Contents

Preface xix
Quantities and symbols xxiii
Acronyms xxxix

1 **Background and Essentials** 1
1.1 Introduction 1
1.2 Types and Sources of Ionizing Radiation 1
1.3 Consequences of the Random Nature of Radiation 4
1.4 Interaction Cross Sections 6
1.5 Kinematic Relativistic Expressions 9
1.6 Atomic Relaxations 11
1.6.1 Radiative and Non-radiative Transitions 13
1.6.2 Transition Probabilities and Fluorescence and Auger Yields 16
1.6.3 Emission Cross Sections 22
1.7 Evaluation of Uncertainties 22
1.7.1 Accuracy and Precision – Error and Uncertainty 22
1.7.2 Type A Standard Uncertainty 24
1.7.3 Type B Standard Uncertainty 25
1.7.4 Combined and Expanded Uncertainty 26
1.7.5 Law of Propagation of Uncertainty 26
Exercises 28

2 **Charged-Particle Interactions with Matter** 29
2.1 Introduction 29
2.2 Types of Charged-Particle Interactions 31
2.2.1 Elastic Interactions 32
2.2.2 Inelastic ’Soft’ Collisions 33
2.2.3 Inelastic ’Hard’ Collisions 34
2.2.4 Inelastic Radiative Interactions 35
2.3 Elastic Scattering 36
2.3.1 Single Elastic Scattering (Rutherford) 36
2.3.2 Screening Angle 38
2.3.3 Overview of Other Single Elastic Scattering Theories 41
2.3.4 Multiple Elastic Scattering 43
2.3.4.1 The Gaussian Approach: Multiple Small-Angle Scattering Theory 44
2.3.4.2 Molière’s Theory 47
2.3.4.3 Goudsmit – Saunderson Theory 51
2.3.5 Scattering Power 54
2.4 Inelastic Scattering and Energy Loss 55
2.4.1 Single Inelastic Scattering 56
2.4.1.1 The GOS, the OOS, and Dielectric Response Functions 58
2.4.2 Multiple Inelastic Scattering: Electronic Stopping Power 61
2.4.3 Stopping Number 66
2.4.4 The I-Value (Mean Excitation Energy) 68
2.4.5 Shell Corrections 71
2.4.6 Density Effect Correction (Polarization) 73
2.4.7 Important Features of the Stopping Power Formula 77
2.4.7.1 Dependence on the Stopping Medium 79
2.4.7.2 Dependence on Particle Energy 81
2.4.7.3 Dependence on Particle Charge 81
2.4.7.4 Dependence on Particle Mass 82
2.4.7.5 Relativistic Scaling Considerations 82
2.4.7.6 Other Aspects 82
2.4.8 Electronic Stopping Power for Electrons and Positrons 84
2.4.9 Accuracy of Stopping-Power Calculations 86
2.4.10 Impact Ionization 88
2.4.11 The Bragg Peak 90
2.4.12 Restricted Electronic Stopping Power 91
2.4.13 Energy Loss Straggling 94
2.5 Radiative Energy Loss: Bremsstrahlung 95
2.5.1 Radiative Stopping Power 98
2.5.2 Radiation Yield 101
2.5.3 Radiation Length 102
2.6 Total Stopping Power 103
2.6.1 The Bragg Additive Rule for Compounds 103
2.7 Range of Charged Particles 104
2.7.1 Continuous-Slowing-Down Range and Range Straggling 105
2.7.2 Detour Factor 106
2.8 Number and Energy Distributions of Secondary Particles 106
2.8.1 Number and Energy of Knock-On Electrons 108
2.8.2 Number and Energy of Bremsstrahlung Photons 109
2.9 Nuclear Stopping Power and Interactions by Heavy Charged Particles 112
2.10 The W-Value (Mean Energy to Create an Ion Pair) 114
2.10.1 Calculation of W from the Energy Balance 115
2.10.2 Direct Calculation from Cross Sections 116
2.10.3 Calculation from the Slowings-Down Spectrum 117
2.10.4 Concluding Remarks 118
Contents

