Index

1-correlation error 319–21
AA see Andersen and Andreasen
accounting 38–48
boards 38–41
DVA problem 211–14
fair value 38–40
hidden assumptions 42–8
liquidity 40–2
pricing levels 41–2, 44, 47
vanilla derivatives 42–8
agnostic market model 188
American Home Mortgage Investment Corporation 16
Andersen and Andreasen (AA) 339–40
Andersen, L. 108–10, 133, 339–40
Andreasen, J. 108–10, 339–40
approximations 243–86
CMSs 264–76
computational risk 283–6
exact formula 276–83
interest rate derivatives 245–64
LMM 244, 245–64
risk monitoring 243–4
risk validation 243–4
swaptions 245–64
testing 257–64, 271–83
Aragonès, 113
arbitrage
no-arbitrage pricing 25–7
risk management 59–60
see also model arbitrage
Armageddon formula/probability 365–9
assumptions
appropriateness 53
errors in models 3–6
sticky-strike 158–9
stress testing 58
asymptotic smiles 288–94
at-the-money (ATM)
caplets 341
options 239–40, 271–2, 336
swaptions 271–2, 336
Baheti, P. 156–7
banks/banking
bank default 193, 215
Basel guidance 48–53
capital reserves 96
cheating in crises 28
default correlation 139–40
future pricing 214–15
illiquid markets 36–7
Libor banks 177, 183, 192–7, 200
Libor counterparties 194–7, 200
model lines 97–8
senior management 49–50
subprime crisis 9–10, 16
uncertainty 33–4
barrier options
capital structure arbitrage 376–7, 377–81
down and out call 376
first passage models 378–9
pricing formulas 377–8
volatility models 99–104
base correlation 125–6
Basel Committee guidance 48–53
management process 49–51
model/market/product 51–2
operative recommendations 52–3
‘Supervisory Guidance . . .’ document 48–9
basis swaps 195–200
basis misconceptions 191
FRAs 189–91
model death 2007 173–4
model replicating today’s basis 195–200
risk-free market model 180
volatile credit risk markets 195–200
Berkowitz, 113
Bermudan options 105–10
Bermudan swaptions 105–10
Anderson/Andreasen analysis 108–10
early-exercise derivatives 334–5
extrapolations 290
LSS analysis 107–8
pricing 105–10, 324–40
bespoke CDOs 9–11, 60, 168
bespoke portfolios 151, 152–6
Black formula 405–7
calibrating caplets 325
forward smiles 341–4
index options 364–5
swaption approximations 245–7, 254–5, 261
see also Black and Scholes
Black Monday 17
Black and Scholes 405–7
fundamentalist view 222–4
hedging 222–5, 227–31
incompleteness 27, 37
Monte Carlo 225
P&L Explain Test 222–5, 228–9
real hedging 229–31
uncertainty 31
volatility 99–100
see also Black formula
bootstrapped expected tranched loss 295–6, 300
BP see British Petroleum
Brigo, D.
approximations 261, 263
calibration 335–6
model arbitrage 373–5, 377, 386
stress testing 144–5
uncertainty 31
wrong payoff 347, 349, 352, 365
British Petroleum (BP) 382–91, 395
2009 382–3, 385–7
2010 389–91
calibration results 382–3, 386–7, 391
capital structure arbitrage 382–3, 385–7, 389–91
historical data 390
market expectation uncertainty 387
no-arbitrage models 395
oil spill 389–91
Brownian motion 379, 400–3
geometric 402–3
street rules 401–2
Brummermeier 12, 15
buy-side, derivatives 20–1
calibration 323–46
asymptotic smiles 289
Bermudan pricing 324–40
capital structure arbitrage 381–91
caps 324–40
early-exercise derivatives 334–5
extrapolations 289
forward smiles 340–6
hedging 225–8
liquid products 77–8, 85
model comparison 63, 77–8, 85–6
model validation 55–6
parameterizations 329–36
PST 114–15
swaptions 324–40
TSV 325, 326–34
cap-swap arbitrage 371, 392–4
capital reserves 88, 95–7
capital structure arbitrage 372–3, 373–91
barrier options 376–7, 377–81
BP 382–91, 395
calibration 381–91
credit model 373–5
equity model 375–7
equity pricing 377–81
Fiat Spa 382–91, 395
uncertainty 381–91
caplets 325–34, 341–6
calibration 325–34
cap-swap arbitrage 392–3
forward smiles 341–6
parameterizations 329–34
TSV 326–34
caps 324–40, 371, 392–4
car-maker crisis 2005 159–60, 161–2, 167
Cauchy–Schwartz inequality 321
CDOs see collateralized debt obligations
CDSs see credit default swaps
CDX indices 156–7, 366
Central Limit Theorem 260
cheating 27–9
see also crises
Chourdakis, K. 144–5
CIR see Cox, Ingersoll, Ross
