Index

actin (see sarcomere)
adaptive tissue changes 20, 30, 33–5
(see also contracture, hypertonicity, stiffness)
animal research 33, 34, 148, 149, 154, 187, 279
atrophy 11, 34, 35
cerebral palsy 34, 35, 36
connective tissue 20, 21, 33, 34, 35, 36
imobilisation 33, 34, 35, 36
joint 36
muscle 33–36
sarcomeres 33, 35
alpha motor neuron (see motor neuron)
excitability (see reflexes)
apraxia/dyspraxia 11, 22, 23
description of 23
negative feature (UMNS) 20, 23
acquired brain injury (see brain injury, upper motor neuron syndrome)
Arm Spasticity Patterns 37
case examples 42, 43, 45, 139, 140
average range of motion (AROM) 85, 91–2, 130, 131, 132, 134, 136
avtivity and participation 83
avtivity-capacity 84, 85
avtivity–performance 84
alternatives to goniometer 103
body structure and function 8
classification tools 37–41, 85
concept map 83, 116
dystonia 107
formal 19, 83–6
impairment factors 19, 24, 69, 80, 85, 86
individualised upper limb 87, 119–27
International Classification of Functioning, Disability and Health (ICF) 80, 81
linking assessment/intervention/performance 28, 30, 37, 81, 86, 87
movement patterns 85, 91–9, 130, 135–7
muscle and joint dynamics (blocking and supporting joints) 94–8
muscle and joint dynamics case examples 98–9
observational 19, 92, 93
pasive range of motion (PRM) 99–104, 129, 130, 131, 134, 135, 136, 139, 140–1
positive and negative features (see separate entries, positive/negative features)
personal and environmental contexts 81, 82–3
purposes 19, 80
rang of motion (ROM) case examples 101, 102, 130, 131, 134–5, 139, 140–1
spasticity/hypertonicity 104–7
spasticity/hypertonicity case examples 130, 131, 134–5, 136, 139–10
task analysis 86
upper limb patterns 37–43
assess ment tools
ABILHAND 85
ABILHAND-Kids 85
Action Research Arm Test (ARAT) 81, 84
Activity Participation Questionnaire 83
Arm Spasticity Pattern classification 37
Ashworth Scale of Muscle Spasticity 104
Assisting Hand Assessment 85
Australian Spasticity Assessment Scale 106
Canadian Occupational Performance Measure (COPM) 84, 85, 87
Care and Comfort Caregiver Questionnaire 84
Care and Comfort Hypertonicity Questionnaire 84
Children’s Participation Questionnaire 83
classification tools 37–41, 85
Comparative Analysis of Performance – Motor (CAP-M) 86, 87, 92, 93
Comparative Analysis of Performance – Motor (CAP-M) example 117
Functional Arm Activity Behavioural Observation System 85
Functional Independence Measure (FIM) 83
Goal Attainment Scaling (GAS) 81, 84, 85, 87
Gschwind & Tonkin forearm pattern classification 37, 38
House Functional Classification System 350
House, Gwathmey & Fidler thumb pattern classification 40–43
Manual Ability Classification Scale (MACS) 85
Melbourne Assessment of Unilateral Upper Limb Function (MAUULF) 84, 350
Modified Ashworth Scale of Muscle Spasticity (MASMS) 104–6
Modified Barthel Index 83
Modified Tardieu Scale of Muscle Spasticity 104–6
Modified Tardieu Scale of Muscle Spasticity – Quality of Muscle Reaction 104
Motor Assessment Scale (MAS) 84
Participation and Environment Measure for Children and Youth 83
Personal and Social Performance Scale 83
Quality of Upper Extremity Skills Test (QUEST) 84
Upper Limb Assessment in Daily Living Scale (ULADL) 84–5
Upper Limb Hypertonicity Assessment Form 119–27
Zancolli & Zancolli hand pattern classification 38–40
asociated reactions
and contracture 31
and spasticity 31
case example 42
causes of 27, 32
cerebral palsy 31
description of 31
mirror movements 31, 42
positive feature (UMNS) 20, 24, 25
stroke 31

Jodie Copley and Kathy Kuipers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
ataxia 23, 32
 cerebral palsy 23
 components of 23
 description of 23, 32
 negative feature (UMNS) 20, 22, 23
 stroke 23
athetosis (see hyperkinetic movement)
autogenic inhibition 27, 188, 279, 280
bimanual upper limb training 160–5
active passive bilateral therapy 160
Bilateral Isokinematic Training 160
bilateral priming 160