2.11 Addendum – Derivation of Expressions for the Elastic and Inelastic Scattering of Heavy Charged Particles

- 2.11.1 Quantum Mechanics Formalism for Elastic Scattering
 - 2.11.1.1 Partial-Wave Analysis (PWA)

- 2.11.2 Quantum Mechanics Formalism for Inelastic Scattering (Bethe Theory)
 - 2.11.2.1 Stopping Power

- 2.11.3 Classical Treatment of Elastic and Inelastic Scattering
 - 2.11.3.1 Elastic Scattering
 - 2.11.3.2 Inelastic Scattering
 - 2.11.3.3 Stopping Power

Exercises

3 Uncharged-Particle Interactions with Matter

- 3.1 Introduction
- 3.2 Photon Interactions with Matter
 - 3.3 Photoelectric Effect
 - 3.3.1 Kinematics
 - 3.3.2 Cross Section
- 3.4 Thomson Scattering
- 3.5 Rayleigh Scattering (Coherent Scattering)
- 3.6 Compton Scattering (Incoherent Scattering)
 - 3.6.1 Kinematics
 - 3.6.2 Cross Section
 - 3.6.3 Binding Effects and Doppler Broadening
- 3.7 Pair Production and Triplet Production
 - 3.7.1 Kinematics
 - 3.7.2 Cross Section
 - 3.7.2.1 Pair Production
 - 3.7.2.2 Triplet Production
 - 3.7.2.3 Total Pair-Production Cross Section
- 3.8 Positron Annihilation
 - 3.8.1 Kinematics
 - 3.8.2 Cross Section
- 3.9 Photonuclear Interactions
 - 3.9.1 Cross Section
- 3.10 Photon Interaction Coefficients
 - 3.10.1 Photon Attenuation Coefficient
 - 3.10.2 Photon Energy-Transfer Coefficient
 - 3.10.2.1 Photoelectric Effect
 - 3.10.2.2 Compton Scattering
 - 3.10.2.3 Pair and Triplet Production
 - 3.10.3 Photon Energy-Absorption Coefficient
 - 3.10.4 Uncertainties in Photon Interaction Data
- 3.11 Neutron Interactions
 - 3.11.1 General Aspects
 - 3.11.2 Elastic Scattering
3.11.3 Inelastic Scattering 209
3.11.4 Neutron Capture 210
3.11.5 Nuclear Spallation 211
3.11.6 Neutron-Induced Fission 211
Exercises 211

4 Field and Dosimetric Quantities, Radiation Equilibrium – Definitions and Inter-Relations 215
4.1 Introduction 215
4.2 Stochastic and Non-stochastic Quantities 215
4.3 Radiation Field Quantities and Units 216
4.3.1 Particle Number and Radiant Energy 216
4.3.2 Flux and Energy Flux 217
4.3.3 Fluence and Energy Fluence 217
4.3.4 Fluence Rate and Energy-Fluence Rate 218
4.3.5 Planar Fluence 218
4.4 Distributions of Field Quantities 219
4.4.1 Energy Distributions 219
4.4.2 Angular Distributions – Particle Radiance and Energy Radiance 220
4.4.3 Distributions in Energy and Angle 220
4.5 Quantities Describing Radiation Interactions 220
4.5.1 Cross Section 221
4.5.2 Interaction Coefficients for Uncharged Particles 222
4.5.3 Interaction Coefficients for Charged Particles 224
4.5.4 Related Quantities – \(G(x) \), \(\mathcal{Y} \), and \(W \) 227
4.6 Dosimetric Quantities 229
4.6.1 Quantities Related to the Transfer of Energy 229
4.6.2 Quantities Related to the Deposition of Energy 232
4.6.3 Summary of the Definitions of Fundamental Dosimetric Quantities 233
4.7 Relationships Between Field and Dosimetric Quantities 233
4.7.1 Photons 234
4.7.2 Neutrons 236
4.7.3 Charged Particles 237
4.8 Radiation Equilibrium (RE) 239
4.9 Charged-Particle Equilibrium (CPE) 242
4.9.1 CPE for Distributed Radioactive Sources 243
4.9.2 CPE for External Sources of Uncharged Particles 244
4.9.3 Restricted CPE for External Sources of Charged Particles (RCPE) 247
4.10 Partial Charged-Particle Equilibrium (PCPE) 248
4.10.1 PCPE and Relationships between Dose, Kerma, and Electronic Kerma 248
4.11 Summary of the Inter-Relations between Fluence, Kerma, Cema, and Dose 252
4.12 Addendum – Example Calculations of (Net) Energy Transferred and Imparted 252
4.12.1 Energy Transferred 252
4.12.2 Energy Imparted 255
Exercises 256

