Contents

List of Contributors XXI
About the Series Editors XXXI
Preface XXXIII

Part I Enabling and Improving Large-Scale Bio-production 1

1 Industrial-Scale Fermentation 3
 Hans-Peter Meyer, Wolfgang Minas, and Diego Schmidhalter
1.1 Introduction 3
1.2 Industrial-Scale Fermentation Today 5
1.2.1 Organisms Used in Large-Scale Fermentation 5
1.2.2 Contemporary Large-Scale Fermentation 7
1.2.3 Economic Aspects of Industrial Fermentation from a Market Perspective 14
1.2.4 The Drivers and the Future of Industrial Fermentation 15
1.3 Engineering and Design Aspects 18
1.3.1 Process Development – Scale-Up Starts at Laboratory Scale 18
1.3.2 Plant Design Aspects 19
1.3.2.1 General Aspects of Plant Design 19
1.3.2.2 Design Constraints and Guidelines 21
1.3.2.3 Seed Lines 24
1.3.2.4 Vessel Geometry 25
1.3.2.5 Mixing and Mass Transfer 27
1.3.2.6 Temperature Control and Heat Transfer 31
1.3.2.7 Oxygenation 32
1.4 Industrial Design Examples 36
1.4.1 Cephalosporin C Production 36
1.4.2 Monoclonal Antibody Production at the 10 m³ Scale 39
1.4.3 Nonsterile Fermentations 42
1.5 Cost Analysis for the Manufacture of Biotechnological Products 42
1.5.1 Investment 42
1.5.2 Operational Cost, Cost of Manufacturing 43
1.5.3 Return on Invested Capital 47
1.6 Influence of Process- and Facility-Related Aspects on Cost Structure 47

1.6.1 Process-Related Aspects 48

1.6.2 Site-Related Aspects 48

Acknowledgments 51

References 52

2 Scale-Down: Simulating Large-Scale Cultures in the Laboratory 55

Alvaro R. Lara, Laura A. Palomares, and Octavio T. Ramírez

2.1 Introduction 55

2.2 Heterogeneities at Large Scale and the Need for Scaling Down 56

2.3 Bioreactor Scale-Down 58

2.4 Tools to Study Cell Responses to Environmental Heterogeneities 62

2.4.1 Scale-Down Simulators 62

2.4.1.1 One-Compartment Scale-Down Systems 63

2.4.1.2 Multicompartment Scale-Down Systems 64

2.4.2 Analytical Techniques 66

2.4.2.1 Metabolic Studies 66

2.4.2.2 Differential Gene Expression and Protein Accumulation 67

2.4.2.3 Physical Measurements 67

2.4.2.4 Mathematical Modeling 68

2.5 Physiological Effects of Environmental Heterogeneities 68

2.5.1 Negative Effects 68

2.5.1.1 Negative Effects on Animal Cells 70

2.5.2 Positive Effects 71

2.5.3 Further Observations 72

2.6 Improvements Based on Scale-Down Studies: Bioreactor Design and Cell Engineering 72

2.7 Perspectives 73

Acknowledgment 74

References 74

3 Bioreactor Modeling 81

Rob Mudde, Henk Noorman, and Matthias Reuss

3.1 Large-Scale Industrial Fermentations: Challenges for Bioreactor Modeling 81

3.1.1 Global Status 81

3.1.2 Perspectives 82

3.2 Bioreactors 83

3.2.1 Stirred-Tank Bioreactors 83

3.2.2 Bubble Columns and Air-Lift Reactors 86

3.2.3 Other Reactors 86

3.2.4 Bioreactor Modeling 87
3.3 Compartment and Hybrid Multizonal/Computational Fluid Dynamics Approaches for the Description of Large-Scale Bioreactor Phenomena 89
3.3.1 Compartment Models 89
3.3.2 Hybrid Multizonal/CFD Models 91
3.4 Computational Fluid Dynamics Modeling: Unstructured Continuum Approach (Euler–Euler) 92
3.4.1 Introduction 92
3.4.2 Single Phase 93
3.4.2.1 Turbulence Modeling 95
3.4.3 Two-Phase Flow 100
3.4.3.1 Approaches 100
3.4.3.2 Euler–Euler Model 100
3.4.3.3 Interaction Forces 102
3.4.3.4 Turbulence Modeling 103
3.4.4 CFD of Gassed Stirred Tanks 104
3.4.4.1 Bubble Size 105
3.4.4.2 Glucose Uptake 110
3.4.4.3 Oxygen Uptake – Distribution of Dissolved Oxygen 111
3.4.5 Summary of CFD 112
3.5 Computational Fluid Dynamics Modeling: Structured Segregated Approach (Euler–Lagrange) 114
3.5.1 Introduction 114
3.5.2 Euler–Lagarange Modeling 115
3.5.3 Metabolic Structuring 117
3.5.4 Model Simulations and Detailed Insight into Cell Responses to Dynamic Conditions in Large Bioreactors 118
3.6 Conclusion 122
3.7 Outlook 122
References 124

