Index

AASHO Road Test, 25–26, 254, 255, 272, 364, 400
AASHTO 1986/1993 Pavement Design Guide
flexible pavements, 364–376
rigid pavement design, 400–412
traffic loads input data, 25–30
AASHTO aggregate specifications, 77
AASHTO aggregate tests, 78–80
AASHTO (1993) design method
flexible pavement overlays, 453–460
rigid pavement overlays, 460–465
Abrasion forces, 98, 99
Absolute viscosity, 121, 130
Absorption, 83–87
Accelerators (cement admixtures), 168
ACI 318, 175
Acidic aggregates, 96
Acoustic sensors, 15
Adhesion, 96
Admixtures, concrete, 168
Agency costs, 492–494
Aggregates, 73–102
Atterberg limits, 64–65
California bearing ratio, 62
chemical properties, 96–97
coefficient of lateral pressure, 63, 64
durability and soundness, 93–96
durability and geometry, 87–94
gradation and size distribution, 76–77, 80–84
manufacturing by-products, 75
mechanical properties, 98–102
modul of subgrade reaction, 61–62
from natural rocks, 74
physical properties, 76–77, 80–96, 102
plastic response, 57–61
pore structure, 87
resilient response and structure, 48–49
R-value, 62–63
specifications and tests, 76–80
specific gravity and absorption, 83–87
stabilization, 65–68
types and classifications, 74–76
Aggregate crushing value (ACV), 99
Aggregate filters, 345
Aggregate Imaging System (AIMS), 91, 92
Aggregate impact value (AIV), 99
Aging (asphalt binder), 127–129
Air-entrained concrete, 172
Air-entraining admixtures, 168
Air-void system, 178
Alkaline content (aggregates), 96–97
American Association of State Highway and Transportation Officials (AASHTO), 25
American Association of State Highway Officials (AASHO), 254, 364
American Concrete Institute (ACI) 318, 175
Angle of internal friction, 64
Anisotropic properties (granular materials), 47–48
Apparent opening size (AOS), 347
Apparent specific gravity, 83–85
Archimedes principle, 83
Artificial aggregates, 75
Asphalt, 96, 107–109
Asphalt concrete overlays, 462–469
Asphalt concrete pavements, 1
base layer, 2
binders and mixtures. See Asphalt mixtures
cross-section, 2
distresses, 93, 94, 304–307
drainage, 2
fatigue cracking in thin vs. thick layers, 132
one-dimensional plastic deformation, 58
Portland concrete overlays, 460
stresses and deflections, 1–2
Asphaltene, 110
Asphalt Institute, 63, 286, 288
Asphalt Institute design method, 376–378, 460
Asphalt mixtures, 107–158. See also Hot-mixed asphalt
beam fatigue, 155–158
binder. See Binder (asphalt mixtures)
creep compliance, 149, 152–153
dynamic modulus test, 148–152
indirect tension, 154
properties, 148–158
repeated dynamic, 153–154
volumetric analysis, 144–148
ASTM aggregate specifications, 77
ASTM aggregate tests, 78–80
Atterberg limits, 64–65
Australian Road Research Board, 263
Autogenous shrinkage, 176
Automated traffic recorders (ATRs), 14–16
Automated vehicle classifiers (AVCs), 14–18
Average annual daily traffic (AADT), 31
Average annual daily truck traffic, 31, 33–34
Axial creep compliance, 113
Axial relaxation modulus, 113
Axles, vehicle classification by, 16, 18
Axle loads:
dynamic, 19–22
Axle loads: (continued)
dynamic modulus, 114
enforcement of limits, 34–37
equivalent single-axle load factors,
25–30
and erosion damage, 416–418, 421
load spectra by axle configuration,
29–34
static, 19, 20, 22
for trucks, 13–14
WIM sensing, 18–25

