (LCR) method, 392
Lift thickness (compaction), 76, 76, 79
Lime stabilization, 17, 245, 248, 250, 251, 253, 254, 277. See also Deep mixing (DM); Grouting
Limited depth effect (geosynthetic reinforcement), 376
Liquefaction, 21, 64
 deep replacement, 151, 152
 possible causes of, 3
 surface manifestation of, 66
Liquefaction analysis, 63–66
 earthquake-induced settlement, 66–67, 67
 liquefaction potential, 64–66, 64–66
Liquefaction mitigation (deep mixing), 267
Liquefaction potential, 64–66, 64–66
Liquid limit (LL), 19
Load/loading tests:
 deep replacement, 167–168, 167
 ground anchors, 313
Load transfer:
 deep replacement, 137–140, 137–140
 geosynthetic-reinforced column-supported embankments, 354, 354–355
 geosynthetic-reinforced roads, 383–385, 384
 ground anchors, 300–301, 301
 soil nailing, 316, 317–319, 318
Local failure:
 geosynthetic-reinforced embankments, 346, 347, 348
 slopes, 55, 55–56
Local stability analysis (mechanically stabilized earth walls), 370

M
Machine drive power (MDP), 85
Manufactured geomaterials, 1
Mass per unit area (geosynthetics), 32
Materials:
 construction, 12
 fill, 1, 2
 conventional compaction, 81–82
 deep replacement, 165
 interaction between geosynthetics and, 36, 36–38, 37
 for replacement, 130, 131
 geomaterials, 17–28
 classifications, 17
 compaction of, 25–28, 26–28
 hydraulic properties, 25
 mechanical properties, 19–25, 20–23
 physical properties, 17–19, 18, 19
 problematic, 1, 2
 geosynthetics, 28–39
 functions of, 30–32
 hydraulic properties, 32–33, 33
 interaction between fill and, 36, 36–39, 37
 mechanical properties, 33–36, 34–41
 physical properties, 32
 types of, 28–29, 29–31
 grout, 277, 278
 in preloading, 238
Maximum dry unit weight, 77–79, 78
Maximum height of flow (drainage), 191, 192
Maximum in-service tensile force (soil nailing), 320, 321, 321
MDP (machine drive power), 85
Mechanically stabilized earth (MSE) walls, 9, 364–375
 active earth pressure theory, 365–367, 365–367
 advantages/limitations, 364, 364
 applications, 364
 basic concept, 364, 364
 compound and global stability analyses, 370
 construction, 374
 design considerations, 367–370
 design example, 372–374
 design parameters and procedure, 370–372
 earthquake loading, 370
 external loads, 370
 external stability analysis, 367, 367–368
 failure modes, 364, 365
 internal stability analysis, 368, 368–370, 369
 local stability analysis, 370
 performance requirements, 367
 principles, 364–367
 quality control and assurance, 374–375
 slip surface and tension in reinforcement, 364, 365, 365
 stable boundary, 370, 370
 suitability, 364
 tiered walls, 370, 371
Mechanical properties:
 geomaterials, 19–25, 20–23
 geosynthetics, 33–36, 34–41
Mechanistic-Empirical Pavement Design (MEPDG), 387
Mesri et al. method (secondary compression), 224
Metallic reinforcement, 364
Micropiles, 9, 297, 298
MIF (modulus improvement factor), 376, 377
Minimum bearing capacity (overexcavation and replacement), 122
Minimum factor of safety:
 overexcavation and replacement, 122
 slope stability analysis, 59, 59–60, 60
 soil nailing, 320
Mixing, 245
 deep, see Deep mixing [DM]
 surface, 245
Modulus improvement factor (MIF), 376, 377
MSE walls, see Mechanically stabilized earth walls
Mullen burst test (geosynthetics), 35, 35
Multiple stepped columns (deep replacement), 134
Multiwells (dewatering), 201, 201, 202