4 Cell Culture Technology 129
Ralf Pörtner, Uwe Jandt, and An-Ping Zeng
4.1 Introduction 129
4.2 Overview of Applications for Cell Culture Products and Tissue Engineering 129
4.3 Fundamentals 131
4.3.1 Cell Sources 131
4.3.2 Cell Physiology and Kinetics for Process Engineering 132
4.3.3 Population Dynamics, Cell-Cycle Dependence, and Implications on Process Control 134
4.3.3.1 Separation Methods and Analytics 135
4.3.3.2 Population-Resolved Modeling and Data Treatment 136
4.3.3.3 Population-Resolved Online Monitoring and Process Control 138
4.3.4 Medium Design 139
4.4 Bioreactors for Cell Culture 140
4.4.1 Requirements 140
4.4.2 Bioreactors for Suspended Cells 142
4.4.3 Single-Use Bioreactors 144
4.4.4 Fixed-Bed and Fluidized-Bed Reactors 144
4.4.5 Hollow-Fiber and Membrane Reactors 145
4.4.6 Process Strategies and Control 145
4.5 Downstream 146
4.6 Regulatory and Safety Issues 150
4.7 Conclusions and Outlook 152
References 152

Part II Getting Out More: Strategies for Enhanced Bioprocessing 159

5 Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 161
Tomohisa Hasunuma and Akihiko Kondo
5.1 Introduction 161
5.2 Utilization of Starchy Biomass 163
5.2.1 Pretreatment and Enzymatic Hydrolysis of Starch 163
5.2.2 Consolidated Bioprocessing for Starch Utilization 164
5.3 Utilization of Lignocellulosic Biomass 166
5.3.1 Pretreatment and Enzymatic Hydrolysis of Lignocellulose 166
5.3.2 Consolidated Bioprocessing for Lignocellulose Utilization 167
5.3.2.1 Introduction 167
5.3.2.2 Production of Chemicals with Native Cellulase-Producing Microbes 168
5.3.2.3 Production of Chemicals with Recombinant Cellulose-Utilizing Microbes 169
5.4 Conclusions and Perspectives 177
Acknowledgment 177
References 178

6 Solid-State Fermentation 187
Reeta Rani Singhania, Anil Kumar Patel, Leya Thomas, and Ashok Pandey
6.1 Introduction 187
6.2 Fundamentals Aspects of SSF 188
6.2.1 Selection of Microorganisms 188
6.2.2 Specific Growth Rate 189
6.2.2.1 Biomass Measurement 192
6.3 Factors Affecting Solid-State Fermentation 193
6.3.1 Moisture 193
6.3.2 Water Activity 193
6.3.3 Temperature 194
6.3.4 pH 194
6.3.5 Inoculum Type 194
6.3.6 Substrates 194
6.3.6.1 Particle Size 195
6.3.7 Aeration and Agitation 196
6.4 Scale-Up 196
6.4.1 Large-Scale Inoculum Development 196
6.4.2 Medium Sterilization 196
6.4.3 Aeration and Agitation 197
6.4.4 Heat Removal and Moisture Balance 197
6.4.5 pH Control 198
6.5 Product Recovery 198
6.6 Bioreactor Designing 198
6.6.1 Shallow-Tray Fermenter 199
6.6.2 Column/Fixed-Bed Fermenters 199
6.6.3 Rotating-Drum Bioreactors 199
6.7 Kinetics and Modeling 200
6.8 Applications 201
6.9 Challenges in SSF 202
6.10 Summary 203
References 203