closeout convention 348–62
bilateral case 354–6
closeout amount 350
closeout payments 350–2
comparing closeout forms 356
default contagion 357–61, 361
default payoff 348–62
ISDA 349, 352–3, 360
market opinion 352–3
numerical example 356–7
quantitative analysis 352–60
replacement closeout 349–52, 354–6, 359–62
risk-free closeout 349, 351–2, 355–62
unilateral case 351, 353–4
CMSs see constant maturity swaps
Coffey, C. 308–10

collateral, definition 7

collateralized debt obligations (CDOs)
 bespoke 9–11, 60, 168
 crisis 2007–2009 30
 default correlation 139
 flat correlation 126–7
 Gaussian copula 60, 115–17, 122–4, 129
 Index CDO 131
 mapping methods 116–17, 164, 168
 payoff 118–19
 realistic models 19
 subprime crisis 9–12, 15–16
 collateralized derivatives 186, 201–2
 collateralized forward rate agreements 186–91
 common jumps 121
 comonotonic behaviour 230, 236, 238, 240
 comparisons see model comparison
 complete markets 35–8
 complex derivatives 36
 compound options 99–104, 372
 computational risk 283–6
 constant intensity 403–4
 constant maturity swaps (CMSs) 264–76
 approximations 264–76
 asymptotic smiles 292–3
 comparing approximations 271–6
 convexity adjustments 265, 266–9, 271–2, 275–6, 292–4
 extrapolations 292–4
 general LMM approximation 269–71
 indetermination 293–4
 interpolation 293–4
 measure mismatch 187
 payoff 265
 pricing 292–3
 set in arrears 265
 term structures 264, 273–5
 testing approximations 271–6
 Cont, R. 33–4, 37
 convexity adjustments
 CMSs 265, 266–9, 271–2, 275–6, 292–4
 covariances 267
 extrapolations 292–4
 FRAs 186–91
 market approximations 267–9
 copulas 119–25
 correlations 304
 Marshall–Olkin 145–51
 random variables 397–8
 theory of 142
 see also Gaussian copula
 correlation skew
 bespoke portfolios 152–6
 ETL 295–8
 extrapolations 295–301
 mapping methods 152–6, 165
 stress testing 124–6, 131–6
 correlations 303–21
 1-correlation error 319–21
 base 125–6
 Bermudan swaptions 337–9
 car-maker crisis 160–2
 CMSs 276
 computation difficulties 303–15
 crisis mistake 125–36
 cross-currency 307–12
 decorrelation 305, 314
 default correlation 114, 138–43
 exact formula 278–83
 flat 126–31
 heterogeneous 129–31
 implied 127
 instantaneous 108, 304–5, 320–1, 393–4
 interest rate modelling 305–7
 local 132
 mapping methods 160–3, 166–8
 matrices 304–15
 modelling errors 315–21
 parameterization 131–6, 306–7, 312–15
 PST 125–36
 risk management 59
 serial 320–1
 stochastic volatility 312–15
 systemic crisis 160, 162–3, 166–7
 technical difficulties 303–15
 terminal 320–1, 339
 zero-correlation error 316–19
 see also correlation skew
 counterparty risk 144–6
 see also default payoff
 covariance
 convexity adjustments 267
 correlations 313–14
 Cox, Ingersoll, Ross (CIR)
 exponential jump model 89–92
 intensity model 80–1, 83
 Monte Carlo simulation 285–6
 Cox processes with stochastic intensity 74, 79–81
 credit crunch
 correlations 303, 320
 index option payoff 365–6, 368
 model arbitrage 395
 see also crises
 credit default swaps (CDSs)
 BP 381–91
 calibration 85
 capital structure arbitrage 382–91
 counterparty risk 144–6
 DVA problem 205, 210
Fiat Spa 381–91
gap risk 74–7, 81
intensity models 90–1
model comparison 65–7, 74–7, 80, 81, 85
reduced-form intensity models 80
spread errors 382–91
stress testing 138, 144–6
structural models 65
see also credit-linked notes
credit index options 362–3
credit-linked notes 63
see also leveraged notes
credit market and stress testing 118–25
credit models 63–99
assumption errors 5–6
capital structure arbitrage 373–5
model comparison 63–99
see also intensity models; structural models
credit risk 65, 173, 176, 192–200
credit spreads 46–7
credit value adjustments (CVAs) 202–4, 206, 212
crises
2007–2009 27–30, 111–69
banks/funds/ratings 29–30
Black Monday 17
BP oil spill 389–91
car-maker 159–60, 161–2, 167
cheating 27–9
dot com bubble 16–17
idiosyncratic 159–60, 161–2, 167
learning from 111–18
mistakes 111–69
regulators 48–53
Russian crisis 1998 21, 394–5
stress testing 111–69
systemic crisis 160, 162–4, 166–7
