INDEX

A
Abbot, E., 45
Academic growth, and disciplinary literacy (DL), 164
Academic rigor in a thinking curriculum, 24–25, 28, 92
Accomplishment recognition, as principle of learning, 25
Accountable talk, xiii, 24–26, 28, 79, 90, 105, 108, 114, 124, 127, 206; change from IRF/IRE to, 26–27; as principle of learning, 25
Accountable talk moves, 96–98, 105, 219; table, 97
ACT, 135, 137
Active practice, 27, 190, 192–193
Adolescent literacy, i; improving, 2–4
American Association for the Advancement of Science (AAAS), 64–65, 90, 93–94, 124
Anzaldúa, G., 129–132
Apoðaca, R. E., xxi, 163, 169
Applebee, A. N., 18, 136
Arc of instruction, 145–146, 220
Arc of lessons, 81, 105; use of term, 96
Assessment, 25, See also Instruction and assessment; instruction-driven nature of, 31
Atwell, N., 144

B
Bain, R. B., 35
Ball, C. C., 21
Banilower, E., 88
Banks, J. A., 17
Bartholomae, D., 21, 139
Beck, I. L., 137
Bell, P., 107

Benchmarks for Science Literacy (American Association for the Advancement of Science), 94, 124
Biancarosa, C., 2, 20
Biancarosa, G., 2
Bickel, D. D., 194
Bill, V., 78
Bill, V. L., 11, xxi–xxii, 63, 139, 194
Billias, G. A., 36
Biniz, J., xxii–xxiii, 11, 87, 139
Boaler, J., 65
Bodnar, J., 41
Boix-Mansilla, V., 37
Boyer, P., 18
Brandt, B. L., 190
Brensfeld, J., 24
Brewer, W. F., 107
Brown, A. L., 24
Brown, J. S., 12, 27, 71, 72, 189
Bruner, J., 80, 192
BSCS, 108
Buckmaster, A., 190
Burge, B., 27
Bybee, R. W., 91

C
Carpenter, B., 139
Carpenter, B. D., 3
Catch-up literacy instruction in English language arts, approaches to, 6
Cazden, C., 136
Chapman, S., 72
Charles, R., 81
Cheung, A., 2
Chicago Museum of Science and Industry, 88
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childress, S.</td>
<td>186</td>
<td>Chinn, C. A.</td>
<td>107</td>
</tr>
<tr>
<td>Chrostowski, S. J.</td>
<td>7</td>
<td>Classroom culture, socializing intelligence through,</td>
<td>31</td>
</tr>
<tr>
<td>Classroom experience base, for disciplinary literacy (DL),</td>
<td>4–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear expectations, as principle of learning,</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coach discussion cycle,</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coburn, C. E.</td>
<td>5, 88, 183</td>
<td>Cocking, , R.</td>
<td>24</td>
</tr>
<tr>
<td>Cognitive prompts,</td>
<td>72–78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen, D. K.</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen, K.</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coherent curriculum,</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Knowledge: What It Really Takes for Students to Succeed and What We Can Do to Get Them Ready (Conley),</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College ready, defined,</td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collins, A.</td>
<td>12, 27, 71, 72, 189</td>
<td>Committee on Science, Engineering, and Public Policy,</td>
<td>87, 92</td>
</tr>
<tr>
<td>Conceptual navigation chart and graphic organizer,</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conley, D. T.</td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content instruction, integrating literacy development and,</td>
<td>6–10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content knowledge,</td>
<td>64, 71, 165, 175;</td>
<td>expanding the</td>
<td>definition, 9–13; in science classrooms,</td>
</tr>
<tr>
<td>Content teachers, engaging in literacy development,</td>
<td>1–13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core concepts,</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correnti, R.</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coustan, B.</td>
<td>45, 48–55, 55</td>
<td>Couvares, F. G.</td>
<td>36</td>
</tr>
<tr>
<td>Critical thinking,</td>
<td>65; and mathematics classroom,</td>
<td>23, 29</td>
<td></td>
</tr>
<tr>
<td>Cultural myths,</td>
<td>37–39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuoco, A.</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum: and academic rigor, 24–25, 28, 92; coherent, 13; and disciplinary content/habits of thinking, 13; focused, 13; and literacy learning,</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damon, H. C.</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David, J. L.</td>
<td>4, 179, 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis, E.</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delph, L.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deshler, D.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewey, J.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dice, L.</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dion, G.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disciplinary literacy (DL), 11–13, 15–31; See also Systemic practice of DL; and academic growth, 164; applying domain specificity to enhance learning, 18; breadth of tasks and texts, 19–20; classroom culture and socialization of intelligence, 31, 53–54; classroom experience base for, 4–5; coining of term, 11; defined, 11, 15, 132; design principles, 29, 163–164, 219; embedding, 163–196; in the English language arts (ELA) classroom, 129–161; foundational model, 22–23; foundational tool, 23–29; habits of thinking, 21–23; in the history classroom, 33–61; implementation of, 4; instruction and assessment, 54–59; investing in, 163–164; knowledge and thinking, 24, 34; knowledge communities, 17; knowledge domains, 3, 12, 17, 18, 29, 219; learning, 17–23; learning as apprenticeship, 34–44; learning on the diagonal, 22–23; lesson experiences, 19; in the mathematics classroom, 63–85; observation protocol, 215–217, 220; principles, applying to the study of history, 39–59; principles of learning (POLs), 23–29; school texts, 20–21; in the science classroom, 87–127; sustained implementation, 4–5; systemic practice, 167–196; teachers as mentors of apprentices, 44–53; tools, 219–222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disciplinary Literacy Nested Instructional Tools (table),</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>District vision and organization, building, 167–171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain specificity to enhance learning, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donahue, P.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver, R.</td>
<td>89, 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duguid, P.</td>
<td>12, 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durant, L.</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duschl, R. A.</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Services Incorporated,</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elian Gonzales account,</td>
<td>48–52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliott, D. L.</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmore, R.</td>
<td>166, 186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engle, R. A.</td>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
English, L. D., 80