N
Natural geomaterials, 1, 2, 17
Natural soils, 17
O
One-point method (conventional compaction), 75, 75–76
Open pumping, 7
Optimum moisture content, 77–79, 78
Ordinary (Swedish) method of slices, 57–58, 58
Overexcavation and replacement, 117–131
advantages/limitations, 117–118
applications, 117
basic concept, 117
construction, 130–131
design considerations, 119–124
design examples, 125–130
design parameters and procedure, 124–125
failure modes, 119, 119
failure of distributed foundation, 121
minimum bearing capacity, 122
minimum factor of safety, 122
principles, 118–119
punching failure:
through replaced zone, 119–121, 120
through replaced zone into in situ soil, 119, 121–122
quality control and assurance, 131
settlement:
of footing on layered soils of infinite width, 122, 122
of footing on replaced zone with limited area, 122–124, 123, 124
shear failure in replaced zone, 120
stress distribution, 118, 118
suitability, 117
Overtopping:
with deep mixing, 266, 266
mechanically stabilized earth walls, 367
possible causes of, 3

P
Parabolic method (tensile strain in reinforcement), 361
Particle size, 17, 18
Passive earth pressures, 60–63, 62
Paved geosynthetic-reinforced roads, 383
design considerations, 390–392
benefit of geosynthetic reinforcement, 392
equivalent traffic, 390–391
resilient modulus, 391
structural number, 391, 392
design example, 395–396
design parameters and procedure, 392–393
load transfer, 383–385, 384
resilient behavior, 385–386
roadway structure, 383, 383
Pavement drains, 186, 187
Pavement infiltration (drainage), 189
Performance criteria/requirements:
compaction, 77, 77
geosynthetic-reinforced embankments, 346, 347
geosynthetic-reinforced slopes, 336, 346, 347
mechanically stabilized earth walls, 367
vibro-compaction, 109
Performance evaluation:
overexcavation and replacement, 131
preloading, 240
Performance test (ground anchors), 313
Permanent deformation (geosynthetic-reinforced roads), 385–386, 386

Permeability, 17
dynamic compaction, 90
filtration, 179, 179, 183
of grout in soil, 278–279, 279, 280
and rate of water flow, 25
of stabilized soils, 259, 259
of vertical drains, 219–220, 220
Permeation grouting, 245, 273, 274, 275, 283–286, 284–286, 289
Permeability (geosynthetics), 33, 33
Physical properties:
geomaterials, 17–19, 18, 19
geosynthetics, 32
Piled-raft method (deep mixing), 262
Pile-supported embankments, See also Geosynthetic-reinforced column-supported embankments
Pipes:
dewatering, 202
preloading, 238
Pipe drains, 193, 193
Plastic limit (PL), 19
Plate compactors, 73, 79
Plate loading tests, 47, 47
depth mixing, 273
geosynthetic-reinforced roads, 396
reinforced and unreinforced foundations, 376, 377
Poisson ratio, 23, 24
Pore water pressure:
calculating, 176
deep replacement, 152
dynamic compaction, 90, 91, 97
with filters, 179, 179
during preloading, 240
Porosity:
effective, 188, 193
filtration, 180, 180
Precompression (preloading), 212–213
Prefabricated vertical drains (PVDs), 216, 218, 219, 235, 236
Preloading, 211–240
accumulated degree of consolidation, 221–222, 222
advantages/limitations, 212
allowable load, 220
applications, 212
basic concept, 211, 212
consolidation theory, 214–217, 215–217
construction, 2015May15 122127235–238, 236, 237
design considerations, 218–226
design examples, 227–235
design parameters and procedures, 225–227
fill, 8, 211–213, 214, 215, 226–227, 236
precompression, 212–213
principles, 212–218
quality control and assurance, 237–240
settlement, 223, 238–240, 239
slope stability, 220
strength gain, 221
stress and ground movement, 213–214, 214
suitability, 211, 212
time-dependent loading, 220–221, 221
time for consolidation, 221
vacuum, 8, 211–213, 214, 215, 220, 237, 237
vacuum and fill combined, 217
vertical drains, 218–220, 219, 220, 235, 238
Pressuremeter test, 46, 46, 47
Problematic conditions, 1, 2
Problematic geomaterials, 1, 2
Processed geomaterials, 17
Proof test (ground anchors), 313
Pullout capacity:
 of reinforcement in fill, 369, 369
 soil nailing, 321
Pullout resistance test (deep mixing), 273
Pumps (wells), 196, 196, 202, 203
Punching failure:
 geosynthetic-reinforced foundations:
 of reinforced zone, 375, 376, 380
 through reinforced zone, 375, 376, 379–380
 overexcavation and replacement:
 through replaced zone, 119–121, 120
 through replaced zone into in situ soil, 119, 121–122
PVDs, see Prefabricated vertical drains