Bilateral Training with Rhythmic Auditory Cueing (BATRAC) 160, 162
complementary hand use 161
description of 160–1
device driven bilateral training 160
duration of 162
Hand-arm Bilateral Intensive Training (HABIT) 161
indications for 163–5
intensity of 162
mechanisms of effect of 161–2
research evidence for 162–4
biomechanical approaches to rehabilitation 146, 147
component of hypertonicity 22, 29, 30, 33
mechanisms of splinting 186–90
mechanisms of casting 279, 280
Bobath concept 146–8, 149, 189, 212
(see also Neurodevelopmental Therapy)
reflex inhibiting patterns 189, 212
body of knowledge 57, 58, 62–3
Botulinum neurotoxin/Botulinum neurotoxin-A (BoNT-A) 29, 321–35, 362–7
adverse effects 323–5, 327
aims 322
applications 325
approved uses 322
assessment for 331, 334
alternative interventions to 334
case examples 362–7
Cochrane Review 29
combined with casting 326, 333
combined with electrical stimulation 326
combined with other interventions 334
duration of effect 323
effectiveness for adults 29, 327–9
effectiveness for children 29, 326–7
effectiveness for post-stroke shoulder pain 329
follow-up 334–5
functional improvement 29, 327, 335
 goal achievement in research studies 327, 328, 330
 goals relevant to 330–31, 334
 guidelines for practice 329–35
 indications for 330–4
 injection sites 334
 injection technique, practices 322, 328, 329
 mechanisms of, effect of 323
 off-label use 323, 327
 limitations of 323, 333
 re-injection 327
 research evidence for 29, 326–9
 safety 324, 325, 327, 328, 329
 spasticity 29
types 321–2
brain injury 2, 10, 19–45
decreasing capacity over time 2, 35
disorders due to 11
effects on the upper limb 19–45
experiences following 1–7
lifestyle restrictions 1, 2
upper motor neuron syndrome (UMNS) 20–43
brainstem/parapyramidal pathway or tract 12, 20, 23, 24, 27
(see also upper motor neuron syndrome, descending pathways)
bulbospinal 27
increased recruitment 25, 27
Brunnstrom's movement therapy 146, 148, 150
flexion synergy 23
extension synergy 23, 38, 40
activities during 298
agreement with clients/caregivers 294, 316
between-casts procedure 296–7
bilateral/unilateral casts 290
caregiver involvement 294
case examples 355–60, 362–6
classification 278–301
contraindications 284–90
differentiation from splinting 278
documentation 294–5, 318–19
drop-out 286
ego procedure 215
follow-up 298–301
for dystonia or fluctuating tone 287–8
for supination 293
for rigidity 287
frequency of recasting 295–6
functional splints after 300
indications 284, 285
information giving for clients/caregivers 294, 316
inhibitive 279, 281
in the presence of intellectual/ cognitive impairment or challenging behaviours 289–90
in the presence of joint calcification/heterotopic ossification 289
in the presence of limited personal support and motivation 290
in the presence of open wounds or skin problems 284, 286–7
in the presence of other medical conditions 288
in the presence of sensory deficits 289
joints to include in the cast 291–2
length of casting programme 296
materials 295
mechanisms of effect 279–80
movement and strength training after 301
passive joint ranging after 300–1
positioning casts 279–80, 281
positioning within the cast 281
292–4 (see also submaximal range of motion)
precautions 297–8, 320
process/procedure 294–8, 304–15
research evidence 282–4
resting splints after 299–300
serial 279, 281
systematic reviews 282
to alter patterns of movement/provide mechanical advantage to improve upper limb function 279–80, 283
to increase passive range of motion/lengthen contracture 35, 279, 284, 287
to reduce spasticity/hypertonicity 279, 283
types 279–80
whole body position 293
wrist procedure 304–14
circumferential pressure 189, 206, 279, 280, 287, 289
clasp-knife reflex (see reflexes)
claw hand (see intrinsic minus hand pattern)
critical-centre intervention 1, 3, 7, 61, 63, 65, 68, 72, 290, 329
clinical aims
case examples of linking to daily-life goals 132–3, 137, 138, 142, 143