English language arts (ELA) classroom, 129–161; arc of instruction, 145–146, 220; classroom culture and socialization of intelligence, 156–157, 212; comprehension, 147–148; comprehension and sorting questions, 141; design features, naming, 142–144; difficulty questions, 141; DL design principles, 209–212; DL principles in action, 155–159, 220; ELA study, encouraging, 136–139; equity in reading and literature study, 137; formative and summative assessments, 141; gender readings, reflections on, 154; gender study, 153–154; guiding questions, 141; I-R-E (initiate-respond-evaluate) instruction, 136–137; identifying significance tasks, 141; inquiry, 129–131, 144–154; inquiry case study, 145–155; inquiry learning, 133–136; instruction and assessment, 157–159, 213; instruction/methods of inquiry, incorporating in the classroom, 138–139; interpretation, 148–151; knowledge and thinking, 155, 209; learning as apprenticeship, 155–156, 210; lesson and unit design features, 140–142; lesson/unit design features, 220; literary lens, using, 153–154; nominal theme, 140; overarching questions, 141; pedagogical rituals and routines, 220; principals’ support, 159–160, 159–161; project, 139–144; retrospective assignments, 141; rigorous texts, 138, 141; significant moments, 148; step-back tasks, 141; teachers as mentors of apprentices, 156, 211; text selection, criteria of, 220; unit architecture, 142–143, 220; writing tasks, 141; written responses, creating, 151–153

Evidence-based explanations, writing, 221

F

Fair and credible evaluations, as principle of learning, 25
Farmer, J. A., 190
Farrar, E., 138
Fellows of the Institute for Learning, 23, 24, 92, 112, 185, 190
Fillmore, L. W., 16
Fishman, B. J., 189
Fitzsimmons, S., 20
Focused curriculum, 13
Frederiksen, J., 72