5 Elementary Aspects of the Attenuation of Uncharged Particles 259
5.1 Introduction 259
5.2 Exponential Attenuation 259
5.2.1 Simple Exponential Attenuation 259
5.2.2 Exponential Attenuation for Plural Modes of Absorption 261
5.3 Narrow-Beam Attenuation 261
5.4 Broad-Beam Attenuation 263
5.4.1 Broad-Beam Geometries 266
5.5 Spectral Effects 270
5.6 The Build-up Factor 271
5.7 Divergent Beams – The Inverse Square Law 273
5.8 The Scaling Theorem 276
Exercises 277

6 Macroscopic Aspects of the Transport of Radiation Through Matter 279
6.1 Introduction 279
6.2 The Radiation Transport Equation Formalism 280
6.2.1 Quantities Entering into the Formalism 281
6.2.2 The Transport Equation 282
6.3 Introduction to Monte Carlo Derived Distributions 286
6.4 Electron Beam Distributions 287
6.4.1 Fluence Distributions 287
6.4.2 Dose Distributions 291
6.4.3 Dose Distributions at Interfaces 295
6.5 Protons and Heavier Charged Particle Beam Distributions 296
6.5.1 Fluence Distributions 296
6.5.2 Dose Distributions 298
6.6 Photon Beam Distributions 301
6.6.1 Fluence Distributions 301
6.6.2 Dose Distributions 304
6.6.3 Dose Distributions at Interfaces 307
6.7 Neutron Beam Distributions 309
6.7.1 Fluence Distributions 309
6.7.2 Dose Distributions 311
Exercises 313

7 Characterization of Radiation Quality 315
7.1 Introduction 315
7.2 General Aspects of Radiation Spectra. Mean Energy 316
7.3 Beam Quality Specification for Kilovoltage x-ray Beams 318
7.3.1 x-ray Filtration 319
7.3.2 x-ray Beam Quality Specification 321
7.4 Megavoltage Photon Beam Quality Specification 326
7.5 High-Energy Electron Beam Quality Specification 331
7.6 Beam Quality Specification of Protons and Heavier Charged Particles 335
7.7 Energy Spectra Determination 339
7.7.1 Approaches for the Calculation of Energy Spectra 339
7.7.2 Analytical Models for Inverse Determination of Spectra 342
7.7.3 Experimental Methods 345
Exercises 346

8 The Monte Carlo Simulation of the Transport of Radiation Through Matter 349
8.1 Introduction 349
8.2 Basics of the Monte Carlo Method (MCM) 350
8.2.1 Random Numbers 350
8.2.2 Probability Distributions and Inverse Sampling 351
8.2.3 Sampling by Rejection 352
8.2.4 Sampling from Common Distributions 353
8.2.5 Numerical Integration Using MCM 356
8.2.6 Uncertainty, Timing, and Efficiency 357
8.2.7 Combining Results from Several Monte Carlo Runs 359
8.3 Simulation of Radiation Transport 359
8.3.1 Generation of Particle Tracks 361
8.3.2 Analogue Monte Carlo Simulation 362
8.3.3 Condensed-History Monte Carlo Simulation 365
8.3.4 Geometry 369
8.3.5 Variance Reduction Techniques 371
8.4 Monte Carlo Codes and Systems in the Public Domain 379
8.5 Monte Carlo Applications in Radiation Dosimetry 386
8.5.1 Radiation Sources and Generators 387
8.5.2 Detector Simulation 389
8.5.3 Calculation of Dosimetric Quantities 391
8.6 Other Monte Carlo Developments 393
Exercises 394

