Index

• A •

A123 Systems, 127
AbraxisBioScience, 169, 304, 305
acid rain, 203, 205
actionbioscience (web site), 17
adenovirus nanoparticle, 288
Advanced Energy Consortium, Rice University, 30
Advanced Glazings, 114
Advanced Materials Lab, Northwestern University, 132
aerogels
creation of, 214
defined, 307
silica, 49–50
wall insulation, 115
aerospace industry
careers in, 253
lightweight spacecraft, 214–215
mechanosynthesis, 87
nanocomposites, 83
smaller rockets, 220–221
solar sail, 220
space elevator, 35, 90, 215–217
spacesuits, 217–218
TETwalker, 218–219
AFM (atomic force microscope), 62–63, 72, 307
aging
anti-aging skin products, 155–156
life extension, 232–233
air
applications for, 34
automobile exhaust cleaning, 203–204
cleaning, 34, 48, 197–205
quality nanosensors, 108
aircraft, 222–224. See also aerospace industry
algae, making biodiesel from, 196
allergies, 161
Altair Nanotechnologies, Inc., 127
AltimateEnviroCare Services, 124
American Heart Association, 198, 203
ancient Egyptian hair dye, 20
anode in batteries, 191, 192, 193
Antaria, 117, 156
anti-aging skin products, 155–156
antimicrobial agents
building walls, 119–120
cleaning products, 124
drinking water, 211–212
fabric, 91
food, 149
microbivore nanorobots, 176–177
nanoparticles, 50–52, 124, 237
water-borne, 218
anti-odor fabric, 145–147
ANTS (autonomous nanotechnology swarms), 218, 307
application and application methods
carbon-based nanomaterials, 37–45
coatings and films, 83–84
commercial, 16
development overview, 12
functionalization, 80–82
graphene, 44
healthcare, 15, 16, 33, 34
material integration, 89–91
mechanosynthesis, 85–88
nanocomposites, 82–83
nanopores, 78–80
noncarbon nanoparticles, 45–57
self-assembly, 84–88
settings for, 15–16
surface area maximization, 77–78
aquifer (groundwater) decontamination, 47, 54, 205–208
ARC Centre of Excellence of Functional Nanomaterials, 301–302
archery, 138
armchair carbon nanotube, 41–42, 89, 90
armchair carbon wire, 307
armchair quantum wire, 189–190
armor, lightweight body, 221–222
arsenic, 46, 211
Asia Pacific, 31, 170, 252, 253
Aspen Aerogel, 115, 143–144
astronomy, 22
athletics. See sport and sport equipment
atom. See also electron
chains of, in red giant stars, 22
electrostatic force, 43
light and heat, 48–49
manipulation of, 64–66
scanning tunneling microscope (STM), 64–66
structure of, 9, 10
atomic force microscope (AFM), 62–63, 72, 307
atomic theory, 10
atomos (Greek), 9
Australia, 30, 301–302
automotive industry
career opportunities, 253
exhaust cleaning, 203–204
hydrogen fuel cell, 127–128, 185–189
lightweight material, 132
mechanosynthesis, 87
nanocomposites, 83
scratch-resistant paint, 128–129
solar cells, 126
tires, 131
window coating, 130–131
autonomous nanotechnology swarms (ANTS), 218, 307

• B •

Bacon, Roger (researcher), 24
bacteria. See antimicrobial agents
Bakelite, 11
BASF, 118–119, 121, 140, 156, 304, 305
batteries
anatomy and mechanism, 191
applications under development, 192–193
challenges to improvement, 193–194
efficiency, 192
energy storage, 182, 191–194
fabric as, 91
hybrid automobiles, 127, 204
silicon nanowires, 52
surface area maximization, 78
ultracapacitors, 194, 204
Binnig, Gerd (physicist), 21–22
biodiesel from algae, 196
biology, as academic basis, 246
bionanorobot, 68, 217, 307
Bioni, 120
BioSilicon, 171
biotech career opportunities, 253
BIPV (building integrated photovoltaics), 116
Birck Nanotechnology Center, 109
Birnbaum, Linda (safety expert), 237
blood
diagnostics, 162–163, 218
drug delivery through cell membranes, 169
nanorobots in bloodstream, 175–177
body armor, 221–222, 227
bond. See covalent bond
boron nanoparticles, 55–56
boron nitride nanotubes, 56–57
boron-10 (10B), 55, 57
boron-11 (11B), 55
carbon nanotubes, 24
detected, 307
discovery, 22–23, 38
generally, 38–39
structure of, 23, 38
building integrated photovoltaics (BIPV), 116
building materials
antimicrobial walls, 119–120
concrete durability, 122
floor leveling, 121
protective coatings for siding, 117–119
solar cells, 116–117
wall insulation, 115–116
window insulation, 113–114
bulk material
compared to nanoparticles, 13–15
surface area maximization, 77–78
Bunsen, Robert (scientist), 46, 211