G

Gallaher, L. P., 189
Gallimore, R., 27
Gamoran, A., 18, 137
Ge, X., 72
Geiser, C., 20, 66
Gelman, S. A., 18
Gender readings, reflections on, 154
Gender study, 153–154
Gerstle, G., 41
Godley, A. J., 3
Goldenburg, E. P., 189
Goldman, P., 185
Gonzalez, E. J., 7
Goos, M., 17, 65
Graham, S., 2
Greene, D., 4, 189
Grieg, W., 2
Grub, G. N., 36
Groff, C., 2
Grossman, A., 186
Grossman, P., 138
Grossman, P. L., 17
Guided reflection, 27, 191, 194–195
Guiding questions, 141

H

Habits of thinking, 21–23, 30; mathematical, 69; synchronizing within a discipline, 21
Hall, M. W., 11, 23, 24, 71, 89, 92, 138, 139, 167, 190
Handlin, O., 41
Heath, S. B., 17
Henningsen, M. A., 7, 66, 81
Hess, F. M., 8
Hiebert, J., 64
High school biology class: charts, 112, 115, 117, 121; coach discussion cycle, 109; cognitively wrestling to advance understanding, 112–114; DL science classroom, 107–122; knowledge and thinking, building through explanations, 115–123; planning/reflecting on the lesson, 109–110; student draft explanations (table), 116; student final explanations for claim and reasoning (table), 118–120; teaching from the planning, 111–112
Hirschfeld, L. A., 18
Historians: conversations with each other, 36; role of, 35–36; thinking as, 34–39
Historical narratives, 35
History classroom, 33–61; analyzing the architecture of a lesson, 222; classroom culture and intelligence, 53–54, 199; cultural myths, 37–39; defining rigor in, 222; designing a unit of study for, 41–42; DL design principles, 197–199, 222; Elian Gonzales account, 48–52; historian, role of, 35–36; immigration, teaching of, 42–44; instruction and assessment, 54–59, 199; knowledge and thinking, 34, 197; learning as apprenticeship, 34–44, 198; planning/facilitating high-quality professional development, 222; teachers as mentors of apprentices, 44–53, 198; unit of instruction, thinking through, 222; unit planning guide, 222

Holt, T., 35
Holum, A., 72
How People Learn: Brain, Mind, Experience and School (National Research Council), 89–90, 124
How Students Learn: Science in the Classroom (National Research Council), 89–90
Hughes, E. K., 78, 183
Humphreys, C., 65

I
Initiate-respond-feedback (IRF), 26
Inquiry and the National Science Education Standards (National Research Council), 94–95
Institute for Learning (Learning at the Univ. of Pittsburgh Learning Research and Development), 15, 185; action protocol for studying student work samples, 220; principles of learning, 23–29
Instruction and assessment, 29, 31, 54–59; English language arts (ELA) classroom, 157–159, 213; history classroom, 54–59, 199; mathematics classroom, 203; science classroom, 208
Instructional quality, new disciplinary literacy vision of (table), 12
Integrating literacy and content: in the classroom (table), 10; in core subjects, 9
Intelligence, and classroom culture, 53–54
I-R-E (initiate-respond-evaluate) instruction, 26, 136–137

J
Jamar, I., xxiii, 63
Jiménez-Aleixandre, M. P., 107
Johnson, S. M., 11
Johnston, J., 185
Jordan, D. L., xxiii–xxiv, 87

K
Kachur, R., 137
Kardos, S. M., 11
Kauffman, D., 11
Kernel routine, use of term, 184
Kilpatrick, J., 65
Knowledge and thinking: English language arts (ELA) classroom, 155, 209; high school biology class, 115–123; history classroom, 34, 197; mathematics classroom, 200; science classroom, 204
Knowledge domains, 3, 12, 17, 18, 29, 219
Kotter, J. P., 171
Krajcik, J., 106, 107, 122
Kuhn, D., 107
Kuhn, L., 106