9 Cavity Theory 397
9.1 Introduction 397
9.2 Cavities That Are Small Compared to Secondary Electron Ranges 399
9.2.1 The Stopping-Power Ratio Concept 400
9.2.2 Evaluation of the Bragg – Gray Stopping-Power Ratio 401
9.2.3 Spencer – Attix Cavity Theory 404
9.2.4 When Does a Cavity Behave in a Bragg – Gray Manner? 409
9.2.5 Kilovoltage x-ray Qualities 411
9.2.6 Electron Beams 412
9.3 Stopping-Power Ratios 413
9.3.1 Variation of Stopping-Power Ratios with Electron Energy 413
9.3.2 Water/Air Stopping-Power Ratios in Megavoltage Beams 415
9.3.2.1 Differences Between s_{BG}^w and s_{SA}^w, Depth Dependence 415
9.3.2.2 Electrons – Dependence on Beam Energy and Depth 420
9.3.2.3 Photons – Dependence on Beam Quality and Depth 420
9.3.3 Stopping-Power Ratios for Non-gaseous Detectors in Charged-Particle Beams 422
9.4 Cavities That Are Large Compared to Electron Ranges 423
9.5 General or Burlin Cavity Theory 425
9.6 The Fano Theorem 429
9.7 Practical Detectors: Deviations from 'Ideal' Cavity Theory Conditions 431
9.7.1 General Philosophy for Bragg–Gray Detectors 432
9.7.2 Corrections for Non-Bragg–Gray Detectors 434
9.8 Summary and Validation of Cavity Theory 435
9.8.1 Key Expressions for $f_{\text{med,det,Q}}$ 435
9.8.2 Photons of 1 MeV in Water – Consistency of Different Cavity Integrals 435
9.8.3 Transition in Detector Behavior from Bragg–Gray toward 'Large Cavity' 438
Exercises 440

10 Overview of Radiation Detectors and Measurements 443
10.1 Introduction 443
10.2 Detector Response and Calibration Coefficient 444
10.3 Absolute, Reference, and Relative Dosimetry 445
10.4 General Characteristics and Desirable Properties of Detectors 447
10.4.1 Reproducibility 449
10.4.2 Dose Range 450
10.4.2.1 Dose Sensitivity 450
10.4.2.2 Background Readings and Lower Range Limit 450
10.4.2.3 Upper Limit of the Dose Range 451
10.4.3 Dose-Rate Range 452
10.4.3.1 Integrating Dosimeters 452
10.4.3.2 Dose-Rate Meters 453
10.4.4 Stability 453
10.4.4.1 Before Irradiation 453
10.4.4.2 After Irradiation 454
10.4.5 Energy Dependence 454
10.4.5.1 Specification 454
10.4.5.2 Air-Kerma Energy Dependence 455
10.4.5.3 Absorbed-Dose Energy Dependence 457
10.4.5.4 Intrinsic Energy Dependence 458
10.4.5.5 Modification of the Energy Dependence 459
10.5 Brief Description of Various Types of Detectors 460
10.6 Addendum – The Role of the Density Effect and I-Values in the Medium-to-Water Stopping-Power Ratio 467
Exercises 471