C

C60, 23, 38. See also buckyball
cable, fiber-optic, 103–104
cables, nanotubes integrated into, 89–90
Cabot Corporation, 115, 144–145
cadmium selenide-based quantum dot, 162
California NanoSystem Institute (CNSI), 303–305
cancer, 28–29, 52
cantilever, 109, 110
capacitive deionization, 210–211
carbon atom
cylindrical arrangements, 24, 39. See also carbon nanotube
diamondoid, 44–45, 86, 308
electronegativity, 42
flat, sheet-like arrangements, 43–44. See also graphene
spherical arrangements, 22–23, 38. See also buckyball
carbon dioxide
capturing, 199–200, 201
conversion, 201–202
fossil fuels, 197–198
Carbon Nanotechnologies, Inc., 256
carbon nanotube
cement durability, 122
defined, 307
discovering, 24
electrical properties, 40–42
emissive display, 106–107
for energy storage, 193
flexible display technology, 105–106
functionalization, 81
generally, 39–40
integrated into wires and cables, 89–90
multi-walled nanotubes (MWNT), 24, 25, 40, 41, 309
for nanosensors, 109
open and closed ends, 39–40
to reduce transistor size, 100
safety concerns, 237
single-walled carbon nanotube (SWNT), 24, 25, 40, 311
solar sails, 220
space elevator, 35, 90, 215–217
structure of, 24–25, 39
carbon-based nanomaterials, 37–45
career opportunities, 251–257
Carl Zeiss (company), 31
catalyst. See nanocatalyst
catalytic converter, 47, 54
cathode in batteries, 191, 193
CBEN (Center for Biological and Environmental Nanotechnology), 275–276
CCNE (Centers of Cancer Nanotechnology Excellence), 29, 277, 288–289
CEINT (Center for the Environmental Implications of Nanotechnology), 239–240, 298–300
cell membrane, drug delivery through, 167–169
cell regeneration, 178–179
cellular repair, 36, 177
CeNSE (Central Nervous System for the Earth), 153
Center for Atomic Level Catalyst Design, 302–303
Center for Biological and Environmental Nanotechnology (CBEN), 275–276
Center for Nanoscale Science and Technology (CNST), 295
Center for Quantum Devices, Northwestern University, 277
Center for Responsible Nanotechnology, 232, 234, 241
Center for the Environmental Implications of Nanotechnology (CEINT), 239–240, 298–300
Centers of Cancer Nanotechnology Excellence (CCNE), 29, 277, 288–289
Central Nervous System for the Earth (CeNSE), 153
CeramiClear, 128
chemical bond. See covalent bond
chemistry, as academic basis, 246
China, 31
chiral carbon nanotube, 41–42
Chodhury, Raj (author), 17
Classification, Labeling, and Packaging (CLP) Regulation, 242
cleaning
air, 34, 48, 197–205
products for, 124–125
water, 205–212
climate change, 202–203
Clinton, William Jefferson (president of U.S.), 26
clothing. See fabric
cloctocyte nanorobots, 177
CLP (Classification, Labeling, and Packaging) Regulation, 242
CNSI (California NanoSystem Institute), 303–305
CNST (Center for Nanoscale Science and Technology), 295
coating and film
anti-corrosion for propeller, 226
application methods, 83–84
building solar cells, 116
nanofilm, 45, 130–131, 309
for siding, 117–119
cold and flu, common, 171
colleges. See universities and colleges
color, quantum dots, 53
combinatorial nanoscience, 290
companies. See corporations and corporate alliances
composite, 82–83, 308
computer chip. See also nanolithography;
semiconductor electronics, 95–100, 122–123
field-effect transistor (FET), 97–99
HP Labs, 296–298
integrated circuits, 69–73, 84, 87
mechanosynthesis, 87, 99
nanolithography, 69–73
nanoparticle field-effect transistor (nanoFET), 220, 310
nanoparticle self-assembly, 84
silicon dioxide nanofilms, 50
size reductions, 96–97, 122
computer memory. See memory technology
cement durability, 122
conductance band, 53, 54, 162
conferences, 257
Contour Energy System, 193
Cornell NanoScale Science and Technology Facility, 295–296
corporations and corporate alliances
for education, 248–249
energy companies, 288–289
funding and investment, 29–30, 57–58
lab-on-a-chip, 244
private sector regulation, 242–243
regulation, 242–243
software product companies, 286–287
cosmetics, 154, 155, 253
covalent bond
boron nitride, 56
buckyball, 38, 39
carbon, 37–45
carbon nanotubes, 39, 40, 42
defined, 81, 308
diamondoid, 44–45, 86, 308
functionalization, 81
graphene, 43–44
nanocomposites, 82
noncarbon nanoparticles, 45–57
silicon, 52
crystals. See nanocrystals
Curl, Robert F., Jr. (scientist), 22–23, 38, 275
cycling, 136
cylindrical arrangements of carbon atoms, 24, 39. See also carbon nanotube

Daido Special Steel Corporation, 124–125
Dalton, John (scientist), 9–10
defense industry
aircraft propeller efficiency, 224
aircraft wings, 222–223
career opportunities, 253
detecting hazardous agents, 225–226
lightweight body armor, 221–222
liquid armor (Kevlar vests), 227
military clothing, 148
nanoenergetics in explosives, 224–225
portable battery power, 226–227
shape-changing vehicles, 224
ship propeller life, 226
Defense Threat Reduction Agency (DTRA), 225
degrees in nanotech fields, 17, 246–247, 252, 254. See also universities and colleges
delivery of drugs. See drug delivery
deoxyribonucleic acid (DNA). See DNA
desalination, 80, 208–211
detecting hazardous agents, 225–226
diabetes vaccine, 174–175
diagnostics, healthcare field, 84, 160–164, 218
diamond, 37
diamondoid, 44–45, 86, 308
dip-pen nanolithography, 308
direct methanol fuel cell (DMFC), 186
disease testing, 162–164
display technology
flexible, 105–106
nanotube emissive display, 106–107
organic light emitting diode (OLED), 105, 123
quantum dots, 107
reduced power consumption, 106
distribution of energy, 182, 189–190
DMFC (direct methanol fuel cell), 186
DNA
grapheme application, 44
Nanomedicine Center for Nucleoprotein Machines, 291–293
nanopores, 80
replacement with nanorobots, 178
sequencing, 175, 294
dopes, 190
doping, solar cell, 183
Drexler, K. Eric (engineer)
Engines of Creation, 21, 23, 25, 177
molecular manufacturing, 233–234
drinking water. See water
drug delivery. See also healthcare field
common cold and flu, 171
functionalization, 82
gold nanoparticles, 48
implantable, time-release materials, 170–171
iron nanoparticles, 47
multitasking nanoparticles, 170
painless, 170–172
silica nanoparticles, 49
targeted, 169–170, 311
through cell membranes, 167–169
titanium dioxide nanoparticles, 52
DTRA (Defense Threat Reduction Agency), 225
DuPont, 30
dysprosium, 55