clinical decision-making 54–5, 56, 58, 61, 62, 64
aids to 64–5
factors influencing 54–5
critical experience 55–6, 58, 59, 63
clinical reasoning 1, 19, 54, 56, 61–3, 72, 86
about impairment 19
Index 371

Dual Process Model 61, 62
Hypertonicity Intervention Planning Model (HIPM) (see separate entry)
knowledge used for 56
linking assessment information 86–7
types of 56, 62
using clients’ experiences 1
clonus (see positive features, hyperactive reflexes)
co-contraction 24, 27, 30, 32, 39, 44
case example 44
consequences of 27
description of 27, 28
dystonia 27, 30
reciprocal inhibition 25, 27, 28
collagen (see connective tissue)
connectin (see titin)
connective tissue 15, 16, 20, 34
collagen 15, 16, 34
coop 16
fibres 15
increased proportion 34
rheological properties 16
stiffness 20, 34
stress relaxation 16
types of 15, 16
contracture 14, 20, 33, 34, 35–6
adaptive changes 20, 34
description of 35
differentiating from hypertonicity 36
differentiating from spasticity 36
fixed 35, 36
immobilisation 35
intervention (see casting, surgery)
mobile 35
muscle belly length 14, 34
muscle, connective tissue stiffness 20, 34
organic 34, 36
problems associated with 35
progression of 34, 35
sarcomeres, loss of 33, 35
spasticity 35
Constraint Induced Movement Therapy (CIMT, mCIMT) 153–60
combined with bimanual training 157
description of 153
EXCITE trial 154, 155, 156
high intensity 154–5, 156
indications – cerebral palsy 158–9
indications – stroke 157–8
low intensity 154–5, 156
mechanisms of effect of 153–4
research evidence – stroke 154–6, 160
research evidence – cerebral palsy 157, 160
corticospinal/pyramidal pathway or tract 11, 12, 20, 22, 23, 25, 27
(see also upper motor neuron syndrome, descending pathways)
degeneration 22
uncrossed fibres, ipsilateral
impairment 22
daily-life goals (see goal setting)
dexterity 22
dysdiadochokinesia (see ataxia)
dysmetria (see ataxia)
dyspraxia (see apraxia)
dyssynergia (see ataxia)
dystonia 11, 20, 24, 25, 27, 28, 30, 31, 32, 44
case example 44
cerebral palsy 28, 30
co-contraction (see co-contraction)
description of 30, 31
differentiating from spasticity 31
features 30
hypertonic or spastic 30, 44
movements associated with 30
positive feature of upper motor neuron syndrome 21, 24
primary 30
secondary 30
elastic, elasticity (see hypertonicity, rheology)
elastin (see connective tissue)
electrical stimulation 169–76
characteristics of research participants 170
description of 169, 171
parameters of 171
mechanisms of effect of 171–2
research evidence for 172–5
types of 169
end feel (see joint end feel)
evidence-based practice 56–61
evidence hierarchy 56, 57, 60
excitability (see muscle, reflex)
expertise 55
fibrin (see connective tissue)
flaccidity 20, 21, 24, 33
force production 13, 14, 21–2, 34
(see also muscle)
fascicle length 14
motor unit firing rates, recruitment 13, 21
motor units 13, 14, 22
muscle volume 14, 34
optimal muscle length for 13
penultimate angle 14
sarcomere 13, 14
tendon length and compliance 14
forced use 153, 157
forearm patterns 37, 38, 42, 45
case examples 42, 45
Geschwind and Tonkin Forearm Classification 37
goals, goal setting 5, 81, 83, 85, 87, 132, 137, 142
Canadian Occupational Performance Measure (COPM) 84, 85, 87
case examples of daily-life goals 132, 137, 142
daily-life goals 87
example 87
formulation, development 107, 108, 110
Goal Attainment Scaling (GAS) 81, 84, 85, 87, 110
measuring goal attainment 110
Golgi tendon organ 15, 27, 188
Gross Motor Functional Classification System 34
correlated with muscle thickness 34
grasp 17–19
(see also upper limb)
and reach 17
and manipulation, prehension 17
object characteristics and 19
power 18, 19
precision 18, 19
requirements for 17
stability 18, 19
types of 17, 19
hand arches 17, 18, 221
at rest 18
distal transverse 17, 18
examples 19, 221
flat 37
mobility 17
proximal transverse 18
longitudinal 18
stability 17
