3.8 Sharpening Filter 55
3.9 Image Blur Types and Quality Measures 59
References 61

4 MATHEMATICAL MORPHOLOGY 63
4.1 Binary Morphology 64
 4.1.1 Binary Dilation 64
 4.1.2 Binary Erosion 66
4.2 Opening and Closing 68
4.3 Hit-or-Miss Transform 69
4.4 Grayscale Morphology 71
 4.4.1 Grayscale Dilation and Erosion 71
 4.4.2 Grayscale Dilation Erosion Duality Theorem 75
4.5 Basic Morphological Algorithms 76
 4.5.1 Boundary Extraction 76
 4.5.2 Region Filling 77
 4.5.3 Extraction of Connected Components 77
 4.5.4 Convex Hull 78
 4.5.5 Thinning 80
 4.5.6 Thickening 81
 4.5.7 Skeletonization 82
 4.5.8 Pruning 84
 4.5.9 Morphological Edge Operator 85
 4.5.9.1 The Simple Morphological Edge Operators 85
 4.5.9.2 Blur-Minimum Morphological Edge Operator 87
4.6 Morphological Filters 88
 4.6.1 Alternating Sequential Filters 89
 4.6.2 Recursive Morphological Filters 90
 4.6.3 Soft Morphological Filters 94
 4.6.4 Order-Statistic Soft Morphological (OSSM) Filters 99
 4.6.5 Recursive Soft Morphological Filters 102
 4.6.6 Recursive Order-Statistic Soft Morphological Filters 104
 4.6.7 Regulated Morphological Filters 106
 4.6.8 Fuzzy Morphological Filters 109
References 114

5 IMAGE SEGMENTATION 119
5.1 Thresholding 120
5.2 Object (Component) Labeling 122
5.3 Locating Object Contours by the Snake Model 123
 5.3.1 The Traditional Snake Model 124
 5.3.2 The Improved Snake Model 125
 5.3.3 The Gravitation External Force Field and The Greedy Algorithm 128
 5.3.4 Experimental Results 129
5.4 Edge Operators 130
5.5 Edge Linking by Adaptive Mathematical Morphology 137
 5.5.1 The Adaptive Mathematical Morphology 138
 5.5.2 The Adaptive Morphological Edge-Linking Algorithm 140
 5.5.3 Experimental Results 141
5.6 Automatic Seeded Region Growing
 5.6.1 Overview of the Automatic Seeded Region Growing Algorithm 146
 5.6.2 The Method for Automatic Seed Selection 148
 5.6.3 The Segmentation Algorithm 150
 5.6.4 Experimental Results and Discussions 153
5.7 A Top-Down Region Dividing Approach
 5.7.1 Introduction 159
 5.7.2 Overview of the TDRD-Based Image Segmentation 159
 5.7.2.1 Problem Motivation 159
 5.7.2.2 The TDRD-Based Image Segmentation 161
 5.7.3 The Region Dividing and Subregion Examination Strategies 162
 5.7.3.1 Region Dividing Procedure 162
 5.7.3.2 Subregion Examination Strategy 166
 5.7.4 Experimental Results 167
 5.7.5 Potential Applications in Medical Image Analysis
 5.7.5.1 Breast Boundary Segmentation 173
 5.7.5.2 Lung Segmentation 174
References 175

6 DISTANCE TRANSFORMATION AND SHORTEST PATH PLANNING 179
6.1 General Concept 180
6.2 Distance Transformation by Mathematical Morphology 184
6.3 Approximation of Euclidean Distance 186
6.4 Decomposition of Distance Structuring Element 188
 6.4.1 Decomposition of City-Block and Chessboard Distance Structuring
 Elements 189
 6.4.2 Decomposition of the Euclidean Distance Structuring Element 190
 6.4.2.1 Construction Procedure 190
 6.4.2.2 Computational Complexity 192
6.5 The 3D Euclidean Distance 193
 6.5.1 The 3D Volumetric Data Representation 193
 6.5.2 Distance Functions in the 3D Domain 193
 6.5.3 The 3D Neighborhood in the EDT 194
6.6 The Acquiring Approaches 194
 6.6.1 Acquiring Approaches for City-Block and Chessboard Distance
 Transformations 195
 6.6.2 Acquiring Approach for Euclidean Distance Transformation 196
6.7 The Deriving Approaches 198
 6.7.1 The Fundamental Lemmas 198
 6.7.2 The Two-Scan Algorithm for EDT 200
 6.7.3 The Complexity of the Two-Scan Algorithm 203
6.8 The Shortest Path Planning 203
 6.8.1 A Problematic Case of Using the Acquiring Approaches 204
 6.8.2 Dynamically Rotational Mathematical Morphology 205
 6.8.3 The Algorithm for Shortest Path Planning 206
 6.8.4 Some Examples 207
6.9 Forward and Backward Chain Codes for Motion Planning 209
6.10 A Few Examples 213
References 217
7 IMAGE REPRESENTATION AND DESCRIPTION