• E •

Easton Archery, 138
Easton Cycling, 136, 137
e-beam nanolithography, 308
EcoActive Surfaces, 119, 124
education. See also universities and colleges
corporate alliances, 248–249
generally, 17, 30, 245–246
government funded opportunities, 250–251
majors and degrees, 17, 246–247, 252, 254
EFRC (Energy Frontier Research Centers), 302
Egyptian hair dye, 20
Eigler, Don (scientist), 22
electrical properties of nanotubes, 40–42, 56–57
electrical resistance, 42, 90
electricity
automotive industry, 127
distribution of, 182, 189–190
electricity (continued)
fabric produces and stores, 91, 141–143
fabric that generates and stores, 91,
141–143, 195
generation of, 182–189, 194–195. See also
fuel cell; solar cell
gold nanoparticles, 48–49
solar. See solar cell
storage, 182, 191–194, 224.
See also batteries
windmills, 83, 194–195
electrolyte in batteries, 191
electron
atomic structure, 9, 10
quantum dots, 53
solar cell, 183–184
spin of, 46
electron microscope, 60, 308.
See also microscope
electron mobility, 44
electron negativity, 42
electronics. See nanoelectronics
Elevator 2010 group, 35
elevator to space, 35, 90, 215–217
employers, advice for, 256–257
energy
applications for, 34
career opportunities, 253
distribution of, 182, 189–190
generation of, 182–189, 194–195. See also
fuel cell; solar cell
hydrogen fuel cell, 127–128, 185–189
palladium nanoparticles, 54
Smalley on, 181
solar. See solar cell
storage, 182, 191–194, 224.
See also batteries
windmills, 83, 194–195
Energy Frontier Research Centers
(EFRC), 302
Engines of Creation (Drexler), 21, 23, 24, 177
environment
automobile exhaust cleaning, 203–204
carbon dioxide conversion, 201–202
career opportunities, 253
Center for the Environmental Implications
of Nanotechnology (CEINT), 239–240, 298–300
cleaning the air, 34, 48, 197–205
cleaning water, 205–212
global warming, 202–203
Environment Canada, 242
EnviroSan Products, 124
ethical issues, 231, 232–236
European Commission, 8
European Union (EU), 8, 148, 242, 252, 281–282
EUV (extreme ultraviolet) nanolithography,
71–72, 308
evolution of nanotechnology, 19–25
explosives, 78, 224–225
extreme ultraviolet (EUV) nanolithography,
71–72, 308
eye disease, 179

• F •
fabric
anti-odor, 145–147
clothing like skin, 147–148
solar sails, 220
spacesuits, 217–218
that generates and stores electricity, 91,
141–143, 195
for warmth, 143–145
water-repellant and stain resistant, 49,
90–91
fabrication, nano scale, 12, 58, 290. See also
specific products
“fat fingers problem,” 24
FDA (U.S. Food and Drug Administration),
28, 238, 242
Feinberg, Adam W. (researcher), 148
FET (field-effect transistor), 97–99
Feynman, Richard (physicist)
“There’s Plenty of Room at the Bottom,” 21
fiber, nanoparticles in, 49, 90–91.
See also fabric
field-effect transistor (FET), 97–99
film. See coating and film
finFET, 97–99
Index

fishing, 136, 138
Fiskar Automotive, 127
flash memory, 100–101
flat carbon atom arrangements, 43–44.
 See also graphene
floor leveling, building materials, 121
Flores, John D. (professor), 149
fluorescence, silicon quantum dots, 165–166
foglets, 88
food
 changing characteristics of, 152–153
 contamination of, 149
 growing, 153–154
 MRE (meal, ready-to-eat), 225
 packaging, 149–151
 sensing impurities, 151–152
Food and Drug Administration (FDA), 28, 238, 242
food science career opportunities, 253
footballene, 23. See also buckyball
Ford Motor Co., 132
forensics, career opportunities in, 253
Foresight Institute (web site), 266
fossil fuels, 197–200
France, 31
Freitas, Robert (nanotech pioneer), 66–67, 177
fuel cell
 anatomy and mechanism, 186–187
 applications under development, 188–189
 Cornell NanoScale Science and Technology Facility, 295
 efficiency, 187–188
 hydrogen-powered, 127–128, 185–189
 improving, 187, 204
 nanopores, 80
 palladium nanoparticles, 54
Fuji Film, 31
Fuller, Buckminster (architect and engineer), 23
fullerene, 23. See also buckyball
functionalization
 application, 80–82
 carbon nanotubes, 42, 214
 defined, 80, 308
iron oxide nanoparticles, 163–164
targeted drug delivery, 169–170, 311
funding and investment
 corporate, 29–30, 57–58
 Europe, 281–282

• G •
gate, 98, 101
 See also fuel cell; solar cell
greenhouse engineering, 202
Germany, 31
Glen Research Center, NASA, 214
Global Photonic Energy Company, 116, 126, 142, 185
global warming, 202–203
gold, 13–15, 61
gold nanoparticle, 13–15, 20, 48–49
gold nanorod, 173
golf clubs, 135–136
Gou, Na (researcher), 237–238
government funding and investment
 Europe, 281–282
government regulation, 241–242
graphene
 defined, 308
 flat, sheet-like arrangements, 43–44
 hydrogen fuel cell, 187
 transistors, 295
greenhouse effect, 198
Grimes, Craig (researcher), 52, 201
groundwater decontamination, 47, 54, 205–208
growing food, 153–154
growth systems for nanoparticles, 74–76
Gu, April Z. (researcher), 237–238