11 Primary Radiation Standards 473
11.1 Introduction 473
11.2 Free-Air Ionization Chambers 474
11.2.1 Parallel-Plate Design and Operating Principle 474
11.2.2 Correction Factors for Free-Air Chambers 477
11.2.2.1 Ion Recombination, Polarity, and Field Distortion 477
11.2.2.2 Photon Scatter and Fluorescence 477
11.2.2.3 Electron Loss 477
11.2.2.4 Diaphragm Corrections 478
11.2.3 Alternative Free-Air Chamber Designs 478
11.2.3.1 Cylindrical Chamber 478
11.2.3.2 Wide-Angle Free-Air Chamber 480
11.3 Primary Cavity Ionization Chambers 481
11.3.1 Operating Principle 481
11.3.2 Correction Factors for Cavity Chambers 483
11.3.3 A Cavity Standard for Absorbed Dose 483
11.4 Absorbed-Dose Calorimeters 484
11.4.1 Overview 484
11.4.2 Graphite Calorimeters 485
11.4.3 Water Calorimeters 487
11.5 Fricke Chemical Dosimeter 488
11.6 International Framework for Traceability in Radiation Dosimetry 490
11.6.1 The BIPM and Traceability to the SI 490
11.6.2 The CIPM MRA and the KCDB 490
11.7 Addendum – Experimental Derivation of Fundamental Dosimetric Quantities 491
11.7.1 Derivation of W_{air}/e 492
11.7.2 Derivation of $G(Fe^{3+})$ 492
Exercises 493

12 Ionization Chambers 497
12.1 Introduction 497
12.2 Types of Ionization Chamber 498
12.2.1 Cavity Chambers 498
12.2.1.1 Wall Thickness 499
12.2.1.2 Wall Materials and Insulators 500
12.2.2 Parallel-Plate Chambers 501
12.2.3 Transmission Monitor Chambers 503
12.3 Measurement of Ionization Current 504
12.3.1 General Considerations 504
12.3.1.1 Electrometers 505
12.3.1.2 General Precautions 505
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.2</td>
<td>Charge Measurement</td>
<td>506</td>
</tr>
<tr>
<td>12.3.2.1</td>
<td>Measurement Principle</td>
<td>506</td>
</tr>
<tr>
<td>12.3.2.2</td>
<td>Capacitors</td>
<td>507</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Current Measurement and Electrometer Calibration</td>
<td>508</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Correction for Influence Quantities</td>
<td>508</td>
</tr>
<tr>
<td>12.3.4.1</td>
<td>Air Temperature</td>
<td>509</td>
</tr>
<tr>
<td>12.3.4.2</td>
<td>Air Pressure</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.3</td>
<td>Air Humidity</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.4</td>
<td>Polarity Effect</td>
<td>512</td>
</tr>
<tr>
<td>12.4</td>
<td>Ion Recombination</td>
<td>513</td>
</tr>
<tr>
<td>12.4.1</td>
<td>The Saturation Curve</td>
<td>514</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Initial Recombination and Diffusion</td>
<td>515</td>
</tr>
<tr>
<td>12.4.2.1</td>
<td>Two-Voltage Method</td>
<td>516</td>
</tr>
<tr>
<td>12.4.3</td>
<td>General (or Volume) Recombination</td>
<td>517</td>
</tr>
<tr>
<td>12.4.3.1</td>
<td>Pulsed Radiation</td>
<td>518</td>
</tr>
<tr>
<td>12.4.3.2</td>
<td>Continuous Radiation</td>
<td>520</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Niacle Method to Separate Initial and General Recombination</td>
<td>522</td>
</tr>
<tr>
<td>12.4.5</td>
<td>Free-Electron Collection</td>
<td>523</td>
</tr>
<tr>
<td>12.5</td>
<td>Addendum – Air Humidity in Dosimetry</td>
<td>524</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Density of Humid Air</td>
<td>524</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Influence of Humidity on Dosimetric Quantities</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>531</td>
</tr>
</tbody>
</table>