Back calculation of elastic moduli:
flexible pavement, 293–298
rigid pavement, 298–303
Basalts, 75
Base layers
aggregate properties and
performance of, 93
asphalt concrete pavements, 2
drainage coefficients, 26
portland concrete pavements, 3
properties. See Properties of
base/subbase/subgrade layers
water infiltration, 338–339
Basic aggregates, 96
Beam fatigue (asphalt mixtures),
128–129
Bearing capacity, 62
Bearing stress (concrete), 226, 227
Bearing capacity (concrete), 226, 227
Bending beam rheometer (BBR),
124–125, 132, 133, 144
Bending-plate WIM systems, 18
Benefit over cost ratio (BCR),
486–487
Benkelman Beam, 284, 286–287
Berggren formula, 355–357
Binder (asphalt mixtures), 107–144
aging, 127–129
chemical composition, 108–111
dynamic shear, 123, 124
flexural creep, 124–127
grades, 129–141
linear viscoelasticity, 112–118
modification, 141–144
Newtonian vs. non-Newtonian
behavior, 111–112
penetration, 123
rheology and viscoelasticity,
111–120
and selective absorption, 87
surface energy, 126, 127
temperature susceptibility, 140–141
tensile strength, 126, 128
time-temperature superposition,
118–120
viscoelastic properties, 131–133
viscosity, 121–122
Bitumen modifiers, 142
Bituminous surface treatment (BST),
1, 6, 7
Blaine test, 169
 Blast-furnace slag, 75
Bleeding, 172, 306
Blended aggregates, 80, 82–83, 86
Blended cements, 163, 164
Block cracking, 304, 305
Blowups, 310
Boltzmann’s superposition principle,
196
Bonded portland concrete overlays,
463, 469
Bond energy (aggregates), 97
Bond stress (tiebars and concrete),
219
Borrowing rates, 475–477
Bulk stress, 54–56
Bulk-specific gravity—saturated
surface dry (SSD), 84–85
Bulk stress, 54–56
Burger model, 116, 118, 143
California bearing ratio (CBR), 62
Canadian Portland Cement
Association, 412
Capillary absorption of concrete, 176
Capillary action, 354–355
Capital Recovery formula, 481, 482
Carbonate rocks, 75
Car Road Meters (CRM), 257
Cash flow diagrams, 480–482
Cementitious materials, 163–166
Cement properties, 168–171
Cement specification, 169
Cement stabilization of soil, 67
Chemical admixtures (concrete), 168
Chemical reactions, durability and,
178–179
Chloride ion penetration, 176
Chloride resistance of concrete, 176
Circular stresses, 14, 187–189,
223–226
Clastic rocks, 75
Climatic-Materials-Structural (CMS)
model, 352
Clogging prevention, 345
Coal fly ash stabilization of soil, 67–68
Coarse aggregates, 75, 76
Collapsible end caps, 3
Combined absorption, 86
Combined specific gravity, 86
Commercial load limits, 34–37
Compactability (concrete), 172
Compaction, resilient response and,
48–49
Complex shear modulus (G*),
135–139
Composite pavements, 1, 6, 7
Compressive strength, 172
Concentrated point loads, 221–223
Concrete, 163–180
aggregates in. See Aggregates
cementitious materials, 163–166
cement properties, 168–171
cementitious materials, 168–171
chemical admixtures, 168
components, 165
creep, 176
curling and warping, 179–180
durability, 176–179
drivation, 164–165, 167–168
modulus of elasticity, 174–175