• H •
Hall, J. Storrs (scientist), 88
Haymet, Tony (researcher), 23
hazard mitigation, defense, 225–226
healthcare field
antimicrobial agents, 50–51, 52, 91
applications in, 15, 16, 33, 34
blood diagnostics, 162–163, 218
cancer, 28–29, 52
career opportunities, 253
diabetes vaccine, 174–175
diagnostics, 84, 160–164, 218
disease testing, 162–164
hyperthermia therapy, 172–173
imaging, 164–166
life extension, 232–233
nanorobots, 175–179
nanosensors, 108, 109
quantum dots, 162–163
treatments, 172–179
heat
generating electricity from waste, 195
hyperthermia therapy, 172–173
and light, 48–49
for meal, ready-to-eat (MRE), 225
Heiler, Jacob (author), 234–235
hemoglobin, drug delivery through cell membranes, 169
Hewlett-Packard, 30, 101, 153, 256
hexagon
in buckyball, 38
in carbon nanotube, 39, 40, 41, 42
in graphene, 43
historical timeline of nanotechnology, 20
Hoek, Eric (researcher), 305
Holmenkol, 136, 137
Honda, 186
Honeywell, 149
house, nanomaterials in. See building materials
HP Labs, 296–298
hybrid power, automotive industry, 127, 204
hydrogen bonds, 187
hydrogen fuel cell, 127–128, 185–189
hydrogen nanosensors, 108, 109
hydrophilic/hydrophobic ends of phospholipid, 167–168
hyperthermia therapy, 172–173
iBALT (inducible bronchusassociated lymphoid tissue), 171
IBM, 9, 21–22, 30, 102, 104
icons, explained, 3
IGERT (Integrative Graduate Education and Research Traineeship), 277–278
Iijima, Sumio (researcher), 24
IIN (International Institute for Nanotechnology), 276
imaging
healthcare field, 164–166
magnetic-resonance imaging (MRI), 46, 47, 164–165
Molecular Foundry, 290
nanoparticles, 10
silicon nanowires, 52
immersion, 71
implantable drug delivery device, 170–171
Indiana, 237
inducible bronchusassociated lymphoid tissue (iBALT), 171
industry. See corporations and corporate alliances
InMat LLC, 134, 149–150
Institute for Advanced Concepts, NASA, 217
Institute for Soldier Nanotechnologies (ISN), 30, 221
Institute of Food Research, 152
Institute of Occupational Medicine, UK, 239
insulation
building walls, 115–116
clothing, 143
silicon dioxide nanofilms, 50
windows, 113–114
integrated circuits. See also computer chip mechanosynthesis, 87
nanolithography, 69–73
nanoparticles, 84
Integrative Graduate Education and Research Traineeship (IGERT), 277–278
Intel, 70, 98
interdisciplinary approach, 17
International Association of Biomedical Gerontology, 233
International Conference on Nanotechnology, 257
International Council on Nanotechnology, 235
International Institute for Nanotechnology (IIN), 276
International Organization for Standardization (ISO), 243
International Solar Electric Technology and Nanosolar, 185
Internet fiber-optic cable, 103–104
investment. See funding and investment
iron nanoparticles, 46–47, 54, 207
iron oxide nanoparticles, 46, 163–165, 170
ISN (Institute for Soldier Nanotechnologies), 30, 221
ISO (International Organization for Standardization), 243
isotopes, 55, 57

Japan, 31, 204, 252
jobs in nanotech, 251–257
Johannes, Justine (researcher), 255
Joint School of Nanoscience and Nanoengineering, 284–285
Journal of Medical Ethics, 232

Kayaking, 137
Kevlar, 227
Kipp, Thomas (researcher), 288
Kisler, Samuel Stephens (aerogel creator), 214
Knoll, Max (scientist), 20
Konarka Technologies, Inc., 117, 141–142, 185
Korea, 31, 170
Kroto, Harold W. (scientist), 22–23, 38

Laboratory research
Ames Laboratory, 196
Argonne National Laboratory, 28
Brookhaven National Laboratory, 28
career opportunities, 253
Lawrence Berkeley National Laboratory, 289
Nanotechnology Characterization Laboratory, 28
Oak Ridge National Laboratory, 28
Pacific Northwest National Laboratory, 208
Sandia National Laboratory, 28, 251, 255
SLAC National Accelerator Laboratory, 188
web sites, 287–305
Lanxess, 131
laptop display, 105–107
laser ablation nanoparticle system, 75
lasers, 104
Latin American Nanotechnology and Society Network, 236
lattice spacing, 188
LCN (London Center for Nanotechnology), 293–294
leveling floors, building materials, 121
LG Chem, 31
life extension, 232–233
Lifeline Skin Care, 155–156
light
antimicrobial walls, 119–120
fiber-optic cable, 103–104
gold nanoparticles, 14
heat, 48–49
organic light emitting diode (OLED), 105
quantum dots, 53
lightweight automotive materials, 132
lightweight body armor, 221–222, 227
lightweight spacecraft, 214–215
liposomes, 168–169
liquid armor (Kevlar vests), 227
lithium-ion batteries, 192–194
lithography, 70, 71. See also nanolithography
Lockheed Martin, 275–276
London Center for Nanotechnology (LCN), 293–294
London School of Economics, 242
L’Oreal, 31