7.1 Run-Length Coding 219
7.2 Binary Tree and Quadtree 221
7.3 Contour Representation 223
 7.3.1 Chain Code and Crack Code 224
 7.3.2 Difference Chain Code 226
 7.3.3 Shape Signature 227
 7.3.4 The Mid-Crack Code 227
7.4 Skeletonization by Thinning 233
 7.4.1 The Iterative Thinning Algorithm 234
 7.4.2 The Fully Parallel Thinning Algorithm 235
 7.4.2.1 Definition of Safe Point 236
 7.4.2.2 Safe Point Table 239
 7.4.2.3 Deletability Conditions 239
 7.4.2.4 The Fully Parallel Thinning Algorithm 243
 7.4.2.5 Experimental Results and Discussion 243
7.5 Medial Axis Transformation 244
 7.5.1 Thick Skeleton Generation 252
 7.5.1.1 The Skeleton from Distance Function 253
 7.5.1.2 Detection of Ridge Points 253
 7.5.1.3 Trivial Uphill Generation 253
 7.5.2 Basic Definitions 254
 7.5.2.1 Base Point 254
 7.5.2.2 Apex Point 254
 7.5.2.3 Directional Uphill Generation 254
 7.5.2.4 Directional Downhill Generation 255
 7.5.3 The Skeletonization Algorithm and Connectivity Properties 256
 7.5.4 A Modified Algorithm 259
7.6 Object Representation and Tolerance 260
 7.6.1 Representation Framework: Formal Languages and Mathematical
 Morphology 261
 7.6.2 Dimensional Attributes 262
 7.6.2.1 The 2D Attributes 262
 7.6.2.2 The 3D Attributes 263
 7.6.2.3 Tolerancing Expression 263

References 265

8 FEATURE EXTRACTION 269

8.1 Fourier Descriptor and Moment Invariants 269
8.2 Shape Number and Hierarchical Features 274
 8.2.1 Shape Number 274
 8.2.2 Significant Points Radius and Coordinates 276
 8.2.3 Localization by Hierarchical Morphological Band-Pass Filter 277
8.3 Corner Detection 278
 8.3.1 Asymmetrical Closing for Corner Detection 280
 8.3.2 Regulated Morphology for Corner Detection 281
 8.3.3 Experimental Results 283
8.4 Hough Transform 286
8.5 Principal Component Analysis 289
8.6 Linear Discriminate Analysis 291
8.7 Feature Reduction in Input and Feature Spaces 293
 8.7.1 Feature Reduction in the Input Space 293
 8.7.2 Feature Reduction in the Feature Space 297
 8.7.3 Combination of Input and Feature Spaces 299
References 302

9 PATTERN RECOGNITION 306

9.1 The Unsupervised Clustering Algorithm 307
 9.1.1 Pass 1: Cluster’s Mean Vector Establishment 308
 9.1.2 Pass 2: Pixel Classification 309

9.2 Bayes Classifier 310

9.3 Support Vector Machine 313
 9.3.1 Linear Maximal Margin Classifier 313
 9.3.2 Linear Soft Margin Classifier 315
 9.3.3 Nonlinear Classifier 316
 9.3.4 SVM Networks 317

9.4 Neural Networks 320
 9.4.1 Programmable Logic Neural Networks 321
 9.4.2 Pyramid Neural Network Structure 323
 9.4.3 Binary Morphological Operations by Logic Modules 324
 9.4.4 Multilayer Perceptron as Processing Modules 327

9.5 The Adaptive Resonance Theory Network 334
 9.5.1 The ART1 Model and Learning Process 334
 9.5.2 The ART2 Model 337
 9.5.2.1 Learning in the ART2 Model 337
 9.5.2.2 Functional-Link Net Preprocessor 339
 9.5.3 Improvement of ART Model 341
 9.5.3.1 Problem Analysis 341
 9.5.3.2 An Improved ART Model for Pattern Classification 342
 9.5.3.3 Experimental Results of the Improved Model 344