hand patterns (see Zancolli and Zancolli Hand Classification, intrinsic minus)
hand position 18, 19
at rest 18
for function 19
heterotopic ossification 36, 286, 289, 339, 349
description of 349
House, Gwathmey and Filidor Thumb Classification (HGF) 41–3, 249
case examples 43, 136, 140, 142
example 41
predominant features 41
hyperkinetic movement 30, 33
athetosis 31
chorea 30
hyperkinetic movement (continued)
choreoathetosis 30
dystonia (see dystonia) 32
tremor 32
hypertoncity 20–4, 31–3
causes of 33
components of 21, 33
description of 21, 31–2
deriving from contracture 36
deriving from hyperkinetic movement disorders 33
deriving neural, non-neural components 30
deriving from spasticity 36, 104
hypertonia (see separate entry, hypertonia)
spasticity (see separate entry, spasticity)
paratonia 32
rigidity 11, 30, 32, 33, 107
spasticity (see separate entry, spasticity)
stiffness, passive 21
stretch (myotatic) reflex 25
stroke 32
Hypertonia Intervention Planning
Model (HIPM) 65–73, 84, 86
case examples of categorisation within 130, 132, 137, 142
case examples of choosing interventions using 133–4, 138, 143–4
case examples of considering personal and environmental factors 133, 137–8, 142
classification of groupings within 69–70
description of 65, 68
eamples of realistic goals 109
eamples of surgical aims, procedures 341–2
indications for bimanual upper limb training 164, 165
indications for casting 285
indications for CIMT 158, 159
indications for electrical stimulation 176
indications for mirror therapy 169
indications for motor imagery/mental practice 167–8
indications for splinting 202
indications for surgery 347–8
purpose 86
research validation for 72–3, 86
spasticity intervention 29
targeting realistic functional goals 107–8, 110
underlying principles of 68–9
hypokinetic movement 30, 32, 33
ballism 32
bradykinesia 32
rigidity 32
hypotonia 33
acute neurological shock 31
Down syndrome 31
impairment 11, 22, 28, 30, 33, 81, 85, 86
description of 85, 86
community to activity limitation 81
distal 22
ipsilateral (non-affected) limb 22
tonal 11, 30
interlimb coupling effect (see synergy)
intervention, client-centred (see client-centred intervention)
intrinsic minus hand pattern 37, 40, 94, 129
case examples 94, 129
iso-isometric contraction (see muscle, contraction)
isometric contraction (see muscle, contraction)
isotonic contraction (see muscle, contraction)
joint end feel 104
key points of control 189, 212
knowledge integration 62–5
learned non-use (see negative features, Constraint Induced Movement Therapy)
lower motor neuron syndrome 11
mechanism-based reasoning 56, 59
mirror movements (see associated movements)
mirror therapy 167–9
description of 167–8
indications for 169
mechanisms of effect of 168
research evidence for 168–9
motor control 9, 10
description of 9
hierarchical 10
heterarchical 10
motor imagery and mental practice 167–7
description of 165
features of 165
indications for 167
mechanisms of effect of 165–6
research evidence for 166–7
motor neuron 10, 12, 13, 20, 21, 22, 24, 25, 26, 27, 31
alpha 25
types of 13
hyperexcitable, hyperreactive 24, 27, 28, 31
motor system 9–17
disorders of 11–12
neural components 10–12
non-neural components 10, 12–17
motor unit 12–14
components 11, 12
classifying 12, 13
description of 10, 12
loss of 22
recruitment 13
movement 9–20, 33
assessment (see separate entry, assessment)
common movement patterns 37–41
normal 9–17
dysfunctional/adaptive 19, 136
reduced after brain injury 33
upper limb 17–19
movement training techniques 147, 149, 150, 151, 152–76
evidence-based for adults post-stroke 152
evidence-based for children with cerebral palsy 149, 152
muscle 10–17, 20–3, 28, 29, 30, 33, 34, 35
adaptive changes 20, 33, 34, 35
Anatomical cross-sectional area (ACSA), 14
co-activation 27, 31
contraction, types of 12, 13
contractility 12
cramp (see separate entry, cramp)
creeep 187, 206
elasticity 10, 12, 16
excitability 10, 12
excursion 12
extensibility 12
fascicle 13, 14, 15