mortar, 163
paste, 163
Poisson’s ratio, 174–175
properties, 168–180
shrinkage, 175–176
strength, 172–174
workability, 171
Confining stress, 44–47
Construction joints, 4, 5, 219
Continuously reinforced concrete
pavements (CRCP), 4, 207
Design. See Rigid pavement design
distresses, 311
IRI for, 443–444
overlays, 469
rehabilitation treatment
guidelines, 453
reinforcement stresses, 230–232
steel reinforcement, 406–412
Climbing stage (concrete), 167
Corner cracking, 307
Corrosion, 179
Cracking, 304–309. See also specific
types, e.g.: Low-temperature
creep
Concrete, 176
deflexural, 124–127
indirect tensile test, 154
plastic creep region, 43
Creep and recovery test, 143
Creep compliance
asphalt mixtures, 149, 152–153
dynamic, 114
master curve for, 154
multilayer flexible pavements, 196
under shear vs. axial loading, 113
single semi-infinite layers, 198, 200
Creep recovery, 176
Creep response regions, 152
Creep strain, 176
Crushed stone, 74
Curling, concrete, 179–180
Darcy’s law, 332
Daylighting (drainage), 344
D-cracks, 95–96, 178, 309
Deduct values (PCI calculation), 312–316
Deflection
asphalt concrete pavements, 1–2
in back-calculating elastic moduli, 295–305
with BBR testing, 125
computing SAI for, 291–293
dowel bars, 226–227
influence charts, 225–226
multilayer flexible systems, 193–194
processing data on, 286–290
surface deflection measuring devices, 284–286
Deflection distributions, 1–2
Deflectometers, 284–285
Deformation:
flexible pavement, 305–306
permanent, binder resistance to, 143
plastic, 381–382
and temperature difference in rigid slabs, 213–214
Deicers, durability and, 178–179
Delayed elastic, 116, 118
Densification stage (concrete), 165
Depreciation, vehicle, 516
Design rebound deflection (DRD), 288, 289, 291
Elastic behavior (Burger model), 116, 118
Elasticity
in flexible pavement layers, 183
modulus of, 27, 174–175, 298–303
theory of, 210–213
Elastic solutions
flexible pavement, 304–307
portland cement concrete, 95–96
rigid pavement, 306–311
Elastoplastic behavior, 41–43
Environment, serviceability loss due to, 369–373, 402–404
Environmental performance factors, 331–357
heat in pavements, 349–357
water in pavements, 332–348
Environment-induced stresses, 213–221
Equivalent single-axle load (ESAL) factors, 25–30, 455–457
Erosion damage, 416–421
Expanded slag, 75
Expansion joints, 4, 5
Extrusive igneous rocks, 75
Fabric layer, 2
Fallow-weight deflectometers (FWD), 284–285, 298
Fatigue (rigid pavements), 412–418
Fatigue cracking:
asphalt binder, 140, 143–144
beam fatigue test, 155–158
binder resistance to, 132
flexible pavements, 304, 379–381
Faulting (rigid pavement), 309–310, 331, 425–435
equivalent temperature gradient, 428
freezing ratio, 426–428
load transfer efficiency of joints, 426–435
Fick’s second law, 176–177
Filters, 345–348
Filtering (in profile creation), 268, 269
Fine Aggregate Angularity (FAA) test, 88
Fine aggregates, 75–76
Fineness modulus (aggregates), 82
Fines content, resilient modulus and, 50–51
Finite Element Method (FEM), 210, 232, 243–244