9.6 Fuzzy Sets in Image Analysis 346
 9.6.1 Role of Fuzzy Geometry in Image Analysis 346
 9.6.2 Definitions of Fuzzy Sets 347
 9.6.3 Set Theoretic Operations 348

References 349

PART II

APPLICATIONS

10 FACE IMAGE PROCESSING AND ANALYSIS 355

10.1 Face and Facial Feature Extraction 356
 10.1.1 Face Extraction 357
 10.1.2 Facial Feature Extraction 362
 10.1.3 Experimental Results 367

10.2 Extraction of Head and Face Boundaries and Facial Features 370
 10.2.1 The Methodology 372
12.1.3 Private Versus Public
12.1.4 Robust Versus Fragile
12.1.5 Spatial Domain Versus Frequency Domain

12.2 Spatial Domain Watermarking

12.2.1 Substitution Watermarking in the Spatial Domain
12.2.2 Additive Watermarking in the Spatial Domain

12.3 Frequency-Domain Watermarking

12.3.1 Substitution Watermarking in the Frequency Domain
12.3.2 Multiplicative Watermarking in the Frequency Domain
12.3.3 Watermarking Based on Vector Quantization
12.3.4 Rounding Error Problem

12.4 Fragile Watermark

12.4.1 The Block-Based Fragile Watermark
12.4.2 Weakness of the Block-Based Fragile Watermark
12.4.3 The Hierarchical Block-Based Fragile Watermark

12.5 Robust Watermark

12.5.1 The Redundant Embedding Approach
12.5.2 The Spread Spectrum Approach

12.6 Combinational Domain Digital Watermarking

12.6.1 Overview of Combinational Watermarking
12.6.2 Watermarking in the Spatial Domain
12.6.3 The Watermarking in the Frequency Domain
12.6.4 Experimental Results
12.6.5 Further Encryption of Combinational Watermarking

References

13 IMAGE STEGANOGRAPHY

13.1 Types of Steganography
13.1.1 Technical Steganography
13.1.2 Linguistic Steganography
13.1.3 Digital Steganography

13.2 Applications of Steganography
13.2.1 Covert Communication
13.2.2 One-Time Pad Communication

13.3 Embedding Security and Imperceptibility

13.4 Examples of Steganography Software
13.4.1 S-Tools
13.4.2 StegoDos
13.4.3 EzStego
13.4.4 JSteg-Jpeg

13.5 Genetic Algorithm-Based Steganography
13.5.1 Overview of the GA-Based Breaking Methodology
13.5.2 The GA-Based Breaking Algorithm on SDSS
13.5.2.1 Generating the Stego Image on the Visual Steganalytic System
13.5.2.2 Generating the Stego Image on the IQM-Based Steganalytic System (IQM-SDSS)
13.5.3 The GA-Based Breaking Algorithm on FDSS
13.5.4 Experimental Results
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.4.1</td>
<td>The GA-Based Breaking Algorithm on VSS</td>
<td>489</td>
</tr>
<tr>
<td>13.5.4.2</td>
<td>The GA-Based Breaking Algorithm on IQM-SDSS</td>
<td>490</td>
</tr>
<tr>
<td>13.5.4.3</td>
<td>The GA-Based Breaking Algorithm on JFDSS</td>
<td>491</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Complexity Analysis</td>
<td>493</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>494</td>
</tr>
</tbody>
</table>

14 Solar Image Processing and Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Automatic Extraction of Filaments</td>
<td>496</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Local Thresholding Based on Median Values</td>
<td>497</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Global Thresholding with Brightness and Area Normalization</td>
<td>501</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Feature Extraction</td>
<td>506</td>
</tr>
<tr>
<td>14.1.4</td>
<td>Experimental Results</td>
<td>511</td>
</tr>
<tr>
<td>14.2</td>
<td>Solar Flare Detection</td>
<td>515</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Feature Analysis and Preprocessing</td>
<td>518</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Classification Rates</td>
<td>519</td>
</tr>
<tr>
<td>14.3</td>
<td>Solar Corona Mass Ejection Detection</td>
<td>521</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Preprocessing</td>
<td>523</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Automatic Detection of CMEs</td>
<td>525</td>
</tr>
<tr>
<td>14.3.2.1</td>
<td>Segmentation of CMEs</td>
<td>525</td>
</tr>
<tr>
<td>14.3.2.2</td>
<td>Features of CMEs</td>
<td>525</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Classification of Strong, Medium, and Weak CMEs</td>
<td>526</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Comparisons for CME Detections</td>
<td>529</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>531</td>
</tr>
</tbody>
</table>

INDEX 535