Q
Quality control and assurance, 14
 conventional compaction, 82
 deep dynamic compaction, 99, 100
 deep mixing, 272–273
 deep replacement, 164–167
 dewatering, 206
 drainage, 195–196
 filtration, 185
 geosynthetic-reinforced column-supported embankments, 363–364
 geosynthetic-reinforced embankments, 353
 geosynthetic-reinforced foundations, 382
 geosynthetic-reinforced roads, 396
 geosynthetic-reinforced slopes, 345
 ground anchors, 313
 grouting, 291
 intelligent compaction, 88, 89
 mechanically stabilized earth walls, 374–375
 overexcavation and replacement, 131
 preloading, 237–240
 rapid impact compaction, 104
 vibro-compaction, 112, 113

R
Radial flow, consolidation due to, 216
Railroads, geosynthetics for, 383
 load transfer, 383
 roadway structure, 383, 383
Rammed aggregate columns, 7, 133–136, 134, 141, 142, 163–164, 166
Rankine’s theory, 61–62, 61–63
RAP (recycled asphalt pavement), 17
Rapid impact compaction, 6, 73, 100–104
 advantages/limitations, 100
 applications, 100
 basic concept, 100
 construction, 104
 depth of improvement, 101
 design considerations, 101–103
 design example, 103–104
 design parameters and procedure, 103
 environmental impact, 102–103
 field trial test, 103
 and groundwater table, 101
 number of blows, 101
 patterns of impact points, 101, 102
 principles, 101
 quality control and assurance, 104
 suitability, 100
RC (relative compaction), 75
Rebound (surcharge preloading), 223
Recharge (dewatering), 200, 201
Recycled asphalt pavement (RAP), 17
Reduction factors (geosynthetics), 35–38
Reinforced cut-and-fill earth walls, 5, 10, 11
Reinforced cut-and-fill slopes, 5, 10, 11
Reinforced walls, 61, 333, 364
Reinforcement methods, 9. See also individual methods
Relative compaction (RC), 75, 76
Reliability:
 geosynthetic-reinforced roads, 386, 387, 390
 and method selection, 12
Replacement:
 dynamic, 91, 91
 methods of, 6–7. See also individual methods
Resilient behavior (geosynthetic-reinforced roads), 385–386, 386
Resilient modulus (paved geosynthetic-reinforced roads), 391
Retaining walls. See also Mechanically stabilized earth (MSE) walls
 Chinese, 333
 drainage, 186, 187, 188, 189, 189
 earth retaining wall analysis, 61–64
 Coulomb’s theory, 63, 63–64
 lateral earth pressure coefficient, 61, 62
 Rankine’s theory, 61–63, 62
 and type of wall, 61, 62
Retention (filtration), 179, 179–180
Reverse flight displacement, 133
Rheological behavior (grouting), 275–277, 275–277
Rigid columns, 134
Roadway behavior (grouting), 275–277, 275–277
Sand compaction columns, 7, 134, 134, 135, 142, 163, 164, 166
Sand drains, 211
Saturated soil:
 compressibility of, 90
 degree of saturation, 18
Schmertmann et al method (settlement), 52, 53
Secondary compression, 50, 52
 surcharge preloading, 217, 223–225, 224, 225
Seepage:
 deep mixing, 267, 267
 possible causes of, 3
 stresses due to, 176–177
 Seepage force, 177
Stability. See also Slope stability analysis; specific stabilization methods

Base:
- ground anchors, 310
- soil nailing, 325

Compound:
- geosynthetic-reinforced slopes, 340
- ground anchors, 309, 309–310
- mechanically stabilized earth walls, 370

Edge slope, for geosynthetic-reinforced column-supported embankments, 362, 362

External:
- deep mixing, 266, 266
- mechanically stabilized earth walls, 365–368, 367

Global:
- deep mixing, 267
- geosynthetic-reinforced column-supported embankments, 362
- geosynthetic-reinforced slopes, 340, 340
- ground anchors, 309, 309–310
- mechanically stabilized earth walls, 370

Internal:
- anchored walls, 301, 302
- mechanically stabilized earth walls, 366, 368, 368–370, 369
- soil, 180
- local, for mechanically stabilized earth walls, 370
- surficial, for geosynthetic-reinforced slopes, 334, 336, 340, 340