Index 537
Finite Element Method solutions, 232–244
element stiffness, 233–236
joint stiffness, 240–244
overall element stiffness and slab stiffness, 239–240
subgrade support stiffness, 236–239

Fixed output comparisons, 485
Fixed slip speed, 318

Flexible pavements, 1
asphalt concrete overlays over, 466–467
base layers, 41
cross-section, 2
distresses, 304–307
elastic moduli back-calculation, 293–298
equivalent single-axle load, 26–28
rehabilitation treatment guidelines, 453
rural roadways, 6
saturated base layer, 335, 336
stresses and deflections, 1–2
subbase layers, 41
urban roadways, 7

Flexible pavement analysis, 183–202
multilayer linear elastic solutions, 192–194
multilayer nonlinear elastic solutions, 194–196
single-layer elastic solutions, 184–189
two-layer elastic solutions, 189–192
viscoelastic solutions, 190–202

Flexible pavement design, 363–391
AASHTO 1986/1993 method, 364–376
AASHTO (1993) overlay method, 453
Asphalt Institute method, 376–378
Asphalt Institute overlay method, 460
NCHRP 1–37A method, 378–391
NCHRP 1–37A overlay method, 465–469

Flexural creep, 124–127
Flexural strain, 125
Flexural stress, 125, 412, 413
Flexural test (concrete), 172, 173
Flow table test, 160
Flow time, 152–153
Flushing, 306
Fly ash, 67–68, 179
Form (shape) of aggregate particles, 87–93
Foundation models, 208–210
4-Rs, 451, 452, 473–475

Freezing, 95, 178, 353–357. See also Water in pavements
Freezing Index (FI), 353–355
Friction, 217–220, 317–319
Frictional resistance, 99
Friction index, 321–322
Frost, 178, 353–357
Frost heaves, 369, 370, 403–404
Fuel consumption costs, 495–503
Fuel taxes, 7, 9
Fuller and Thompson method (aggregate gradation), 76, 77, 80, 81
Functional class designations, 5
Funding pavements, 7, 9–10

Gap graded aggregates, 76
Geosurfactants, 2, 345, 347
GMR Profilometer, 261–262
Gneiss, 75
Gradation
aggregates, 76–77, 80–84
resilient modulus, 50
Grades, asphalt binder, 129–141
Granites, 75, 102
Granular base layers, 2
Gravel, 74
Groundwater seepage, 333–334

Hardening stage (concrete), 165, 167
Heat in pavements, 349–357
frost, 353–357
heat transfer, 349–353
Heat of hydration, 164, 165
Heaving, 331, 369, 370
Heteroatoms (in asphalt), 108, 109
Highest deduct value (HDV), 312, 316
High-speed profilometers, 261–253
Highway Design and Maintenance (HDM-II), 498, 505, 509
Highway Development and Management program (HDM-I), 498–503, 506, 507, 510
Hooke’s law, 112–113
Hot-mixed asphalt (HMA), 107. See also Asphalt mixtures aggregates, 73, 76, 91
durability, 93
dynamic modulus test, 148–152
friction characteristics, 99
low-temperature cracking resistance, 154
Hybrid rigid pavement structures, 4
Hydration, 164–165, 167–168, 175

Hydraulic cements, 163–164
Hydraulic gradient, 340–341
Hydrocarbons, 108
Hydrophilic aggregates, 96
Hydrophobic aggregates, 96

Igneous rocks, 74, 75
Image analysis (aggregate geometry), 90–92
Impact forces (aggregates), 98–99
Incremental benefit over cost ratio (ICBR), 487–488
Incremental rate of return (IRR), 490–491
Indirect tension, 134, 583
Inductive loops, 15
Infiltration rates, 336–338
Inflation, 475–479
Influence charts (slab deflections), 225–226
Initial construction costs, 492–495
Internal friction, angle of, 64
Internal rate of return, 489
International Friction Index (IFI), 321
International Roughness Index (IRI), 21, 272–280, 284, 442–444
Interstate system load limits, 34
Intrusive igneous rocks, 75
ISLAB2000, 421
Iso-octane asphaltene, 110

Joints
construction, 219
deficiencies, 309
load transfer, 228, 426, 462
opening, 220–221, 406
stiffness, 240–244
transverse, 3, 207
types, 3–5
Jointed dowel reinforced concrete pavements (JDRCP), 3–4, 207
design, see Rigid pavement design
distresses, 310
dowel-bar-induced stresses, 226–230
IRI for, 442–443
rehabilitation treatment (IRI guidelines, 454
stiffness of joints, 240–244
Jointed plain concrete pavements (JPCP), 3, 207
design, see Rigid pavement design
distresses, 310
erosion factors, 420
IRI for, 442–443
joint opening, 220
rehabilitation treatment guidelines, 454
stiffness of joints, 240–244

Kinematic viscosity, 121

Lane closures, 516–525
Lateral pressure, coefficient of, 63, 64
Layered analysis software, 192, 193
Length inventory data, 5–7
Life-cycle cost analysis (LCCA), 392, 474, 475, 477, 479
agency costs, 492–494
cost components in, 492
user costs, 494–526
Light-duty asphalt-surfaced pavements, 1, 6, 7