see also credit crunch; subprime crisis
cross-currency correlations 307–12
CVAs see credit value adjustments
De L’Hôpital rule 278
dead of model 2007 173–4
debt value adjustment (DVA) problem 202–15
borrower funding 208–9
future pricing 214–15
lender funding 209–10
market agreement conditions 209–10
positive recovery extension 210–11
the setting 204–6
solving puzzle 207–8
standard DVA 206–7
two views of problem 211–14
decorrelation 305, 314
Deepwater Horizon oil spill, BP 389–91
default correlation 114, 138–43
default payoff 347–62
default risk 182–91, 211–14
defaultable swaps 184–6
delta 36, 158–9, 229
derivatives
buy-side 20–1
complex derivatives 36
early-exercise 334–5
self-side 20–1
vanilla 42–8
see also interest rate derivatives
Derman, E. 4–5, 18–19, 55, 60, 100
deterministic equations 23
deterministic intensity 73, 82–3
diffusions 400–3
discounted loss, ETL 297
discounting 22–3, 202
discretization error 259, 286
dispersion 165–9
dot com bubble 16–17
down and out call options 376
Dupire, B. 100–2, 276–83
DVA see debt value adjustment
ECB see European Central Bank
EL see expected loss
Elkarovi see Geman–Elkarovi–Rochet theorem
equity models 99–110, 375–7
equity options 380–91
equity pricing 377–81
equity withdrawals 12, 15–16
errors
in assumptions 3–6
CDS spread 382–91
correlations 315–21
discretization 259, 286
model and payoff 347–8
operational 8
payoff 347–8, 362–9
simulation 259
ETL see expected tranche loss
European Central Bank (ECB) 327–8
European options 324, 335–40
see also caplets
exact formula 276–83
perfect negative correlation 280–3
perfect positive correlation 278–80
testing approximations 276–83
expected loss (EL) 153–5, 161–8
expected tranched loss (ETL)
bootstrapped 295–6, 300
extrapolations 295–8
index option payoffs 366
stress testing 155–6, 157, 161–8
extrapolations 287–301
asymptotic smiles 288–94
CMSs 292–4
correlation skew 295–301
to infinity 292–3
information 288–301
interpolation 287–8, 293–4, 298–301
mathematical information 295–301
risk management 59

factor models
multifactor 18
one-factor 18, 123, 131–6
subprime crisis 13–15
fair value 38–40
accounting levels 41
Basel guidance 53
definitions 39–40
FASB see Financial Accounting Standards Board
fat tails 99–100, 114–15, 129
Fiat Spa 382–90, 395
2008 389–90
2009 382, 383–9
calibration results 383–90
capital structure arbitrage 382–90
historical data 384
market expectation uncertainty 386–7
no-arbitrage models 395
statistical arbitrage 384
Financial Accounting Standards Board (FASB) 38–41
financial crises see crises
first passage models 67–9, 372, 373, 376–7, 378–9
fit 114–15, 125–6
flat correlation 126–31
forward exchange (FX) rates 308–12
forward rate agreements (FRAs)
agnostic market model 188
basis and FRAs 189–91
basis-consistent replication 190
collateralized 186–91
convexity adjustments 186–91
model death 2007 173–4
new market model 175–6
replication schemes 43, 45
risk-free market model 179–80, 181–2
stable default risk model 185–6
standard replication 190
vanilla derivatives 43–8
volatile credit risk markets 194
forward smiles 340–6
foundations of modelling 22–38
FRAs see forward rate agreements
freezing 256–7, 270–1, 276, 284
front-end protection 363–5
fund managers 29–30
funding
credit 2007–2009 29–30
DVA problem 202–15
model change 171–215
new era 171–215
FX see forward exchange rates
gap risk
intensity models 82–5, 92–3
leveraged notes 74–7
model comparison 74–7, 81–5
model implications 93–5
Gaussian copula 111–69
alternative real models 145–7
assumption errors 5–6
CDOs 60, 115–17, 122–4, 129
computation of 121
correlation parameterization 131–6
correlation skew 124–6
counterparty risk 145
extrapolations 295
fat tails 115, 129
flat correlation 128
heterogeneous correlation 130–1
last-to-default 141
losses concentrated in time 115–16, 137–45
as market quotation model 124–5
model risk definition 3, 5–6, 8–9, 16
one-factor 123, 131–6
Perfect copula 128
quantitative analysis 132
simulation scheme 121–2
subprime crisis 9, 16
zero-correlation error 317
Gaussian distribution 398–9