fascicle angle 14
fatigability 12–13, 35
fibres, types of 13
flaccidity 20, 21, 24, 33
function 10, 12
overactivity 24, 27
Physiological cross-sectional area (PCSAs), 14, 34
resistance or stiffness 16, 17, 21
rheological properties 16, 17
sarcomere 13–15, 16, 33
selective control of 22, 23
stiffness, passive 20
stiffness, short-range 16
strength (or force) 13, 21
thickness 14, 34
Index 373

tone 17, 29, 30
volume 14, 34
weakness 21, 22
muscle spindle 20, 25, 28, 36
contracture 35
sensory neurons 28
stretch reflex 24, 25, 26, 36
muscle tone 17, 20, 29, 30, 31, 33
associated 31
description of 17
disorders of 11, 30, 31, 32
increased, hypertonia (see separate entry, hypertonicity)
normal 17, 31
reduced, hypotonia (see separate entry, hypotonia)
stiffness 17, 19
musculoskeletal system (see motor system, non-neural components)
myosin (see sarcomere)
narrative literature reviews 190–1, 282
negative features, symptoms 20, 21–4, 85, 86, 87–91, 130, 134, 135, 139
(see also upper motor neuron syndrome)
assessment 85, 86, 87–91
case examples 88–90, 129, 135, 139
causes 21
muscle weakness 21–2
loss of selective motor control 22–3
learned non-use 21, 23–4
neural coupling, linking (see synergy)
Neurodevelopmental Therapy (NDT) 146–8, 149
Neuromuscular Electrical Stimulation (NMES) 169, 171–2, 174, 175
neurophysiological approaches to rehabilitation 146–9
mechanisms of splinting 188–9
mechanisms of casting 279, 280
neuropasticity (see plasticity)
paratonia (see hypertonicity)
paresis (see weakness)
Parkinson’s disease 33
plasticity 16, 23, 27, 148–9
description of 16
neural 23, 28, 148–9
positive features/symptoms 24, 85, 86, 87–91, 130, 135, 139
(see also upper motor neuron syndrome)
assessment 85, 86, 87–90
case examples 88–90, 130, 135, 139
causes 24
hyperactive tonic/phasic reflexes 24, 25
neural mechanisms 25
primary, secondary 88, 89, 90, 91
practice-based evidence 60
practice-based knowledge 57–8
Proprioceptive Neuromuscular Facilitation (PNF) 146, 148, 150
range of motion (see assessment, active/passive range of motion)
rehabilitation approaches 145–9
reflex 17, 20, 21, 24–6, 36, 188–9
alpha motor neuron 20, 24, 188–9
associated reactions (see separate entry, associated reactions)
Babinski response 24
clap-knife 25, 27, 103
clonus 25, 26
co-contraction (see separate entry, co-contraction)
deep tendon 25, 26, 31
description of 26
dystonia (see separate entry, dystonia)
extensor 24, 27
flexor 24, 27
hyperexcitable, hyperreactive 20, 24, 25, 26, 28, 188–9
loss of 20, 21, 24, 33
muscle spindle 24, 26, 36
neural component of hypertonicity 24, 33
non-stretch sensitive 25
reciprocal inhibition 25, 28
tonic 24, 26
phasic 24, 26
segmental 26
spinal 20, 21, 24, 25
stretch, myotatic reflex 25
stretch sensitive 25
supraspinal 26
reflex inhibiting patterns (see Bobath concept)
research design 59–61
research evidence 38, 63–4
Restorative Neurorehabilitation Approaches 148–9, 151, 189–90
motor learning strategies within 152
mechanisms of splinting 189–90
rheology 16, 17
elasticity 16, 17
plasticity 16
stiffness 16
thixotropy 16
viscoelasticity 16, 17
viscosity 16
rigidity (see hypertonicity, hypokinetic movement)
robotics 162, 163, 164
Rood’s sensorimotor therapy 146, 148, 150
sarcocere
actin 13, 15, 16, 17, 33
addition of 34, 187, 279, 280, 352
cross-bridges 13, 16, 17
fascicle 13, 14
loss of 33, 35, 187
myosin 13, 15, 16, 17
titin 13, 15, 16
science-based knowledge 58–9
service needs post-brain injury 1–7
access to lifelong rehabilitation 2, 3
achievable goal-setting 5–6
active listening to personal narratives 5
collaborative, client-centred service provision 7
early intervention 1, 2
emotional, psychosocial support 2, 4
family inclusion 4, 7
interdisciplinary rehabilitation, teamwork 1, 2, 6
provision of relevant information 4
regular evaluation 6
responsive to changing needs over time 2
supported transition between services 3, 4
trusting relationships 5
skeletal muscle (see muscle)