Lime stabilization, 65–67
Limestone, 75, 102
Linear elastic solutions (multilayer systems), 192–194
Linear variable differential transducers (LVDTs), 149, 152
Linear viscoelasticity, 112–118
Liquid limit (LL), 64–65
Liquid slab foundation assumption, 62
Load cell WIM systems, 18, 19
Load-induced stresses (rigid pavements), 221–232
under concentrated point loads, 221–223
dowel-bar-induced stresses in JDRCPs, 226–230
reinforcement stresses in CRCPs, 230–232
under uniform circular stresses, 223–226
Load limit enforcement, 34–37
Load transfer, 3, 228
Load transfer coefficients, 401, 402
Load transfer efficiency (LTE), 426, 462
Locked wheel slip speed, 318
Longitudinal cracking, 304, 307, 381
Long-Term Pavement Performance (LTPP) Program, 389–391
Los Angeles Degradation Test, 98
Loss dynamic modulus, 116
Loss energy, 115–116
Loss modulus, 115
Low-speed profilometers, 263–265
Low-temperature cracking, 132–133, 140, 143–144, 154
Macrotexture, 317, 320
Macromolecules, 110
Magma, 75
Maltene, 110
Man-made aggregates, 75
Manning’s formula, 344
Map cracking, 96, 309
Marble, 75
Market interest rates, 475–476, 478
Master curve (viscoelastic properties), 119
Maturity curve, 175
Maximum corrected deduct value (max CDV), 312, 314
Mays Ride Meter (MRM), 255, 256
Mean texture depth (MTD), 320, 321
Mean profile depth (MPD), 320, 321
Mean texture depth (MDV9), 100, 101
Microtexture, 317, 320
Mixing stage (concrete), 164, 165
Moving average (MA), 265–268
Multilayer pavement systems
linear elastic solutions for, 192–194
nonlinear elastic solutions for, 194–196
viscoelastic solutions for, 198, 200–202
asphalt concrete overlays, 465–469
flexible pavements, 378–391
Portland concrete overlays, 469–470
rigid pavements, 418–444
traffic input levels, 29–31
traffic loads input data, 29–34
Net annualized worth (NAW), 392, 485–486
Net present worth (NPW), 483–485, 491
Newtonian behavior, 112, 121
Newtonian viscous relationship, 113
N-heptane asphaltene, 110
95th percentile size (OD5%), 347
Nonlinear elastic solutions, 194–196
Non-Newtonian behavior, 112, 121
Nonpolar molecules (asphalt), 109
Octahedral shear stress, 54–57
Oils in asphalt, 110
Open graded aggregates, 76
Overlay design methods, 453–470
AASHTO (1993) flexible pavement method, 453–460
asphalt concrete overlays, 462–463
Asphalt Institute flexible pavement method, 460
NCHRP 1–37A method, 465–470
Oxidation, 109, 127–129

Page Impact Test, 98–99
Pal-Rhodes model, 111
Paris law, 386
Parseval’s formula, 282
Paris and labor costs (vehicles), 506–509
Pavement Condition Index (PCI), 311–316
Pavement evaluation, 251–322
categories of information for, 251
safety, 316–322
serviceability, 252–284
structural capacity, 284–303
surface distress, 303–316
Pavement infrastructure, 5–10
Pavement rehabilitation, 451–453. See also Overlay design methods
Pavement texture, 317, 320–321
PCA design method, 412–421
erosion damage, 416–421
fatigue damage, 412–418
PCAPAV, 418
Penetration (asphalt binder), 123
Penetration grading (asphalt), 130
Penetration index (PI), 141
Permanent strain, 42, 58–61, 143, 153–154
Permeability, 176–178, 332–333, 336, 343
Phase angle, 114–115
Piezoelectric WIM sensors, 18, 19
 Mixing stage (concrete), 164, 165
Model calibration, 389–391, 444
Moisture content, 64–65
and curling/warping, 179–180
and resilient modulus, 51, 53
Monitoring systems. See Traffic-monitoring systems
Mortar, 163, 169, 171
Moving average (MA), 265–268
Multilayer pavement systems
linear elastic solutions for, 192–194
nonlinear elastic solutions for, 194–196
viscoelastic solutions for, 198, 200–202
asphalt concrete overlays, 465–469
flexible pavements, 378–391
Portland concrete overlays, 469–470
rigid pavements, 418–444
traffic input levels, 29–31
traffic loads input data, 29–34
Net annualized worth (NAW), 392, 485–486
Net present worth (NPW), 483–485, 491
Newtonian behavior, 112, 121
Newtonian viscous relationship, 113
N-heptane asphaltene, 110
95th percentile size (OD5%), 347
Nonlinear elastic solutions, 194–196
Non-Newtonian behavior, 112, 121
Nonpolar molecules (asphalt), 109
Octahedral shear stress, 54–57
Oils in asphalt, 110
Open graded aggregates, 76
Overlay design methods, 453–470
AASHTO (1993) flexible pavement method, 453–460
asphalt concrete overlays, 462–463
Asphalt Institute flexible pavement method, 460
NCHRP 1–37A method, 465–470
Oxidation, 109, 127–129