• M •
magnetic-resonance imaging (MRI), 46, 47, 164–165
magnetism
 functionalized iron oxide nanoparticles, 163–164
 magnetic nanowires, 102
 magnetic nanoworms, 288
 nanodots, 102–103
 neodymium nanoparticles, 55
 majors, education, 246–247, 254
 Marie Louise Cosmetics, 154, 155
 MAS (Morphing Aircraft Structures), 223
 material integration, application
 methods, 89–91
 materials science career opportunities, 253
 Matrix Micro Coatings, 128–129
 meal, ready-to-eat (MRE), 225
 mechanosynthesis, 45, 68, 85–88, 99, 308
 medical. See healthcare field
 melting point of nanoparticles, 14–15
 memory technology
 electronics, 100–103
 flash, 100–101
 HP Labs, 296–298
 memristors, 101–102
 nanodots, 102–103
 racetrack nanowires, 102
 silicon dioxide nanowire sandwiches, 102
 memristors, 101–102, 297
 MEMS (microelectromechanical systems), 88, 111
 metallic nanoparticle. See nanoparticle
 metal-organic frameworks (MOF), 79, 200, 308
 methane, 201
 micelles, 124
 microbivore nanorobots, 176–177
 microchip, 96. See also computer chip
 microelectromechanical systems (MEMS), 88, 111
 microscope
 atomic force microscope (AFM), 62–63, 72
 electron microscope, 60, 308
 as nano tools, 59–66
 scanning electron microscope (SEM), 60–62
 scanning tunneling microscope (STM), 63, 64–66
 transmission electron microscope (TEM), 20, 63
 military. See defense industry
 miniaturization, 222
 Minnesota, 248, 279–280
 MIT (Massachusetts Institute of Technology), 23, 30, 161, 194, 208, 221
 Mitsubishi Corporation, 31
 mobile phones, 108, 123
 modulators, 104
 MOF (metal-organic frameworks), 79, 200, 308
 molecular assemblers, 23, 66–67
 molecular fabricators, 35–36, 309
 Molecular Foundry, 289–291
 molecular manufacturing, 35, 233–234, 309
 molecular replicators, 87
 molecules, 9, 63–64
 morphing aircraft, 222–224
 Morphing Aircraft Structures (MAS), 223
 MRE (meal, ready-to-eat), 225
 MRI (magnetic-resonance imaging), 46, 47, 164–165
 multitasking nanoparticles for drug delivery, 170
 multi-walled nanotubes (MWNT), 24, 25, 40, 41, 309

• N •
n type, solar cell, 183, 184
 nano-, as prefix, 8
 Nano Green, 124
 nano tools
 atom manipulation, 64–66
 microscopes, 59–66
molecular assemblers, 66–67
nanolithography, 69–73
nanoparticle growth systems, 74–76
nanorobots, 67–69
for semiconductor industry, 69–73
NanOasis, 209
nanocantilever, 109, 110
nanocatalyst
 Center for Atomic Level Catalyst Design, 302–303
defined, 309
hydrogen fuel cell, 186–187
nanoporous, 80
palladium nanoparticles, 54
photocatalysts, 51
surface area maximization, 78–79
nanocomposite, 82–83, 309
nanocrystallization
 ancient Egyptian hair dye, 20
 iron oxide, 46
 silicon, 52
nanocrystals
 carbon dioxide capture, 200
 for cell activity monitoring, 291
gold chemical reactions, 13–14
growth systems, 76
light transmission, 103
silicon, 183
silver, 174
solar cell, 183, 184
solar cells, 116
titanium oxide, 119, 124
nanodots, 102–103
nanoelectromechanical systems (NEMS), 88, 111, 219, 309
nanoelectronics
 career opportunities, 253
 computer chips, 95–100, 122–123
 computer memory, 100–103
defined, 95, 309
 fiber-optic cable, 103–104
 laptop displays, 105–107
nanoelectromechanical systems (NEMS), 88, 111
nanosensors, 107–111
Nanoelectronics Workforce Development Initiative, 248
nanoenergetics in explosives, 224–225
nanoengineering, 251, 309
Nanoethics Group, 235
nanoFET (nanoparticle field-effect transistor), 220, 310
nanofilm, 45, 130–131, 309
Nanoforum (web site), 267
NanoH2O, 210, 304–305
NanoHealth Enterprise Initiative, 238
NanoHorizon, 145
nanointerfaces, 290
Nanolex, 128–129
Nanolink program, 348
nanolithography
 defined, 309
dip-pen, 72–73
e-beam, 73
 extreme ultraviolet (EUV), 71–72
generally, 69, 96
HP Labs, 296–298
nano tools, 69–73
pattern printing, 70–72
to reduce chip size, 96–97
nanomaterials
 carbon-based, 37–45
defined, 309
 in house. See building materials
 noncarbon nanoparticles, 45–57
 regulations, 243
nanomedicine, 159, 309. See also healthcare field
Nanomedicine Center for Nucleoprotein Machines, 178, 291–293
nanometer (nm), 8, 9, 310
nanoparticle
 antimicrobial agents, 50–52, 124, 237
 boron, 55–56
 boron nitride nanotubes, 56–57
 bulk materials compared to, 13–15
carbon-based, 37–45
 chemical reactions, 13–14
defined, 10, 45, 310
nanoparticle (continued)
functionalized, for healthcare
diagnostics, 162–164
gold, 48–49
growth systems, 74–76
hyperthermia therapy, 172–173
iron, 46–47, 54
melting point, 14–15
multitasking for drug delivery, 170
neodymium, 55
noncarbon, 45–57
palladium, 54
platinum, 47–48
safety concerns, 237
silicon, 49–50, 52–54
silver, 50–51
skin care, 154–157
solar cell, 184
targeted drug delivery, 169–170, 311
titanium dioxide, 51–52
nanoparticle field-effect transistor
(nanoFET), 220, 310
nanoparticle field extraction thruster
(nanoPET), 172
nanoPET (nanoparticle field extraction
thruster), 172
Nanophase, 58, 117
nanophotonics, 104
nanopore
application methods, 78–80
fuel cell, 187, 188
graphene and DNA, 44
nanoporous catalysts, 80
silica aerogels, 49–50
Nanoprotect, 118
nanorobot
cell regeneration, 178–179
cellular repair, 177
clottocyte nanorobots, 177
defined, 310
DNA replacement, 178
Drexler on, 23, 24
healthcare field, 175–179
mechanosynthesis, 45, 68, 85–88
microbivore, 176–177
nano tools, 67–69
respirocyte nanorobots, 177
spacesuits, 217–218
utility nanorobot, 87, 88
nanorod, 45, 49, 310
nagos (Greek), 8
NanoSafeguard Auto Glass Treatment, 130
Nanoscale Science and Engineering Center
(NSEC), 30, 276–277
nanoscience. See nanotechnology
NanoScience Diagnostics, 151
nanosensor
building, 108–110
defined, 107, 310
electronics, 107–111
food impurities, 151–152
functionalization, 82
healthcare diagnostics, 160–161
lightweight spacecraft, 214
self assembly, 84
uses, 108
in walking robots, 218–219
water, 218
nanoshell, 173
Nanosolar, 185
nanospheres, 49
NanoTech User Facility, 283, 300
nanotechnology
bulk materials compared to
nanoparticles, 13–15
cancer fighting, 28–29
career opportunities, 251–257
company funding and investment, 29–30
defined, 310
definitions, 8–9
development of, 12, 34–36
education, 17, 30, 245–251
ethical issues, 231, 232–236
evolution and key players, 19–25
as general purpose technology, 15–17
government funding and investment, 28–29
interdisciplinary approach to, 17
international funding and investment, 31–32
R&D funding and investment, 28–32
regulations, 231, 240–243
research labs, 287–305
safety issues, 231, 236–240
top-down and bottom-up approaches