13 Chemical Dosimeters

13.1 Introduction 533
13.2 Radiation Chemistry in Water 533
13.2.1 Early Events 533
13.2.2 Chemical Stage 535
13.2.3 G(x)-Values and Primary Product Concentrations 535
13.3 Chemical Heat Defect 538
13.4 Ferrous Sulfate Dosimeters 539
13.4.1 Determination of the Fe$^{3+}$ (Ferric Ion) Concentration 541
13.4.2 Temperature-Dependent Aspects of Fricke Dosimetry 543
13.4.3 Composition of the Solution 543
13.4.4 Irradiation Vials 544
13.4.5 Energy Dependence of the Fricke Dosimeter 544
13.4.5.1 Absorbed Dose to Water from Absorbed Dose to Fricke 545
13.4.5.2 Energy Dependence of $G(\text{Fe}^{3+})$ 546
13.5 Alanine Dosimetry 547
13.5.1 Signal Readout and Dose to Alanine 552
13.5.2 Temperature Effects, Humidity Effect, and Linearity 554
13.5.3 Energy Dependence of the Alanine Dosimeter 555
13.6 Film Dosimetry 556
13.6.1 Radiographic Film 556
13.6.1.1 Chemical Processing 557
13.6.1.2 Optical Density of Film 558
13.6.1.3 Processing Conditions 560
13.6.1.4 Energy Dependence 560
13.6.1.5 Dose-Rate Dependence 561
13.6.1.6 Film Packaging and Air Traps 561
13.6.1.7 Nuclear Track Emulsions 562
13.6.2 Radiochromic Film 562
13.6.2.1 Film Structure 563
13.6.2.2 Measurement Principle 563
13.6.2.3 Radiochromic Film Calibration 564
13.6.2.4 Energy Dependence 566
13.7 Gel Dosimetry 568
13.7.1 Fricke Gels 568
13.7.2 Polymer Gels 569
13.7.3 Radiation Chemical Yield of Gels 570
13.7.4 Gel Readout Techniques 571
13.7.4.1 Magnetic Resonance Relaxometry 571
13.7.4.2 X-ray Computed Tomography Imaging 573
13.7.4.3 Optical Computed Tomography Imaging 573
13.7.5 Energy Dependence 574
Exercises 574

14 Solid-State Detector Dosimetry 577
14.1 Introduction 577
14.2 Thermoluminescence Dosimetry 577
14.2.1 The Thermoluminescence Process 577
14.2.1.1 Materials 577
14.2.1.2 Randall–Wilkins Theory 579
14.2.1.3 Trap Stability 580
14.2.1.4 Intrinsic Efficiency of TLD Phosphors 582
14.2.2 TLD Readers 582
14.2.3 TLD Phosphors 583
14.2.4 TLD Forms 586
14.2.5 Calibration of Thermoluminescent Dosimeters 587
14.2.5.1 Form 587
14.2.5.2 TLD Linearity and Dose-Rate Dependence 587
14.2.5.3 TLD Energy Dependence 587
14.2.6 Advantages and Disadvantages of TLDs 589
14.2.6.1 Advantages 589
14.2.6.2 Disadvantages 590
14.3 Optically-Stimulated Luminescence Dosimeters 591
14.3.1 OSLD Mechanism 591
14.3.2 OSLD Readout 593
14.3.3 OSLD Materials 594
14.3.4 OSLD Energy Dependence 595
14.4 Scintillation Dosimetry 596
14.4.1 Introduction 596
14.4.2 Light Output Efficiency 597
14.4.3 Scintillator Types 598
14.4.4 Light Collection and Measurement 600
14.4.4.1 Scintillator Enclosure 600
14.4.4.2 Light Pipe or Fiber 601
14.4.4.3 PM tube or photodetector 604
14.4.4.4 Čerenkov Radiation 605
14.4.5 Comparison with Ionization Chambers and Other Detectors 606
14.4.6 Pulse-Shape Discrimination 606
14.4.7 β-Ray Dosimetry 607
14.4.8 Energy Dependence of Plastic Fiber Scintillation Dosimeters 608
14.5 Semiconductor Detectors for Dosimetry 609
14.5.1 Introduction 609
14.5.2 Basic Operation of Reverse-Biased Semiconductor Junction Detectors 610
14.5.3 Diode Dosimeters 611
14.5.3.1 Diode Construction and Functioning 611
14.5.3.2 Diode Energy Dependence 613
14.5.4 Lithium-Drifted and HP(Ge) Detectors for Spectroscopy 615
14.5.5 Use of Si(Li) as an Ion-Chamber Substitute 617
14.5.6 Use of Si(Li) Junctions with Reverse Bias as Counting Dose-Rate Meters 617
14.5.7 Fast-Neutron Dosimetry 618
14.5.8 MOSFET Dosimeters 618
14.5.8.1 MOSFET Construction and Functioning 618
14.5.8.2 MOSFET Energy Dependence 622
14.5.9 Diamond Detectors 623
14.5.9.1 Diamond Detector Construction and Functioning 624
14.5.9.2 Diamond Detector Energy Dependence 627
Exercises 628