Page Impact Test, 98–99
Pal-Rhodes model, 111
Paris law, 386
Parseval’s formula, 282
Paris and labor costs (vehicles), 506–509
Pavement Condition Index (PCI), 311–316
Pavement evaluation, 251–322
categories of information for, 251
safety, 316–322
serviceability, 252–284
structural capacity, 284–303
surface distress, 303–316
Pavement infrastructure, 5–10
Pavement rehabilitation, 451–453. See also Overlay design methods
Pavement texture, 317, 320–321
PCA design method, 412–421
erosion damage, 416–421
fatigue damage, 412–418
PCAPAV, 418
Penetration (asphalt binder), 123
Penetration grading (asphalt), 130
Penetration index (PI), 141
Permanent strain, 42, 58–61, 143, 153–154
Permeability, 176–178, 332–333, 336, 343
Phase angle, 114–115
Piezoelectric WIM sensors, 18, 19
Pitting, 95
Plastic creep region, 43
Plastic deformation, 381–382
Plasticity index (PI), 65
Plastic limit (PL), 64–65
Plastic response, 57–61
Plastic shakedown, 43
Plastic shakedown limit, 43
Plastic shrinkage, 175
Plastic strain, 43, 382–385
Point loads, 184–187, 221–223
Poisson’s ratio, 44, 47, 174, 175
Polar molecules (asphalt), 109–110
Polishing resistance, 99–101
Popouts, 306
Pore structure (aggregates), 87
Portland cements, 165–165, 169
Portland Cement Association (PCA), 412
Portland cement concrete (PCC), 73, 91–93, 95, 99
Portland concrete overlays, 463, 469–470
Portland concrete pavements, 1–5, 409, 410, 452, 467–469. See also Rigid pavements
Potential reactivity of aggregates, 97
Power requirement, 501–503
Power spectral density (PSD), 269–272
Precipitation, 335, 337
Predicting serviceable life, 253–255, 374–376, 404–406
Present Serviceability Index (PSI), 26, 253
Present Serviceability rating (PSR), 252, 253
Pressure aging vessel (PAV), 129
Profile Index (PI), 260, 282
Profilometers, 261–253, 263–273
Profilometer-type roughness measuring devices, 261
Properties of base/subbase/subgrade layers, 41–68
aggregate and soil stabilization, 65–68
Atterberg limits, 64–65
California bearing ratio, 62
coefficient of lateral pressure, 63, 64
mechanical behavior, 41–43
modulus of subgrade reaction, 61–62
plastic response, 57–61
resilient response, 43–57
R-value, 62–63
Punchouts, 435–441
Pure bending stresses, 211–215
Quad axles, 13
Quartzite, 75, 102
Radar sensors, 15
Radial frequency, 115
Radius of relative stiffness, 223
Rainfall rates, 336
Rate of return (RR), 488–490
Raveling, 306
Reconstruction of pavements, 451
Recycling of pavements, 451
Reflection cracks, 305
Rehabilitation of pavements. See Pavement rehabilitation
Reinforced concrete, 207
cracking diffusion, 177–178
shrinkage of, 175
steel reinforcement, 4, 179, 219, 250–252, 406–412
types of, 207
Reinforcement stresses (CRCPs), 230–232
Relative stiffness, radius of, 223
Relaxation modulus, 113–115
Repeated dynamic (asphalt mixtures), 153–154
Replacement of pavements, 451
Representative rebound deflection (RRD), 287–290, 460
Resilient modulus, 43, 44, 46, 63, 457, 458
Resilient response, 43–57
and compaction and aggregate structure, 48–49
experimental measurements, 51–58
and material factors, 49–51
and stress level, 44–48