to, 12, 23
uses, 33
Nanotechnology Core Facility, 238
Nanotechnology Education, 17
NanoTechnology Group (web site), 269
Nanotechnology Law and Business, 252
Nano-tech, 140
nanotube, 24, 45, 56–57. See also
carbon nanotube
NanoTumor Center, 287–289
Nanovations, 117
Nanowerk (web site), 254, 262–263
nano-whiskers, 140
nanowire
defined, 45, 310
for energy storage, 193
field-effect transistor (FET), 99
healthcare diagnostics, 160–161
for nanosensors, 108
racetrack, 102
silicon, 52
silicon dioxide nanowire sandwiches, 102
NanoZone (web site), 263–264
NanTech, Inc., 118
NASA (National Aeronautics and Space
Administration), 27, 40, 183, 214,
217, 222, 223
National Cancer Institute, 28, 265
National Cancer Institute Alliance for
Nanotechnology in Cancer
(web site), 265
National Institute for Health, 238
National Institute for Nano-Engineering
(NINE), 250–251
National Institute for Occupational Safety
and Health (NIOSH), 27, 238,
239, 240, 242
National Institute of Environmental Health
Sciences, 237
National Institute of Standards and
Technology, 27, 28, 65–66
National Institutes of Health (NIH), 27, 291
National Nanotechnology Infrastructure
Network (NNIN), 247, 252, 300, 310
National Nanotechnology Initiative (NNI)
applications, 15–16
development and scope, 12, 26–27
generally, 268, 311
nanotechnology defined, 8–9
web site, 268
National Science Foundation,
27, 30, 276, 277
National Toxicology Program, 238
natural resources, 34
NCI Alliance for Nanotechnology in
Cancer, 29
NEMS (nanoelectromechanical systems),
88, 111, 219, 309
NEMS resonator, 111
neodymium nanoparticles, 55
neutron, in atom, 9
neutrons, 55
NIH (National Institutes of Health), 27, 291
NINE (National Institute for Nano-
Engineering), 250–251
NIOSH (National Institute for Occupational
Safety and Health), 27, 238,
239, 240, 242
nm (nanometer), 8, 9, 310
NNI. See National Nanotechnology
Initiative (NNI)
NNIN (National Nanotechnology
Infrastructure Network),
247, 252, 300, 310
Nokie Research Center, 123
NSEC (Nanoscale Science and Engineering
Center), 30, 276–277
nuclear reactors, 55
nucleoprotein, 178
nucleoprotein machines, 178
nutrient delivery, 154

- O -

Odegon Technologies, 147
odor-resistant fabric, 145–147
oil companies, 30
oil spills, 208
OLED (organic light emitting
diode), 105, 123
193mm immersion lithography, 71
Onnis-Hayden, Analisa (researcher), 237–238
organic light emitting diode (OLED), 105, 123
Organization for Economic Co-Operation and Development, 239
osmosis, 209
OxiTitan, 119–120, 124, 125

• p •

p type, solar cell, 183, 184
painless drug delivery, 170–172
paint, nanoparticles in, 83
palladium nanoparticles, 54, 109
paramagnetic materials, 163
pathogens. See antimicrobial agents
PCI Nanosilent, 121
PEG (polyethylene glycol), 170, 227
pentagon, in carbon nanotube, 39, 40
Peterson, Christine (author), 234–235
pharmaceutical industry career opportunities, 254. See also drug delivery
phospholipid in cell membranes, 167–168
photocatalysts, 51
photons, 104
photoresist in nanolithography, 69, 70–72, 73, 96
physics, as academic basis, 246
Physics Today Jobs, 257
plasma-enhanced chemical vapor deposition nanoparticle system, 75–76
plasmon, 104
plastics in nanocomposites, 83
platinum nanoparticles, 47–48, 188
PM2.5 particles, 203
polyethylene glycol (PEG), 170, 227
portable battery power, 226–227
positive ions, 191
power density, batteries, 192
power plant emissions, 199
PPG, 128
praseodymium, 55
priorities for nanotechnology, 234–235
private sector. See corporations and corporate alliances
Proctor Group, 115
propeller life, defense industry, 226
propulsion, smaller rockets, 220–221
protective coatings for siding (building), 117–119
protein, bionanorobot, 68
proton, 9
proton exchange membrane, 188–189
pSivida Limited, 171