15 Reference Dosimetry for External Beam Radiation Therapy 631
15.1 Introduction 631
15.2 A Generalized Formalism 632
15.2.1 Detector Calibration Coefficient and Beam Calibration 632
15.2.2 Cross-Calibration of Ionization Chambers and Detectors 635
15.3 Practical Implementation of Formalisms 636
15.3.1 Dosimetry Protocols for Kilovoltage X-ray Beams Based on Air-Kerma Standards 638
15.3.1.1 Low-Energy kV x-ray Beams 640
15.3.1.2 Medium-Energy kV x-ray Beams 642
15.3.2 Dosimetry Protocols for Megavoltage Beams Based on Air-Kerma Standards 642
15.3.2.1 The N_{Dair} Chamber Coefficient 643
15.3.2.2 Dose Determination in Electron and Photon Beams 645
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.2.3</td>
<td>Dose Determination in Protons and Heavier Charged-Particle Beams</td>
<td>645</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Dosimetry Codes of Practice Based on Standards of Absorbed Dose to Water</td>
<td>646</td>
</tr>
<tr>
<td>15.3.3.1</td>
<td>The Beam Quality Correction Factor, k_{Q_0}</td>
<td>647</td>
</tr>
<tr>
<td>15.3.3.2</td>
<td>The Q_{int} Approach for Reference Qualities Different from ^{60}Co</td>
<td>648</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Relation between $N_K - N_{D,\text{air}}$ and $N_{D,w}$ Dosimetry Protocols</td>
<td>651</td>
</tr>
<tr>
<td>15.4</td>
<td>Quantities Entering into the Various Formalisms</td>
<td>651</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Quantities for Kilovoltage X-ray Beams</td>
<td>652</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Quantities for High-Energy Beams</td>
<td>656</td>
</tr>
<tr>
<td>15.4.2.1</td>
<td>Stopping-Power Ratios</td>
<td>656</td>
</tr>
<tr>
<td>15.4.2.2</td>
<td>Impact of the I-Value for Water on Reference Dosimetry</td>
<td>663</td>
</tr>
<tr>
<td>15.4.2.3</td>
<td>Perturbation Correction Factors</td>
<td>664</td>
</tr>
<tr>
<td>15.5</td>
<td>Accuracy of Radiation Therapy Reference Dosimetry</td>
<td>669</td>
</tr>
<tr>
<td>15.6</td>
<td>Addendum – Perturbation Correction Factors</td>
<td>671</td>
</tr>
<tr>
<td>15.6.1</td>
<td>Departure of Practical Ionization Chambers from Bragg – Gray Conditions</td>
<td>673</td>
</tr>
<tr>
<td>15.6.2</td>
<td>The Correction for the Chamber Wall, p_{wall}</td>
<td>674</td>
</tr>
<tr>
<td>15.6.3</td>
<td>Correcting for the Finite Size of the Gas Cavity, p_{dis} and p_{fl}</td>
<td>678</td>
</tr>
<tr>
<td>15.6.3.1</td>
<td>Averaging over the Cavity Volume, p_{dis}</td>
<td>678</td>
</tr>
<tr>
<td>15.6.3.2</td>
<td>Fluence Perturbation, p_{fl}</td>
<td>683</td>
</tr>
<tr>
<td>15.6.4</td>
<td>The Correction for the Central Electrode, p_{cel}</td>
<td>686</td>
</tr>
<tr>
<td>15.6.5</td>
<td>Perturbation Factors for kV X-ray Beams</td>
<td>687</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>689</td>
</tr>
</tbody>
</table>