Resilient strain, 58
Resins, 110
Response-type roughness measuring devices, 255–261
Restoration of pavements, 451
Retarders (cement admixtures), 168
Rheology (asphalt binder), 111–120
Ride Number (RN), 281–283
Rigid pavements, 1
with asphalt concrete shoulders, 413
base layer, 41
cross sections, 3–4
distresses, 306–311
elastic moduli, back-calculation, 27, 298–303
equivalent single-axle load, 27–30
joints, 3–5
load-carrying capacity, 207, 399
rural roadways, 6
stresses and deflections, 1–4
urban roadways, 7
Rigid pavement analysis, 207–244
elastic theory on plates, 210–213
environment-induced stresses, 215–221
Finite Element Method solutions, 232–244
load-induced stresses, 221–232
Rigid pavement design, 399–444
AASHTO 1986/1993 method, 400–412
NCHRP 1–37A method, 418–444
NCHRP 1–37A overlay method, 469–470
PCA method, 412–421
Rocks, aggregates derived from, 74–75
Rolling resistance force, 498–500
Rolling straightedge (RSE), 257–260
Rolling thin-film oven (RTFO), 127–129
Rolling-weight deflectometers, 286
Root-mean-square (RMS), 282
Rotational viscometer test, 121–122
Roughness flexible pavements, 389
indices of, 272–284
profilometer-type measuring devices, 261
response-type measuring devices, 255–261
rigid pavements, 424–444
and serviceability, 253–255
and user costs, 495. See also User costs
Rupture, modulus of (portland concrete), 424
Rural roadway pavements, 6
Rutting, 131–132, 140, 143, 305, 381–382
R-value, 62–63
Safety evaluation, 316–322
Salt-induced scaling, 179
Sand, 74
Sand-equivalent test, 93, 94
Sand-patch test, 320
Sandstone, 102
Scaling, 178–179
Seal coat, 2
Secant modulus (elasticity), 174–175
Sedimentary rocks, 75
Selective absorption, 87
Series Present Worth formula, 481–482
Serviceability, 252–284
and fuel consumption, 497
highspeed profilometers, 261–253
loss due to environment, 369–373, 402–404
loss due to traffic, 365–368, 400–402
low-speed profilometers, 263–265
predicting, 253–255, 374–376, 404–406
processing profilometer measurements, 265–273
asphalt mixtures, 124, 127, 132, 135, 140, 143
rigid pavements, 233–235, 239–244
R-value, 62–63
Storage modulus, 115
Stress gradient, 115
Subgrade, 1
Subgrade modulus of, 51–53
Subgrade modulus of, 51–57
Subgrade swelling, 369–370, 402–403
Sublayers (lifts), 2
Sulfates, 179
Sulfate soundness test, 95
Superpave™, 76, 82, 88, 89, 130–134, 140, 141
Supplementary cementitious materials, 164, 166
Surface defects, 306, 309
Surface deflection, 189–190, 284–286
Surface deformation, 305–306
Surface distresses, See Distresses
Surface energy, 97, 126, 127
Surface friction, 316, See also Friction
Surface texture (aggregate particles), 87–93
Surface Transportation Act of 1982, 7, 9
Suspensions, axle load and, 19–20
Tack coat layer, 2
Tandem axles, 13, 27–28
Tangent modulus (elasticity), 174
Taxes, as funding source, 7, 9–10
Technology, 10
Temperature(s)
adjusting deflections for, 290
and aging, 127–129
for binder grades, 130, 131, 141
and concrete pavement durability, 178
and curling/warping, 179–180
heat in pavements, 349–357
joint opening due to changes, 220–221, 406
stresses due to, 213–217