somatosenory 12, 21
primary cortex 12
system 21
spasticity 28, 30–3, 81
Botulinum neurotoxin 29
‘catch’ 28, 105–7
contracture 35
debate regarding intervention 29–30
descending pathways 28
description of 28, 32
differentiating from contracture 36
differentiating from dystonia 31
differentiating from hypertonicity 36
differentiating from stiffness 30
Hypertonicity Intervention Planning Model 29
impact of reduction 29, 81
impact on daily activity 81
neural component of hypertonicity 33
positive feature of the upper motor neuron syndrome 20, 25, 29
spastic hyperreflexia 32, 33
spasticity/hypertonicity measurement
case examples 130, 131, 134–5, 136, 139–40
splints
addressing positive and negative features of UMN syndrome within 210–13
commercially-produced 189–90, 200–1, 214–16, 216
cone 204, 211
designs 213–14, 230–73
Index

splints (continued)
dynamic 189–90, 200–1, 214–15
education to client about 223, 274–7
effect on contracture 194–6
effectiveness of, related to chronicity of condition 192–4
elbow 195–6, 206, 215, 230–6
evidence-based practice related to 190
fabrication principles 218–23
fabrication instructions 230–73
for flaccidity 206
forearm 208, 236–7
functional 198–202, 207, 248–73,
360–1, 363
functional position within 208–10
hand-based 259–73
indications 202, 203
joint immobilisation within 205–6
joint support within 205–6, 207–8
length of effect 197
length of wearing time 197
lyra 201–2, 206, 207–8
materials 207–8, 219–20
mechanisms of effect 186–90
neoprene 207–8, 236–7, 270–1
padding within 221–2
patterns 219, 230–73
position within 196, 208–13
pre-fabricated 214–16
prescription 202–13
purposes 205–7
research evidence for 190–202
resting hand 191–8, 204–5, 238–48
resting position within 208–10
soft 201–2, 207–8
strapping 222–3
thermoplastic 207, 219–20, 231–4,
238–46, 248–57, 259–69, 272–3
thumb 198–9, 259–71
to alter patterns of movement/provide mechanical advantage 188, 207
to maintain joint alignment and positioning 188, 205, 207
to maintain muscle length/prevent contracture 187, 194–6, 205–7
to promote upper limb function 188, 189–90, 198–202, 207
to provide prolonged, low-load/constant/sustained stretch (see also stretch) 186–8, 205–6, 213
to reduce spasticity/hypertonicity 188–9, 192–4, 205–7
wearing schedules 196–8, 216–18
wrist 199–200, 248–59
stiffness 19, 28, 33
(see also muscle, connective tissue, hypertonicity)
adaptive 33
and spasticity 28
joint 19, 36
immobility 33
strength (see muscle)
stress recovery (see stretch)
stress relaxation (see stretch)
stretch 16, 17
(see also splints to provide prolonged low-load/constant/sustained stretch)
active (isometric) 187, 279
Cochrane Review of 191
creep 16, 17, 187, 206, 279
high-load 16
low-load, maintained, constant, prolonged 16, 186–8
optimal length of time for 187–8
passive 16, 187
stress recovery 17
stress relaxation 16, 17, 187, 205, 279
stretch pain tolerance 187
pain threshold point 16
stretch reflex 17
stroke (see brain injury, upper motor neuron syndrome)
submaximal range of motion 292–3
(see also casting, positioning within)
surgery 35
aims 341–2
Botulinum neurotoxin A 349, 350–1
brachial rhizotomy 342
capsulodesis 342
case example 343
classification of procedures 339–40
case example 343
classification of procedures 339–40
Cochrane Review, thumbsurgery 340
Capsulodesis 342
Cortical,subcorticalareasaffected 11
descending pathways affected 12, 20, 27, 28
interaction positive and negative features 37–43
negative features, signs of absence 20, 21–4, 33
positive features, signs of presence 20, 21, 24–33
viscoelasticity (see rheology)
viscosity (see rheology)
weakness 21, 22, 33
(see also motor units, muscle)
consequences of 21, 22
extensor muscles 22
flaccidity (see flaccidity)

Zancolli and Zancolli Hand Classification
(Z&Z) 38–40, 42–3, 45, 199, 207
case examples 42–3, 45, 132, 136, 137, 142
examples 38, 39
extrinsic 38–40
intrinsic plus 38–9, 40, 96
predominant features 39