7 Cell Immobilization: Fundamentals, Technologies, and Applications 205
Xumeng Ge, Liangcheng Yang, and Jianfeng Xu
7.1 Introduction 205
7.2 Fundamentals of Cell Immobilization 206
7.3 Immobilization with Support Materials 207
7.3.1 Surface Attachment 208
7.3.1.1 Adsorption 208
7.3.1.2 Covalent Binding 209
7.3.1.3 Biofilm Formation 209
7.3.2 Entrapment 210
7.3.2.1 Entrapment in Gel Matrixes 210
7.3.2.2 Entrapment in Porous Particles 210
7.3.3 Encapsulation 211
7.3.4 Membrane Retention 212
7.4 Self-Immobilization 212
7.4.1 Microorganisms 213
7.4.1.1 Prokaryotic Cells 213
7.4.1.2 Eukaryotic Cells 214
7.4.2 Plant Cells 218
7.5 Immobilized Cells and their Applications 218
7.5.1 Microorganisms 219
7.5.2 Plant Cells 221
Contents

7.5.3 Mammalian and Insect cells 221
7.6 Bioreactors for Cell Immobilization 225
7.6.1 Stirred-Tank Bioreactor 226
7.6.2 Packed-Bed Bioreactor 227
7.6.3 Fluidized-Bed Bioreactor 227
7.6.4 Air-Lift Bioreactor 228
7.6.5 Membrane Bioreactor 228
7.7 Challenges and Recommendations for Future Research 229
7.8 Conclusions 230
References 231

Part III Molecules for Human Use: High-Value Drugs, Flavors, and Nutraceuticals 237

8 Anticancer Drugs 239
Le Zhao, Zengyi Shao, and Jacqueline V Shanks
8.1 Natural Products as Anticancer Drugs 239
8.2 Anticancer Drug Production 239
8.2.1 Production Systems 239
8.2.2 Approaches for Improving Production 241
8.2.3 Gene Discovery 242
8.3 Important Anticancer Natural Products 243
8.3.1 Vinca Alkaloids 243
8.3.2 Taxane Diterpenoids 250
8.3.3 Podophyllotoxin Lignans 256
8.3.4 Camptothecin Quinoline Alkaloids 258
8.4 Prospects 261
8.4.1 Identification of Intermediates in the Biosynthetic Pathways of Anticancer Drugs 261
8.4.2 Discovery of Unknown Genes in Biosynthetic Pathways 262
8.4.3 Production of Anticancer Drugs in Microbial Hosts 262
References 263

9 Biotechnological Production of Flavors 271
Maria Elisabetta Brenna and Fabio Parmeggiani
9.1 History 271
9.2 Survey on Today’s Industry 272
9.3 Regulations 273
9.4 Flavor Production 274
9.5 Biotechnological Production of Flavors 275
9.5.1 Traditional Fermentations 275
9.5.2 De novo Synthesis 276
9.5.3 Bioconversions 277
9.6 Vanillin 277
9.6.1 From Eugenol 278
9.6.2 From Isoeugenol 278
9.6.3 From Ferulic Acid 280
9.6.4 From Lignin 281
9.7 2-Phenylethanol 281
9.8 Benzaldehyde 283
9.9 Lactones 285
9.10 Raspberry Ketone 289
9.11 Green Notes 291
9.12 Nootkatone 293
9.13 Future Perspectives 296
References 297

10 Nutraceuticals (Vitamin C, Carotenoids, Resveratrol) 309
Sanjay Guleria, Jingwen Zhou, and Mattheos A.G. Koffas
10.1 Introduction 309
10.2 Vitamin C 310
10.2.1 Production of L-AA by Chemical Synthesis 311
10.2.2 Production of L-AA by a Two-Step Fermentation Process 311
10.2.3 Classical Two-Step Fermentation Process 312
10.2.4 New Two-Step Fermentation Process 313
10.2.5 Production of L-AA by a One-Step Fermentation Process 314
10.2.6 Classical Two-Step Fermentation Process-Based Attempts 314
10.2.7 New Two-Step Fermentation Process-Based Attempts 316
10.2.8 Reconstruction of L-AA Biosynthesis Pathway from Higher Organisms in Microorganisms 316
10.3 Carotenoids 317
10.3.1 Biosynthesis of Carotenoids 319
10.3.2 Metabolic Engineering of Carotenoid Biosynthesis in Microbes 321
10.4 Resveratrol 323
10.4.1 Biosynthesis of Resveratrol and Its Derivatives 324
10.4.2 Metabolic Engineering of Resveratrol and its Derivatives 327
10.5 Future Perspectives 329
References 330