Stable boundary (mechanically stabilized earth walls), 370, 370

Standard penetration test (SPT), 39–41, 40

Steady-state flow (drainage):
- capacity of drainage layer, 189, 190, 190
- unsteady-state flow vs., 187, 187–188

Steady state of a soil, 21, 22, 22

Tampers and tamping:
- conventional compaction, 79
- deep mixing, 257–259, 258
- deep replacement, 134–136, 142–144, 163, 165, 166
- function of, 3

Strain, in geosynthetic reinforcement, 361

Stress:
- above geosynthetic reinforcement, 359
- and ground movement with preloading, 213–214, 214

Stress concentration ratio (deep replacement), 137–138, 138

Stress distribution:
- overexcavation and replacement, 118, 118
- unpaved geosynthetic-reinforced roads, 387–388

Stress reduction factor, 64, 65

Stress reduction method (column settlement), 145, 146, 261, 261–262

TBR (traffic benefit ratio) method, 392

Tension, in geosynthetic reinforcement, 361, 364–365

Tensioned membranes:
- fill reinforcement, 333, 334
- geosynthetic-reinforced column-supported embankments, 354, 357, 357–358, 358

Tensioned membrane effect:
- geosynthetic reinforcement, 376

Tests and testing. See also Quality control and assurance

Tear tests (geosynthetics), 34–35, 35

Tensile force (soil nailing), 320, 320–321, 321

Tension, in geosynthetic reinforcement, 361, 364–365, 365

Terzaghi’s filter criteria, 181

Tests of quality assurance. See also Quality control and assurance

Tensioning, 227–233

Tensiometers, 181

Tensiometers, 181

Tensile force (soil nailing), 320, 320–321, 321

Tensioned membranes:
- fill reinforcement, 333, 334
- geosynthetic-reinforced column-supported embankments, 354, 357, 357–358, 358
geotextual mechanical properties, 20
gerosynthetic-reinforced slopes, 345
gerosynthetic, 33–37, 33–37
ground anchors, 313
grouting, 291
intelligent compaction test section, 86, 87
rapid impact compaction field trial test, 103
in situ, 39–47
cone penetration test, 42–44, 43
plate load test, 47
pressuremeter test, 46, 46, 47
standard penetration test, 39–41, 40
vane shear test, 45
vibro-compaction, 113
Thermal treatments, 10
Thixotropic recovery (dynamic compaction), 91
Tiebacks, see Ground anchors
Tiered mechanically stabilized walls, 370, 371
Time-dependent loading (preloading), 220–221
Toe drains, 186, 187
Toe slope failure, 55
Traditional compaction, see Conventional compaction
Traffic benefit ratio (TBR) method, 392
Trafficicking test (geosynthetic-reinforced roads), 396
Traffic loading (mechanically stabilized earth walls), 371, 372
Translational failure (geosynthetic-reinforced embankments), 349
Transmissivity (geosynthetic), 33
Transportation:
 construction specifications for, 13
 infrastructure ground improvement methods, 3–4
Transportation:
 construction specifications for, 13
 roadway construction:
 geosynthetics in, 382, See also Geosynthetic-reinforced roads
 subgrade and base options for, 10
 Trench drains, 186, 187
 Triaxial shear test, 21, 22, 23
 T-shaped DM columns, 246, 246

U
Unbonded anchor length, 305, 306
Unconfined compression tests, 23, 23
Unconsolidated undrained (UU) tests, 23, 23
Uncontrolled fill, 1
Unit cells (deep replacement), 137, 137–138
Unit weight, 18
Unpaved geosynthetic-reinforced roads, 383
 bearing failure, 385
 design considerations, 387–389
 applied pressure vs. bearing capacity, 388–389
 bearing capacity, 388, 388, 389
 calibration, 389
 quality of base course, 387
 stress distribution, 387–388
 design example, 393–395
 design parameters and procedure, 389–390
 load transfer, 383–385, 384
 roadway structure, 383, 383
Unreinforced cut-and-fill earth walls, 5, 10, 11
Unreinforced cut-and-fill slopes, 5, 10, 11
Unsteady-state flow (drainage):
 capacity of drainage layer, 190–191, 191
 steady-state flow vs., 187, 187–188
Uplift force, 176