L
Lake, C., 2
Land, S., 72
Landes, N. M., xxiv, 87
Langer, J. A., 6, 18
Lave, J., 27
Leadership domains for DL implementation, timetable for progression of, 182
Leahy, S., 72
Learning as apprenticeship, 27–28, 34–44; cognitive prompts, 72–78; phases of a lesson, 78–80; as principle of learning, 26–28, 30; sequencing lessons in a unit, 80–81
Learning as apprenticeship for students: active practice, 190; coaching, 191; guided reflection, 191; modeling and observation, 190; scaffolding, 190
Learning on the diagonal, 22–23, 219
Learning self-management, 93; as principle of learning, 26
Learning Walk tool, xxi, 172, 185–186, 215
Lee, C. D., 7
O
O’Brien, D., 2
Observation: classroom observation, 216; conducting, 216–217; features, 215; postobservation feedback meeting, 217; preobservation meeting, 216; preparing for, 216; protocol, 215–217, 220; purpose of, 215; reflecting on the process, 217
O’Connor, M. C., 24, 71, 89
Organizing for effort, as principle of learning, 25
Osborne, J., 107
Overarching questions, 141
Overby, M., 2, 18
P
Palinscar, A., 2
Parshall, C., 139
Pasley, J., 88
Payne, C., 38
Pellegrino, J. W., 64
Perin, D., 2, 67
Perlman, C. L., 138
Peske, H. G., 11
Petrarca, D., 55, 58
Petrosky, A., 7, 139, 143, 195
Petrosky, A. R., xx, 1, 129, 139, 143
Physics classroom, snapshot of, 88–89
Plasse, L., 139
POLs, See Principles of learning (POLs)
Pontecorvo, C., 27
Popkewitz, T., 142
Postman, N., 136
Powell, A. G., 138
Prendergast, C., 137
Preparation for the workforce in a global economy, 164–165
Primary Source Analysis Tool for Providence Public Schools, 46–47
Principals’ instructional leadership, actions supporting, 181
Principles of learning (POLs), 23–29, 219; academic rigor in a thinking curriculum, 25; accountable talk, 25; clear expectations, 25; fair and credible evaluations, 25; learning as apprenticeship, 26–28, 30; organizing for effort, 25; overview statements, 25–26; recognition of accomplishment, 25; self-management of learning, 26; socializing intelligence, 25–26, 28
Professional learning, developing, 189–195
Professional learning communities (PLCs), 5, 178–179; handbook, 219
Purves, A. C., 138
R
Ravi, A. K., xxv, 11, 139
Reading Between the Lines: What the ACT Reveals About College Readiness in Reading (ACT), 137–138
Recognition of accomplishment, as principle of learning, 25
Rehumanizing autonomous text, defined, 20
Reiser, B., 106
Reiser, B. J., 107
Resnick, D. P., 17
Resnick, L., 139
Resnick, L. B., 11, 17, 23, 24, 27, 71, 89, 92, 167, 184, 190
Rhoton, J., 87
Rigorrous texts, 138, 141
Rodríguez, A. B., 107
Rogoff, B., 72
Rosenhine, B., 72
Rushworth, P., 89
Russell, J. L., 88
S
Sadler, P. M., 89
Sadler, R., 27
Sandoval, W. A., 107
Saxton, M., 36
Scaffolding, 27, 71–72, 190
Scarcella, R., 17
Schleppegrell, M. J., 2
Schlesinger, B., 65
Schneps, M. H., 89
Scholes, R., 138
School organization, building for DL, 173–178
School texts, 20–21
Schunk, D. H., 72
Schwab, J. J., 17
Science classroom, 87–127, See also High school biology class; Seventh-grade life science classroom; accountable talk moves (table), 96–97; achieving DL science, 126–127; and administrators, 124–126; assessment, 105–106; classroom culture and socialization of intelligence, 107,
207; conceptual framework, 91; conceptual navigation chart and graphic organizer, 221; and connection of science concepts/nature of science to students’ lives, 87; deep foundation of usable knowledge, 91; DL design principles, 204–208, 221; DL science and the nature of science, 92–95; and everyday experiences, 90–91; evidence-based explanations, writing, 221; features of classroom inquiry in science, 94–95; features of science, 94; gains in achievement, 88; high school biology class, 107–122; how students learn science, research on, 89–90; instruction and assessment, 208; knowledge and thinking, 204; learning as apprenticeship, 205; learning science as a process of inquiry, 91; lesson protocol, thinking through, 221; metacognition, 91; national standards in science, 94; ongoing informal assessment during instruction, 106; path to DL science, 123–127; physics classroom, snapshot of, 88–89; planning and facilitating high-quality professional development, 221; principles of learning (POLs), 92–94; science inquiry, 93–94; scientific explanations, role of, 106–107; scientific inquiry, 95–96; scientifically literate students, 88; seventh-grade life science classroom, 96–105; student preconceptions about how the world works, 90; teachers as mentors of apprentices, 206; testing of assumptions, 92; vision, developing, 88–89