Part IV Industrial Amino Acids 337

11 Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process 339
Takashi Hirasawa and Hiroshi Shimizu
11.1 Introduction 339
11.2 Discovery of the Glutamic Acid-Producing Bacterium C.glutamicum 340
11.2.1 Glutamic Acid Production Prior to the Discovery of Glutamic Acid-Producing Microorganisms 340
11.2.2 Discovery of *C. glutamicum*, a Glutamic Acid-Producing Bacterium 340

11.2.3 Characteristics of *C. glutamicum* 342

11.3 Analysis of the Mechanism of Glutamic Acid Production by *C. glutamicum* 342

11.3.1 Relationship between Cell-Surface Structure and Glutamic Acid Production in *C. glutamicum* 343

11.3.2 Metabolic Regulation during Glutamic Acid Overproduction in *C. glutamicum* 345

11.3.2.1 Biosynthesis of Glutamic Acid in *C. glutamicum* 345

11.3.2.2 Relationship between Enzyme Activity of the 2-Oxoglutarate Dehydrogenase Complex and Glutamic Acid Production 346

11.3.2.3 OdhI Decreases the Enzymatic Activity of the 2-Oxoglutarate Dehydrogenase Complex 347

11.3.2.4 Anaplerotic Reactions in Glutamic Acid Overproduction 348

11.3.3 Involvement of a Mechanosensitive Channel, NCgl1221, in Glutamic Acid Secretion in *C. glutamicum* 349

11.4 Metabolic Engineering of *C. glutamicum* for Glutamic Acid Production 350

11.4.1 Metabolic Engineering 350

11.4.2 Metabolic Flux Analysis in Glutamic Acid Production 350

11.4.2.1 Analysis of the Impact of Activities of Enzymes Related to Glutamic Acid Production on the Flux of Glutamic Acid Production 351

11.4.2.2 Use of 13C-MFA to Investigate the Importance of Anaplerotic Reactions to Glutamic Acid Production 351

11.4.3 Metabolic Engineering for Improvement of Glutamic Acid Production 351

11.5 Glutamic Acid Fermentation by Other Microorganisms 352

11.6 Industrial Process of Glutamic Acid Production 353

11.7 Future Perspectives 354

References 355

12 L-Lysine 361

Volker F. Wendisch

12.1 Uses of L-Lysine 361

12.1.1 Feed Use of Amino Acids 361

12.1.2 Economic Importance and Means of Production of L-Lysine 362

12.2 Biosynthesis and Production of L-Lysine 363

12.2.1 L-Lysine Biosynthesis 363

12.2.2 Strain Development for the Production of L-Lysine 363

12.2.2.1 L-Lysine Transport 365

12.2.2.2 De-bottlenecking L-Lysine Biosynthesis 366

12.2.2.3 NADPH Supply for L-Lysine Production 366

12.2.2.4 Reduction of Byproducts of L-Lysine Production 367

12.2.2.5 Precursor Supply for L-Lysine Production 367
12.2.3 Industrial Processes of L-Lysine Production 368
12.2.4 Flexible Feedstock Concept of C. glutamicum: Engineering Carbon Source Utilization 369
12.2.4.1 Molasses, Glucose, Fructose, Sucrose, and Starch 370
12.2.4.2 Lignocellulosics, Cellulose, Xylose, Arabinose, Acetate, Galactose 371
12.2.4.3 Silage Juice and Lactic Acid 373
12.2.4.4 Amino Sugars 373
12.2.4.5 Dicarboxylic Acids 374
12.2.4.6 Glycerol 374
12.3 The Chassis Concept: Biotin Prototrophy and Genome Reduction 374
12.3.1 Engineering Biotin Prototrophic C. glutamicum 375
12.3.2 Genome-Streamlined C. glutamicum Strains 375
12.4 L-Lysine Biosensors for Strain Selection and on-Demand Flux Control 377
12.4.1 Transcriptional Regulators as Diagnostic Metabolite Sensors for Screening 377
12.4.2 Riboswitches as Metabolite Sensors for on-Demand Metabolic Flux Control 379
12.5 Perspective 380
References 380

Part V Bio-Based Monomers and Polymers 391

13 Diamines for Bio-Based Materials 393
Judith Becker and Christoph Wittmann
13.1 Introduction 393
13.2 Diamine Metabolism in Bacteria 395
13.3 Putrescine – 1,4-Diaminobutane 395
13.3.1 Metabolism of Putrescine 396
13.3.2 Biosynthesis and Pathway Regulation 396
13.3.3 Metabolic Engineering for Putrescine Production 398
13.4 Cadaverine – 1,5-Diaminopentane 399
13.4.1 Metabolism of Diaminopentane 399
13.4.2 Biosynthesis and Pathway Regulation 400
13.4.3 Metabolic Engineering for Cadaverine Production 400
13.4.4 Bio-Based Polyamide PA5.10 – A Success Story 403
13.5 Conclusions and Perspectives 403
References 404