Upward seepage, 176–177
UU (unconsolidated undrained) tests, 23, 23

V
Vacuum and fill combined preloading, 217
Vacuum preloading, 8, 211–213, 214, 215, 220, 237, 237
Vacuum pressure, consolidation due to, 217
Vane shear test, 45
Vertical drains, 185, 186, 187
 construction, 235
 equivalent permeability, 219–220, 220
 optimum penetration under vacuum preloading, 220
 prefabricated, 216, 218, 219, 235, 236
 preloading, 218–220, 219, 220
 quality control and assurance, 238
 types of, 219
Vertical flow, consolidation due to, 215–216
Vertical slip surfaces (geosynthetic-reinforced column-supported embankments), 355
Vibratory modulus (E_{vib}), 85, 86
Vibro-casing, 133
Vibro-compaction, 6, 73, 104–113
 advantages/limitations, 106
 applications, 106
 area of improvement, 109
 basic concept, 104, 105
 construction, 112, 113
 deep compaction, 106, 107
 deep replacement, 135, 135, 142
 deep replacement vs., 133
 degree and distance of influence, 107, 107–108, 108
 densification mechanism, 106, 107
 design considerations, 109–110
 design examples, 111–112
 design parameters and procedure, 110–111
 grid pattern and spacing, 109–110
 installation process, 106, 107
 performance criteria, 109
 principles, 106–109
 quality control and assurance, 113
 suitability, 104, 105, 106
 surface compaction, 106, 107
 volume change:
 without backfill, 108, 108
Vibro-concrete columns, 7, 134, 135, 136, 142, 164–165, 166–167
Vibro-displacement, 133, 134, 135
Vibro-flotation, 104, 133
Vibro-probe, 133
Vibro-replacement, 133–135, 134, 135
Volume relationships, 21, 21

W
Walls:
 anchored, see Ground anchors
Chinese retaining walls, 333
curtain, at excavations, 197
cut, 61, 62
cut-off, at excavations, 197
Walls: (continued)

defined, 333

earth:
 - geosynthetic-reinforced, 367
 - mechanically stabilized, see Mechanically stabilized earth walls
 - reinforced cut-and-fill, 5, 10, 11
 - unreinforced cut-and-fill, 5, 10, 11

earth retaining wall analysis, 61–64
 - Coulomb’s theory, 63, 63–64
 - lateral earth pressure coefficient, 61, 62
 - Rankine’s theory, 61–63, 62
 - and type of wall, 61, 62

excavation for, 297

fill, 61, 62
 - gravity, 61
 - micropile, 297
 - reinforced, 61, 333, 364

retaining wall drainage, 186, 187, 188, 189, 189
 - sheet pile, 61
 - soil nailed, see Soil nailing

Wall facing design:
 - ground anchors, 301, 309
 - mechanically stabilized earth walls, 364, 374
 - soil nailing, 326, 327

Wall movement, with ground anchors, 310–311

Water:
 - detrimental effects of, 173
 - dewatering, see Dewatering
 - drainage, see Drainage
 - filtration, see Filtration
 - groundwater control, 173
 - sources of, 173, 174
 - surface water management, 173, 174

Water flow:
 - allowable long-term flow rate, 184
 - hydraulic gradient parallel to slope, 188, 188
 - maximum height of, 191, 192
 - and permeability, 25
 - and slope stability, 55
 - in soil, 174–177
 - Bernoulli’s equation, 174–175
 - flow net, 175–176
 - pore water pressure, 176
 - stresses due to seepage, 176–177
 - uplift force, 176
 - steady-state:
 - capacity of drainage layer, 189, 190, 190
 - unsteady-state flow vs., 187, 187–188
 - unsteady-state:
 - capacity of drainage layer, 190–191, 191
 - steady-state flow vs., 187, 187–188
 - into a well, 199, 199

Well penetration (dewatering), 202

Well points, 196, 197, 199, 205

Well systems, 8
 - multiwells, 201, 201, 202
 - single well, 201
 - spacing of wells, 202, 202
 - water flow into a well, 199, 199

Wide-slab effect (geosynthetic reinforcement), 376

X

X-shape columns (deep replacement), 134

Y

Y-shape columns (deep replacement), 134