16 | Dosimetry of Small and Composite Radiotherapy Photon Beams | 693 |
16.1	Introduction	693
16.2	Overview	694
16.3	The Physics of Small Megavoltage Photon Beams	696
16.3.1	Charged-Particle Disequilibrium in Small Beams	696
16.3.2	Source Size and Small Beams	698
16.3.3	Spectral Changes in Small Beams	699
16.4	Dosimetry of Small Beams	701
16.4.1	Formalism	702
16.4.2	Beam Quality Specification	707
16.4.3	Stopping-Power Ratios for Small Beams	709
16.4.4	Ionization Chamber Perturbation Effects in Small Beams	711
16.5	Detectors for Small-Beam Dosimetry	714
16.6	Dosimetry of Composite Fields	717
16.6.1	Formalism	718
16.6.2	Absence of CPE in Composite Field Dosimetry	721
16.6.3	Correction Factors in Composite Field Dosimetry	721
16.7	Addendum—Measurement in Plastic Phantoms	723
Exercises		726
17 Reference Dosimetry for Diagnostic and Interventional Radiology 729
17.1 Introduction 729
17.2 Specific Quantities and Units 730
17.2.1 Air Kerma versus Water Kerma 733
17.3 Formalism for Reference Dosimetry 736
17.3.1 Differences between the Diagnostic and Radiotherapy Formalisms 739
17.4 Quantities Entering into the Formalism 740
17.4.1 Quantities for Monoenergetic Photons 743
17.4.2 Quantities for Clinical X-ray Spectra 745
17.4.3 Influence of Phantom Thickness and Material 747
Exercises 751

18 Absorbed Dose Determination for Radionuclides 753
18.1 Introduction 753
18.2 Radioactivity Quantities and Units 755
18.2.1 Decay Constant 755
18.2.2 Activity 755
18.2.3 Partial Decay Constants and Activity 756
18.2.4 Half-Life and Mean Life 756
18.2.5 Air-Kerma Rate Constant 757
18.3 Dosimetry of Unsealed Radioactive Sources 763
18.3.1 The Absorbed-Dose Fraction; Isotropic Dose Kernels 764
18.3.2 Dosimetry of Radioactive Disintegration Processes 773
18.3.2.1 Alpha Decay 774
18.3.2.2 Beta Decay 776
18.3.2.3 Electron Capture Decay 780
18.3.2.4 Internal Conversion versus γ-Ray Emission 782
18.3.3 Mean Energy Emitted Per Nuclear Transformation 784
18.3.4 The MIRD Approach for Clinical Radionuclide Dose Estimation 786
18.4 Dosimetry of Sealed Radioactive Sources 788
18.4.1 Dosimetry of Point and Linear Sources 789
18.4.1.1 Point Isotopic Source 792
18.4.1.2 Linear Source 792
18.4.2 Specification of Brachytherapy Sources 795
18.4.3 Air-Kerma Rate Measurement of Brachytherapy Sources 796
18.4.4 Dosimetry of Brachytherapy Sources. The AAPM TG-43 Approach 798
18.4.5 Analytical Approximation for the Dose-Rate Constant 802
18.5 Addendum – The Reciprocity Theorem for Unsealed Radionuclide Dosimetry 804
18.5.1 Background 804
18.5.2 The Reciprocity Theorem 805
Exercises 809