Geman–Elkarovi–Rochet theorem 407–8
general piecewise constant (GPC) 329, 335–6
gamma Brownian motion 402–3
Girsanov’s Theorem 37
GPC see general piecewise constant
Gregory, J. 316, 318
Hagan, P. 22, 229–32, 240–1, 266, 277–9, 281, 289
hedges/hedging 219–42
1-correlation error 319–20
hedging risk 47
mapping methods 158–9
model instability 226–8
model reserves 227
model validation 221–9
P&L Explain Test 221–9
recalibration 225–8
risk management 59
strategy reality 241–2
Index

testing 232–8
vanilla derivatives 47
see also real hedging
Heston model 99–100, 227, 345
heterogeneous correlation 129–31
historical aspects
BP 390
dispersion 165–8
Fiat Spa 384
idiosyncratic crisis 160–1, 161–2, 167
leveraged notes 85–8
mapping methods 151–69
model comparison 85–8
mortgage default rates 11–15
stress testing 151–69
systemic crisis 160, 162–4, 166–7
Hoeting, 33
homogeneous Libor banks 183, 192, 195
house prices
cheating in crises 29
subprime crisis 12–13, 15–17
synthetic view on model risk 17
‘How to throw away a billion dollars’ (LSS) 18, 105
Hui, C. H. 377
Hull, J. 103, 127–8
IASB see International Accounting Standards Board
idiosyncratic crisis 2005 159–60, 161–2, 167
ignorance 35–8
implied correlation 127
implied volatility 99–100, 382–91
incomplete markets 35–8, 86–7
indetermination
asymptotic smiles 288–91
calibration 324, 335–40
CMSs 293–4
Index CDO 131
index options
Armageddon formula 365–7
Armageddon probability 367–9
empirical results 365–7
front end protection 363–5
payoff 362–9
index portfolios 152–6
inequality, Cauchy–Schwartz 321
information
extrapolations 288–301
intensity models 72–4
mathematical 295–301
use in valuation 52
Ingersoll see Cox, Ingersoll, Ross
instantaneous correlations 108, 304–5, 320–1, 393–4
instantaneous volatility 248
integration 285
intensity
constant 403–4
stochastic 74, 79–81, 83
time-dependent 71–2, 404–5
intensity models
CIR model 80–1, 83
Cox processes 74
default-free information 73–4
deterministic intensity 73
information assumptions 72–4
jumps 88–95
pricing 73–4
stochastic intensity 74
structural models 72–4
see also reduced-form intensity models
interest rate Bermudan options 105–10
interest rate derivatives 171–215
approximations 245–64
basics 105–6
classic risk-free model 172–3, 177, 178–82
model change 171–215
model death 2007 173–4
modelling approaches 106–7
modelling problems 245–7
new era 171–215
new market model 174–7
replicating today’s basis 195–200
risk-free model 172–3, 177, 178–82
stable default risk model 182–91
volatile credit risk markets 192–200
interest rate modelling 305–7
interest rates see rates
International Accounting Standards Board (IASB) 38–41
interpolation 287–8, 293–4, 298–301
invariants 152–6
inverted expected loss 165
ISDA documentation 349, 352–3, 360
issuers/issuance 29–30
iterated expectation, law of 399–400
Ito’s Lemma 223, 393, 402, 406
i-Traxx indices 156–7, 161, 365–7
JPMorgan 366
jumps
copulas 121
intensity models 69–72, 88–95
Poisson processes 69–72
reduced-form intensity models 69–72
Kani, I. 100
King, Mervyn 326–7
Knight, 33
law of iterated expectation 399–400
leap to default 83
least squares Monte Carlo method 335
Lee, H. C. 377
Lehman Brothers
capital structure arbitrage 374–5, 386, 389
CDS counterparty risk 145
Lehman test 156–7
payoff 359–60
TSV 328
volatile credit risk markets 199
leptokurtic distributions 129
see also fat tails
leveraged notes 74–88
core risk 81–5
gap risk 74–7
historical evidence 85–8
incomplete markets 86–7
triggers 75–7, 81–2
see also credit-linked notes
Libor banks 177, 183, 192–7, 200, 203
Libor counterparties 194–7, 200
Libor market 177, 191, 192–3, 195
Libor market model (LMM) 21, 106
Bermudan swaptions 335, 337, 340
calibration 324–5, 335, 337, 340, 344–6
cap-swaption arbitrage 393
CMSs 269–73, 275–6
computational risk 283–4
correlations 305–6, 312, 315, 320
Monte Carlo simulation 252–3
stress testing 117
SVMs 344–6
swaption approximations 244, 245–64
Libor panel 177, 191, 192–3
Libor rates
determination 46
forward rates 174, 245–6, 320, 392
interest rates market 174, 176–7, 182, 191