• q •

quantum dot
defined, 45, 53, 311
display technology, 107
fluorescence with silicon quantum dots, 165–166
healthcare field, 162–163
to reduce transistor size, 100
silicon nanoparticles, 52
quantum electrodynamics, 21
quantum mechanical tunneling, 65, 189

• r •
racetrack nanowire, 102
rare earth elements, 55
Raytheon, 30
red giant stars, chains of atoms in, 22
ReTurn AS, 137
regeneration of cells, 178–179
regulations, 231, 240–243
ReRAM (resistive random access memory), 297
research laboratories. See laboratory research
resistive random access memory (ReRAM), 297
resources, natural, 34
respirocyte nanorobots, 177
retail, career opportunities in, 254
reticular chemistry, 79
reverse osmosis, 209, 210
Rhode Island, 188
Rice University
 Advanced Energy Consortium, 30
buckyballs, 22–23
carbon nanotube wire, 189–190
Center for Biological and Environmental
 Nanotechnology (CBEN), 275–276
corporate alliance, 249, 256
silicon dioxide nanowire sandwiches, 102
and Richard E. Smalley, 22–23, 24, 38,
 181, 252, 275
Smalley Institute, 17, 275
robotics. See nanorobot
rockets, smaller, 220–221
Roco, Mihail “Mike” (physicist), 12, 27
Rohrer, Heinrich (scientist), 21–22
Royal Institute of International Affairs, 243
Ruska, Ernst (scientist), 20
R-value, insulation, 114

S

Safenano Initiative, 239, 270
safety issues, 231, 236–240
Safety of Nano-materials Interdisciplinary
 Research Centre, 239
salaries in nanotech field, 254
saltwater desalination, 208–211
samarium, 55
SAMMS (Self-Assembled Monolayers on the
 Mesoporous Supports), 208
Saudi Arabia, 31
Saudi Aramco, 31
scaffolds, 178–179
scanning electron microscope (SEM),
 60–62, 311
scanning tunneling microscope (STM),
 63, 64–66, 311
Schoeller Technologies, 139
schools active in nanotechnology, 17
Science (magazine), 234
Scientific American (magazine), 27
scrubs, 147
Seaswarm, 208
second-generation solar cell, 184
“Securing the Promise of
 Nanotechnologies” (Royal Institute of
 International Affairs), 243
security field career opportunities, 253.
 See also defense industry
corporate alliance, 249, 256
self-aligned assembly, 82
Self-Assembled Monolayers on the
 Mesoporous Supports (SAMMS), 208
self-assembly process
application methods, 84–88
defined, 84, 311
functionalization, 82
generally, 12
massively parallel assembly, 85–87
mechanosynthesis, 85–88
nanoelectromechanical systems
 (NEMS), 88
SEM (scanning electron microscope),
 60–62, 311
SEMATECH (Semiconductor Manufacturing
 Technology), 249
semiconductor. See also computer chip
career opportunities, 253
integrated circuits, 69–73, 84, 87
nano tools, 69–73
nanoparticle, 52, 184
silicon nanoparticles, 52
solar cell, 183
Semiconductor Manufacturing Technology
 (SEMATech), 249
sensor. See nanosensor
sequencing DNA, 175, 294
shape-changing vehicles, defense
 industry, 224
Shapira, Phillip (researcher), 31
shear thickening fluid (STF), 227
sheets of carbon atoms, 43–44.
 See also graphene
ship propeller life, defense industry, 226
shoes, odor killers in, 145–146
sickle-cell disease, 178
siding, protective coatings for, 117–119
Significant New Use Rule (SNUR), EPA, 241
silica aerogels, 49–50
silicon, uses for, 52–54
silicon dioxide, 50, 102
silicon nanoparticle, 49–50, 183
silicon quantum dots, 165–166
silicon wafers, nanolithography, 69–73
silver nanoparticles, 50–51, 124, 237
single-walled carbon nanotube (SWNT), 24, 25, 40, 311. See also carbon nanotube
size
of nano structures, 8–9
reductions of computer chip, 96–97, 122
transistor reduction, 100
skiing, 136
skin
clothing like skin (fabric), 147–148
painless drug delivery, 170–172
skin care, 154–157
sunscreen, 51, 156–157
smaller rockets, 220–221
Smalley, Richard E. (nanotech pioneer), 22–23, 24, 38, 181, 252, 275
Smalley Institute, 17, 275
SmartSilver, 145–147
smell, anti-odor fabric, 145–147
Smith, Ken (researcher), 256
SNUR (Significant New Use Rule), EPA, 241
solar cell
anatomy and mechanism, 183
applications under development, 185
automotive industry, 126
building materials, 116–117
fabric, 141–142
improving, 182–185
production cost, 291
solar sail, 220
SolarmerEnergy, 117, 142, 185
space. See aerospace industry
space elevator, 35, 90, 215–217
Space Elevator Group, 217
spacesuits, 217–218
Spaceward Foundation, 216–217
spaser, 104
spectrophotometry, 295
spectroscopy, molecular, 63–64
spherical arrangements of carbon atom, 22–23, 38. See also buckyball
sport and sport equipment
applications in, 133–138
career opportunities, 254
coating, 83–84
St. Croix Rod Company, 136, 138
stain resistant fabric, 49, 90–91
Star Trek (TV program), 171–172, 215
stepper, nanolithography, 70–71
STF (shear thickening fluid), 227
STM (scanning tunneling microscope), 63, 64–66, 311
storage of energy, 182, 191–194, 224.
See also batteries
subatomic particles, 9
sunlight and solar cells, 183
sunscreen, 51, 156–157
surface area maximization, 77–78
SWNT (single-walled carbon nanotube), 24, 25, 40, 311. See also carbon nanotube
• T •
T cells, diabetes, 174–175
tangled, carbon nanotube wire as, 190
targeted drug delivery, 169–170, 311
TCE (trichloroethylene), 206–207
TEM (transmission electron microscope), 20, 63, 311
temperature. See also heat
control on planetary level, 202
fabric for warmth, 143–145
global warming, 202–203
melting point of nanoparticles, 14–15
Tennant, Howard (researcher), 24
tennis ball bounce, 134
tennis racquet, 134–135
tensile strength of graphene, 44
TETwalker, 218–219
Theis, Thomas (director at IBM), 9
“There’s Plenty of Room at the Bottom” (Feynman), 21
Thermablok, 115–116
thin-film solar cell, 184
third-world country applications, 234
timeline for nanoparticle use, 20
time-release drug delivery device, 170–171
Tiny Tech Jobs (web site), 254, 256
tip on microscope, 62, 65, 66
tires, automotive industry, 131
titanium dioxide nanoparticles, 51–52, 101
titanium oxide nanoparticles, 124
top-down approach, 12, 311
Toronto Joint Centre for Bioethics, 234
Transformer (TX) vehicle, 224
transistor
 field-effect transistor (FET), 97–99
 flash, 100–101
 nanoparticle field-effect transistor (nanoFET), 220, 310
 size reduction, 100
transmission electron microscope (TEM), 20, 63, 311
transmission of electricity, improving, 182, 189–190
Traveler’s Choice, 141
treatments in healthcare field, 172–179
trichloroethylene (TCE), 206–207
tunneling, 189
TX (Transformer) vehicle, 224
Type I diabetes, 174–175