Temperature susceptibility, 140–141
Tensile strength, 126, 128, 172–173
Thawing, 95, 178
Theoretical maximum specific gravity, 145
Thermal analysis, 169–171
Thermal coefficient (portland concrete), 409
Thermal conductivity, 95, 179–180, 349
Thermal cracking, 154, 385–387
Thermal diffusivity, 351
Thermal expansion, coefficient of, 94–95
Thermal stresses, 14. See also Heat in pavements
Thermogravimetric analysis (TGA), 170–171
Thin film oven (TFO), 128
Time-temperature superposition, 118–120
Time value of money concepts, 475–483
Timing of axle passes, 14
Tire inflation pressure, 14
Tire loads, modeling, 183
Tire wear, road-related, 509–515
Total load limit, 34, 35
Total resilient axial deformation response, 55
Traction forces, 500
Traffic, serviceability loss due to, 365–368, 400–402
Traffic loads, 13–37
design input data for, 24–34
load limits enforcement, 34–37
traffic-monitoring systems, 14–25
truck, 13
Traffic load input data, 24–34
AASHTO 1986/1993 approach, 25–30
NCHRP 1–37A approach, 29–34
Traffic-monitoring systems, 14–25
automated traffic recorders, 15–16
automated vehicle classifier, 16–18
weigh-in-motion, 18–25
Traffic recorder systems, 15–16
Transient flow, 342
Transverse joints, 3, 207, 435
Travel delays, 516–525
Triaxial permanent deformation test, 59–61
Triaxial repeated load tests, 44, 52–53
Triple axles, 13
Truck axle configurations, 16, 17
Truck inspection stations, 36–37
Two-layer pavement systems, 189–192
Types of pavements, 1
Ultrasonic sensors, 15
Unbonded portland concrete overlays, 463, 469
Uniform aggregates, 76
Uniform circular stresses, 223–226
Unreinforced concrete slabs, 3
Urban roadway pavements, 7
User costs, 494–526
fuel consumption, 495–503
time delay due to lane closures, 516–525
vehicle maintenance and repairs, 505–515
vehicle operating costs, 515–516
Vander Waal’s forces, 109
Variable slip speed, 318
Variation, coefficient of (CV), 20, 21
Vehicle classification systems, 16–18
Vehicle maintenance and repairs costs, 505–515
Vehicle operating costs, 515–516
Vertical loads, tire, 14
Vertical load transfer, 3
VESYS model, 58
Vibrations, physiological effects of, 525–526
Vicat plunger test, 169, 170
Viscoelasticity (asphalt binder), 111–120, 131
linear, 112–118
and time-temperature superposition, 118–120
Viscoelastic solutions, 196–202
Viscosity (asphalt binder), 121–122
Viscosity grading (asphalt), 130
Viscosity of aged residue grading (asphalt), 130
Voids, 2, 87, 145, 178
Voids filled with asphalt (VFA), 145
Voids in mineral aggregate (VMA), 145
Voids in total mix (VTM), 145
Voight-Kelvin model, 385, 386
Volume change (aggregates), 95
Volumetric analysis (asphalt mixtures), 144–148
Warping, 179–180, 213–214
Water in pavements, 332–348
drainage, 332–333, 338–345
filters, 345–348
infiltration rates, 336–338
sources, 333–336
Water-reducing admixtures, 168, 172
Water-to-cement ratio (w/c), 171, 172
Weigh-in-motion (WIM) systems, 14–15, 18–25, 36–37
Weight-distance tax, 10
Well-graded aggregates, 76
WesTrack Project, 389, 390, 503
Wilhelmy plate method, 126, 127
Winkler slab foundation assumption, 62
Workability (concrete), 171