model arbitrage 392–3, 395
vanilla derivatives 42–7
liquidity
accounting 40–2
calibration 77–8, 85
DVA problem 202–15
European swaptions 335–40
liquid/illiquid markets 35–8, 47–8
liquid/illiquid quotes 41
mistake 136–51
modelling foundations 30–8
pricing 201–15
risk 176
standard DVA 207
stress testing 136–51
vanilla derivatives 47–8
LMM see Libor market model
Lo, C. F. 377
local correlation 132
local volatility models (LVMs) 99–104, 238–41
lognormal models 239–40, 342–4
lognormal random variables 398–9
Longstaff, Santa-Clara and Schwartz (LSS) 18, 105, 107–8, 339–40
losses 7–10, 115–16, 137–45
see also P&L Explain Test
LSS see Longstaff, Santa-Clara and Schwartz
LTCM hedge fund 21, 38, 394
LVMs see local volatility models
mapping methods 151–69
bespoke portfolios 151, 152–6
dispersion 165–9
EL 153–5, 161–8
ETL 155–6, 157, 161–8
Gaussian copula 116–17
hedging 158–9
historical scenarios 151–69
invariants 152–6
Lehman test 156–7
limits 164–8
no mapping 153, 162–8
tranche detachment 153
Margrabe formula 341–2
marked-to-model pricing 41
market intelligence
model comparison 65, 86
model validation 56, 65
Price approach 8–9
market models
interest rate derivatives 178–200
Libor market 177, 191, 192–3, 195
quotes when credit risk volatile 194–5
risk-free interest rate 179–82
SMM 106–7
stable default risk 182–91
volatile credit risk 192–200
see also Libor market model
market pricing 7–8
see also Price approach; price/pricing
market reality 22–38
markets
completeness 35–8
consensus 20, 85–8
information 52
intelligence 8–9, 56, 65, 86
sentiment 19–20
skew 131–6
stress testing 57–8, 116
see also market models
Marris, D. 239
Marshall–Olkin copula/model 145–51, 303–4
martingales 400–3
Index

424

mathematical information 295–301
Mercurio, F.
 approximations 261, 263, 284
 correlations 315, 318–20
 extrapolations 293
 model arbitrage 393
Merton model 67–9, 371–2, 375–6
mezzanine tranches 9–10
model arbitrage 371–95
 cap-swaption arbitrage 371, 392–4
 capital structure arbitrage 372, 373–91
 no-arbitrage models 372, 394–5
model change 171–215
model comparison 63–110, 65
 calibration test 77–8
 choice of model 77–81
 classic examples 64
 credit models 63–99
 equally sound models 63–4
 equity examples 99–110
 gap risk 74–7, 81–5
 historical evidence 85–8
 information assumptions 72–4
 initial assessments 77–81
 interest rate Bermudan options 105–10
 limits 88–99
 LVMs/SVMs 99–104
market consensus 85–8
market intelligence 65, 86
mitigating model risk 95–9
model implications 93–5
model lines 97–8
model validation 54, 56–7, 63–110
 parametric models 88–93
 practical steps 63–5
 rates examples 99–110
 reality checks 65, 78–9, 87–8
 reserves 88, 95–7
 revisions 88, 98–9
 uncertainty 88–99
 wrong models 96–7
 see also intensity models; structural models
model death 2007 173–4
model evolution 54, 58
model instability 226–8
model lines 51, 97–8
model position limits 97–8
model reserves 88, 95–7, 227
model revisions 88, 98–9
model risk
 definitions 3–22
 management 164–8
 model stress testing (MST) 113, 116–18
 computational methods 117–18
 payoffs and markets 116
 scenario design 116–17
 model validation 53–61, 63–110
 accepting/rejecting model 57
 Basel guidance 53
 calibration 55–6
 hedging 221–9
 market intelligence 56, 65
 model comparison 54, 56–7, 63–110
 model risk definitions 3, 7, 19
 model verification 54–5
 periodic revisions 57
 practical revisions 53–61
 realistic models 19
 reality checks 56
 reasonableness 56
 stress testing 54, 57–8
 validation scheme 54–8
 model verification 3, 54–5
modeling foundations 22–38
 banks/funds/ratings 28–30
 cheating in crises 27–9
 classic framework 22–30
 liquidity 30–8
 no-arbitrage pricing 25–7
 risk-free discounting 22–3
 risk-neutral expectation 23–5
 uncertainty 30–8
 monoline insurers 316, 318
Monte Carlo methods
 caplets 342
 CDOs 122–3
 hedging 225
 least squares 335
 pricing 122–3, 342
 TSV 343
Monte Carlo simulation
 approximations 244, 250, 252–3, 259–64
 CMSs 271–2
 computational risk 283, 285–6
 correlations 313
 discretization error 259, 286