• U •

Uddin, Mahbub (author), 17
ultracapacitors, 194, 204
UnderstandingNano (web site), 1, 36, 57, 69, 103, 133, 179, 196, 261–262
United Nations, 205
United States. See also under U.S.
government investment, 287–293
need for nanotech workers, 252–253
universities and colleges
 Austin Community College (ACC), Texas, 249, 250
 Brown University, 188
 California Institute of Technology (CalTech), 21
 Cambridge University, England, 216
 Cornell University, 104, 188, 295–296
 Dakota County Technical College (DCTC), Minnesota, 248, 279–280
degrees offered, 17, 246–247, 252, 254
 Georgia Institute of Technology, 31, 169
 Harvard University, 147–148, 161
 Iowa State University, 196
 Joint School of Nanoscience and Nanoengineering, 284–285
 Lehigh University, Pennsylvania, 208
 Massachusetts Institute of Technology (MIT), 23, 30, 161, 194, 208, 221
 Montana State University, 171
 North Carolina State University, 102
 Northeastern University, 217, 237, 277–278
 Northwestern University, 17, 29, 30, 122, 132, 276–277, 288–289
 Penn State, 17, 52, 149, 201, 246, 247, 254
 Purdue University, 237
 Rutgers University, 217
 Stanford University, 185, 193, 212, 285–286
 State University of New York (SUNY) at Albany, 249, 273–274
 Texas State Community College at Waco, 249
 Universities of Leeds and Sheffield, England, 281–282
 University of Calgary, Canada, 174, 203
 University of California at Berkeley, 23
 University of California at Los Angeles (UCLA), 170, 200, 239, 303–305
 University of Illinois at Urbana-Champaign, 188
 University of Michigan, 79, 105, 123, 172
 University of Queensland, Australia, 30
 University of Texas, 30, 220
 University of Washington, 283–284, 300
 University of Waterloo, Canada, 193, 280–291
 Yonsei University, Korea, 170
 U.S. Air Force, 225
 U.S. Army Natick Soldier Systems Center, 222
 U.S. Army Research Office, 221, 227
U.S. Defense Advanced Research Projects Agency (DARPA), 224
U.S. Department of Defense, 27
U.S. Department of Energy, 27, 128, 196, 302
U.S. Department of Health and Human Services, 206, 238
U.S. Environmental Protection Agency (EPA), 199, 205, 206, 241
U.S. Food and Drug Administration (FDA), 28, 238, 242
U.S. Geological Survey (USGS), 203, 208
U.S. Navy, 226
utility nanorobot, 87, 88

\(\text{@V@} \)

valence band, 53, 54, 162
van der Waals, Johannes (physicist), 65
van der Waals force, 43, 65, 81, 89, 90
vitamin delivery, 154
volatile organic compounds (VOCs), 109, 117, 204
volcano, 202–203

\(\text{@W@} \)

walls
antimicrobial, 119–120
insulating, 115–116
warmth, fabric for, 143–145
water
applications for, 34, 46
bionanosensor, 218
desalination, 80, 208–211
groundwater decontamination, 47, 54, 205–208
pollution, 205–208
waterproofing, 84, 118
water-repellant fabric, 49, 90–91
Watson Research Center, IBM, 9
web sites
Foresight Institute, 266
jobs, 254, 256

Nanoforum, 267
NanoTechnology Group, 269
Nanotech-now, 270–271
NanoZone, 263–264
National Cancer Institute Alliance for Nanotechnology in Cancer, 265
National Nanotechnology Initiative, 268
research labs, 287–305
Safenano, 270
UnderstandingNano, 1, 36, 57, 69, 103, 133, 179, 196, 261–262
universities, 273–286
Wetzel, Eric (researcher), 227
Whitesides Research Group, 235
Williams, Stanley (researcher), 256
Wilson Sporting Goods, 134–135
windmills, 83, 194–195
windows
automotive coating, 130–131
building insulation, 113–114
wings of aircraft, 222–223
wire, nanotube integrated into, 89–90.
See also nanowire
Wyss Institute for Biologically Inspired Engineering, 147

\(\text{@Y@} \)

Yaghi, Omar (researcher), 79, 200
Yokohama, 131
Yonex, 135, 136
YouTube (web site), 182

\(\text{@Z@} \)

zero-valent iron (ZVI), 207
zigzag carbon nanotube, 41–42
Zyvex, 30