Science for All Americans (American Association for the Advancement of Science), 93–94

Seitz, A., 139

Self-management of learning, as principle of learning, 26

Setup phase of a lesson, 78

Seventh-grade life science classroom: accountable talk moves, 96–105; collecting/recording data, 103; data analysis (session 3), 103–104; data tables, creating, 101–102; lesson, reflecting on, 104–105; scientific investigation, designing (session 2), 101–103; scientifically oriented question, developing (session 1), 98–101; student learning, reflecting on, 104–105, See also Science classroom

Shanahan, C., 2
Shanahan, T., 2
Shane, P., 87

Share-and-discuss phase of a lesson, 78–80
Shepard, L. A., 72
Short, D. J., 20
Silver, E. A., 7, 65
Silver, E. A., 66
Simon, H. S., 139
Slavin, R. E., 2
Smagorinsky, P., 192
Smith, M. S., 7, 66, 78, 183, 221
Snow, C. E., 2, 16, 20

Social studies classroom: analyzing the architecture of a lesson, 222, See also History classroom; defining rigor in, 222; DL design principles, 197–199, 222; planning/facilitating high-quality professional development, 222; unit of instruction, thinking through, 222; unit planning guide, 222

Socializing intelligence, 31; English language arts (ELA) classroom, 156–157, 212; history classroom, 53–54, 199; mathematics classroom, 202; as principle of learning, 25–26, 28; science classroom, 107, 207

Sosniak, L. A., 138
Soto, G., 144

Sourcing heuristic, 35
Spiegel, S. A., xxi–xxvi, 87
Spillane, J., 184
Squires, A., 89
Staub, F. C., 194
Stein, M. K., 7, 66, 79, 221
Stewart, R. A., 2
Stigler, J. W., 64
Stodolsky, S. S., 17
Stough, C., 193

Strong early reading skills, and later more complex skills, 2
Stylianides, G. J., 65

Sustained implementation, 4–5

observations, scheduling, 181–183; understanding/implementing, 178–184

T
Takaki, R., 42
Talbert, J., 4, 24
Talbert, J. E., 167, 179, 189
Taylor, J. A., xxvi, 87
Tasks and texts, breadth of, 19–20
Teacher professional learning communities and observations, scheduling, 181–183
Teachers as mentors of apprentices, 30
Teaching on the diagonal, 22–23, 219
Tharp, R. G., 27
Thompson, C., 138
Thompson, M., 72
Tinkering, as mathematical habit of thinking, 69–70
Tysvaer, N., 2, 18

U
Unit planning guide, history classroom, 222

V
Vacca, J. L., 2
Vacca, R. T., 2
van Oers, B., 64
Vygotsky, L. S., 80

W
Warren, E., 80
Weiss, I., 88
Wells, G., 136
Wenger, E., 167, 179
Wenger, F., 27
Werner, C. A., 3
West, L., 194
White, B., 72
Wiliam, D., 72
Willingham, D. T., 24, 65
Wineburg, S., 27, 35
Wood-Robinson, V., 89
Woodward, A., 137
Working on the diagonal, use of term, 66, 67–71
Workshop/studio approach to English language arts literacy development, 6
Writing tasks, 141
Written responses, creating, 151–153

Y
Yamaguchi, R., 189
Young, K. M., 21, 34–35

Z
Zabusky, C. F., 50
Zimmerman, B. J., 72