 exact formula 276–7
 forward smiles 344
 intensity models 83–4
 LMM 252–3
 setting tests against 259–63
 simulation error 259
 swaptions 250, 252–3, 259–64
Morgan, S. 156–7
mortgages 12, 15–16
 see also subprime crisis
MST see model stress testing
multifactor models 18
Nawalkha, S. 20–1
net present value 349, 351
no-arbitrage models 373, 394–5
no-arbitrage pricing 25–7
Normal distribution 398–9
normal models 239
Northern Rock bank 326–7
notes
 credit-linked 63
 see also leveraged notes
numeraires 407–8
OISs see overnight indexed swaps
Olkin see Marshall–Olkin
one-factor models 18, 123, 131–6
options
 ATM 239–40, 271–2, 336
 barrier 99–104, 376–7, 377–81
 Bermudan 105–10
 CDSs 85–6
 compound 99–104, 372
 equity 380–91
 European 324, 335–40
 interest rate Bermudan 105–10
 out-of-the-money 367
 see also Bermudan swaptions; index options;
 swaption . . .
 out-of-the-money options 367
overnight indexed swaps (OISs) 174–5, 198,
 200, 201–2, 318–20
overnight interest rate 195
P&L Explain Test 219–20, 221–9
 Black and Scholes 222–5, 228–9
 fundamentalist view 222–4
 reality checks 224–6
 recalibration 225
 sceptical view 222
 self-financing strategies 222–3
parameterization
 calibration 329–36
 correlation 131–6, 306–7, 312–15
 time homogenous 331
 time-to-maturity-dependent 331, 333
 TSV 329–34
parametric models 88–93
Parcell, E. 295–301
Parmalat dairy products 84, 87–8, 374, 386
pathological volatility 263
payer index options 363
payoff 347–69
 Armageddon probability 367–9
 CDOs 118–19
 closeout convention 348–62
 CMSs 265
 default 347–62
 gap risk 74–7
 index options 362–9
 leveraged notes 74–7
mathematical errors 362–9
model errors 347–8
model verification 55
stress testing 57–8, 116, 136–51
uncertainty 360–2
wrong payoff 347–69
Pedersen, C. M. 364
Perfect copula 127–8
periodic model revisions 57, 98
Piterbarg, V. 202, 210, 213, 336, 376
Poisson processes
 CIR exponential jump model 89–92
 constant intensity 403–4
 Cox processes with stochastic intensity 74,
 79–81
 reduced-form intensity models 69–72
portfolio stress testing (PST) 112–16,
 125–36
correlation mistake 125–36
fat tails 114–15
fit 114–15
flat correlation 126–31
market skew 131–6
pitfalls 115–16
realistic approach 126–31
portfolios
 bespoke 151, 152–6
 index 152–6
 mapping methods 151, 152–6
 subprime crisis 9–10
 see also portfolio stress testing
 position limits 97–8
Prampolini, A. 203
Price approach
 fair value 40
 model risk definitions 6–9, 10, 18–20
 model verification 54
price/pricing
 accounting 41–2, 44, 47
 Bermudan swaptions 324–40
 capital structure arbitrage 377–81
 cheating in crises 27–9
 CMSs 292–3
 equity 377–81
 house prices 12–13, 15–17, 29
 illiquid markets 35–6
 intensity models 73–4
 interest rate Bermudan options 105–10
 liquidity 201–15
 no-arbitrage pricing 25–7
 price of risk 35–6
 reverse engineering 7
 swaptions 250–3
 verification 20
 see also Price approach
principal component analysis 306
probability
Armageddon 367–9
probability spaces 24
real-world measures 24
risk-adjusted 23–4, 37, 86–7, 368–9
risk-neutral 368–9
profit and loss see P&L Explain Test
PST see portfolio stress testing
quantitative finance 405–8
Black formula 405–7
Black and Scholes 405–7
change of numeraire 407–8
quants 4, 9–16
random variables 397–9
copulas 397–8
generation from uniform draws 397
lognormal variables 398–9
Normal distribution 398–9
Rapisarda, F. 377
rates 99–110, 171–215
rating agencies 9–10, 13
ratings 29–30, 50
real estate 15–16
see also house prices
real hedging 228–42
comprehensive testing 232–8
LVMs 238–41
rho not equal to zero 235–8
SABR model 229, 231–8
simple tests 232–5
real models 145–51
Marshall–Olkin model 145–50
systemic risk 146–7
real-world probability measures 24
realistic models
Basel guidance 50–1
incompleteness 37–8
model risk definitions 18–22
model validation 19
see also real models
reality of markets 22–38
reasonableness 56, 63
Rebonato, R. 6–8, 18, 20–1, 55, 326, 395
reduced-form intensity models 66, 69–72, 73
CIR model 80–1, 83
Cox processes 79–81
deterministic intensity 82–3
gap risk 82–5
modern models 79–81
Poisson processes 69–72
spreads 71
stochastic intensity 79–81, 83
structural models 73
time-dependent intensity 71–2
see also intensity models
regulators 48–53
replacement closeout 349–52, 354–6, 359–62
reserves 88, 95–7, 227
reverse engineering of prices 7
‘right’ models 5–6, 51–2
risk
approximations 243–4, 283–6
Basel guidance 50–1
computational 283–6
counterparty 144–6
credit 65, 173, 176, 192–200
default 182–91, 211–14
hedging 47
liquidity 176
price of 35–6
systemic 146–7
wrong way 316
see also gap risk
risk-adjusted probability 23–4, 37, 86–7, 368–9
risk-free closeout 349, 351–2, 355–62
risk-free discounting 22–3
risk-free interest rate model 172–3, 177, 178–82
basis swaps 180
FRAs 179–80, 181–2
reality vs model results 180–1
swaps 178–80
risk management 53–61
arbitrage 59–60
correlation 59
extrapolation 59
hedging 59
model risk definitions 3
practical steps 53–61
special points 59–60
risk-neutral expectations 23–5
risk-neutral probability 368–9
Rochet see Geman–Elkarovi–Rochet theorem
Ross see Cox, Ingersoll, Ross
Russian crisis 1998 21, 394–5
SABR model
approximations 244, 276–7, 279–80, 282–4
computational risk 284
exact formula 276–7, 279–80, 282–3
extrapolations 288–94
real hedging 229, 231–8
realistic models 22
Santa-Clara see Longstaff, Santa-Clara and Schwartz
Schiavo, S. 189
Schoenmakers, J. 308–10
Scholes see Black and Scholes
Schoutens, W. 101–2
Schwartz see Cauchy–Schwartz; Longstaff, Santa-Clara and Schwartz
sell-side, derivatives 20–1
senior management 49–50
serial correlations 320–1
shadow delta 158–9, 229
Sidenius, J. 133
simulation 121–2
see also Monte Carlo simulation
skew see correlation skew
smiles
asymptotic 288–94
forward 340–6
model arbitrage 395
model comparison 99–100
real hedging 229–31, 233–7, 240–1
SMM see Swap Market Model
sophisticated models 21–2
spread dispersion index 165–6
spreads
CDSs 382–91
CIR jump model 90–2
credit spreads 46–7
model comparison 71, 81–2
reduced-form intensity models 71
structural models 82
stability
 calibration 340
default risk 182–91
hedging 226–8
Libor banks 183, 192, 195
sticky-strike assumption 158–9
stochastic intensity 74, 79–81, 83
stochastic processes 399–405
Brownian motions 379, 400–3
diffusions 400–3
intensity 74, 79–81, 83
Ito’s Lemma 223, 393, 402, 406
law of iterated expectation 399–400
martingales 400–3
stochastic integral 400–1
time-dependent intensity 71–2, 404–5
see also Poisson processes
stochastic volatility correlations 312–15
stochastic volatility models (SVMs) 99–104
calibration 344–6
Heston model 99–100, 227, 345
model arbitrage 395
realistic models 21–2
see also SABR model
stock market Black Monday 17
stress testing 111–69
Basel guidance 53
the concentration mistake 151–69
the correlation mistake 125–36
credit market 118–25
crisis 2007–2009 111–69
dynamic VAR 143–4
‘formula that killed Wall Street’ 118–25
historical scenarios 151–69
improvements to model 58
learning from crisis 111–18
liquidity mistake 136–51
losses concentrated in time 115–16, 137–45
markets 57–8, 116
meaning of 112–13
model assumptions 58
model validation 54, 57–8
MST 113, 116–18
payoff 57–8, 116, 136–51
practical problems 139–43
real models 145–7
regulator opinion 53
stressability 57
testing computations 57
triggered revisions 58, 98–9
types of stress 57
VAR 143–4
see also portfolio stress testing
structural models 65–9
credit risk 65
first passage models 67–9
gap risk 82
information assumptions 72–4
intensity models 72–4
modern models 78
see also Merton model
subprime crisis 9–17
pre-crisis market model 10–15
quant story 9–16
reality strikes 15–16
TSV 326–8
see also crises
Suo, W. 103
‘Supervisory Guidance . . .’ (Basel Committee document) 48–9
SVMs see stochastic volatility models
Swap Market Model (SMM) 106–7
swaps
 cross-currency 307–12
defaultable 184–6
OISs 174–5, 198, 200, 201–2, 318–20
risk-free interest rate model 178–80
stable default risk model 184–6
volatile credit risk markets 194–5
see also basis swaps; constant maturity swaps; credit default swaps; swaption . . .
swaption approximations 244, 245–64
derivation 253–7
LMM 244, 245–64
pricing swaptions 250–3
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
</table>
| 428 | testing 257–64
 | the goal 257–8
 | market evidence 263–4
 | Monte Carlo simulation 259–64
 | numerical methods 258–9
 | problems 258
 | results 261–3
 | understanding 253–7
 | swaptions
 | approximations 244, 245–64
 | Bermudan 105–10, 290, 324–40
 | calibration 324–40
 | cap-swaption arbitrage 371–2, 392–4
 | European 335–40
 | extrapolations 290, 292–4
 | synthetic view on model risk 17–22, 30
 | systemic crisis 160, 162–4, 166–7
 | see also subprime crisis
 | systemic risk 146–7
| Tarenghi, M. 374–5, 386
| technical experts 49–50
| tenor structures 247–8, 392
| term structure of volatility (TSV)
 | calibration 325, 326–34
 | evolution 332–4, 336–8
 | forward smiles 340–6
 | maturity-dependent volatility 330–1, 333
 | parameterizations 329–34
 | time-to-maturity dependent volatility 331, 333
 | understanding 326–9
| terminal correlations 320–1, 339
| tests/testing
 | approximations 257–64, 271–83
 | CMSs 271–6
 | exact formula 276–83
 | historical scenarios 151–69
 | Lehman test 156–7
 | P&L Explain Test 219–20, 221–9
 | real hedging 232–8
 | swaption approximations 257–64
 | time-dependent intensity 71–2, 404–5
 | time-dependent volatility 331, 333
 | tranches
 | ETL 295–8
 | mapping methods 152–7, 161–8
 | subprime crisis 9–11
| Trichet, Jean Claude 328
| triggered model revisions 58, 98–9
| triggers
 | gap risk 92–5
 | leveraged notes 75–7, 81–2
| reduced-form intensity models 82
| spreads 81
| ‘true’ models 5–6, 51–2
| TSV see term structure of volatility
| uncertainty
 | Basel guidance 51–2
 | BP 387
 | capital structure arbitrage 381–91
 | formalization 31–5
 | model comparison 88–99
 | model lines 97–8
 | on model parameters 32–5
 | modelling foundations 30–8
 | payoff 360–2
 | random parameter model 31–2
 | two types 33–7
 | understanding models 60–1
| validation see model validation
| valuation 50, 52
| value
 | CVAs 202–4, 206, 212
 | DVA 202–15
 | net present 349, 351
 | see also fair value
| Value approach 4–6, 19–20, 54
| value at risk (VAR) 143–4
| vanilla derivatives 42–8
| VAR see value at risk
| verification of model 3, 54–5
| volatility
 | Black and Scholes 99–100
 | credit risk 192–200
 | hedging tests 232–8
 | instantaneous 248
 | interest rate derivatives 192–200
 | LVMs 99–104, 238–41
 | pathological 263
 | real hedging 229–31
 | risk-neutral expectation 25
 | SABR model 229, 231–8
 | smiles 229–31
 | uncertainty 31–5
 | see also stochastic volatility models; term structure of volatility
| Wall Street 118–25
| White, A. 127–8
| Wiener processes 312–13
| Wood, J. 295–301
| wrong way risk 316
| zero-correlation error 316–19 |