14 Microbial Production of 3-Hydroxypropionic Acid 411
Yokimiko David, Young Hoon Oh, Mary Grace Baylon, Kei-Anne Baritugo, Jeong Chan Joo, Cheol Gi Chae, You Jin Kim, and Si Jae Park
14.1 Introduction 411
14.2 3-HP Obtained from Native Producers 413
14.2.1 3-HP as an Intermediate of CO\textsubscript{2} Fixation 413
14.2.2 Degradation Pathways 415
14.2.2.1 Acrylic Acid 415
14.2.2.2 Pyrimidines (Uracil and Thymine) 415
14.2.3 3-HP as a Nematicide 417
14.3 Synthesis of 3-HP from Glucose 417
14.4 Synthesis of 3-HP from Glycerol 421
14.4.1 CoA-Independent \textit{dha} Operon 422
14.4.2 CoA-Dependent \textit{pdu} Operon 425
14.4.3 Redirecting the Flux toward 3-HP Production 426
14.4.4 \textit{K. pneumoniae} as a Host for Glycerol-Derived 3-HP Production 426
14.4.5 3-HP Production from Glycerol in Recombinant \textit{E. coli} 431
14.5 Bridging the Gap Between Glucose and Glycerol in 3-HP Production 437
14.6 Other Strains for 3-HP Production from Glycerol 438
14.7 Limitations of 3-HP Synthesis 440
14.8 Conclusions and Future Prospects 442
Acknowledgments 443
References 444

15 \textbf{Itaconic Acid – An Emerging Building Block} 453
Matthias G. Steiger, Nick Wierckx, Lars M. Blank, Diethard Mattanovich, and Michael Sauer
15.1 Background, History, and Economy 453
15.2 Biosynthesis of Itaconic Acid 455
15.2.1 \textit{Aspergillus terreus} 455
15.2.2 Genes and Enzymes Involved in the Biosynthesis of Itaconic Acid in \textit{A. terreus} 455
15.2.3 Genes and Enzymes Involved in the Biosynthesis of Itaconic Acid in \textit{Ustilago maydis} 459
15.3 Production Conditions for Itaconic Acid 459
15.4 Physiological Effects and Metabolism of Itaconic acid 461
15.5 Metabolic Engineering for Itaconic Acid Production 462
15.6 Outlook 467
Acknowledgments 468
References 469

Part VI \textbf{Top-Value Platform Chemicals} 473

16 \textbf{Microbial Production of Isoprene: Opportunities and Challenges} 475
Huibin Zou, Hui Liu, Elhussiny Aboulnaga, Huizhou Liu, Tao Cheng, and Mo Xian
16.1 Introduction 475
16.2 The Milestones of Isoprene Production 476
16.3 Microbial Production of Isoprene: Out of the Laboratory 477
16.3.1 Advantages of Bioisoprene Against Petroleum-Derived Isoprene 477
16.3.2 Metabolic Pathways and Key Enzyme of Bioisoprene 477
16.3.3 Metabolic Engineering of MVA and MEP Pathways for Microbial Production of Isoprene 480
16.3.4 Substrate for the Microbial Production of Isoprene 481
16.3.5 Evaluation of Isoprene Biosynthetic Process from Different Substrates 482
16.3.6 Chassis Strains for the Microbial Production of Isoprene 485
16.3.7 Recovery Techniques for the Gas-Phase Bioisoprene 486
16.3.8 Scale-up Fermentation and Process Control of Bioisoprene 487
16.4 Main Challenges for Bioisoprene Production 489
16.5 Future Prospects 491
16.5.1 Rational Design of Central Metabolic Pathway to Increase the Yield and Productivity of Isoprene 491
16.5.2 Improving the Yield via Metabolic Pathways (MVA/MEP) Engineering 492
16.5.3 Improving the Intermediate Precursors via Enzyme Engineering 494
16.5.4 Novel Substrates for Bioisoprene 494
16.5.5 Integration of Bio and Chemo Substrates and Process for Isoprene Production 495
16.5.6 Novel Hosts for Isoprene Production 495
16.5.7 Exploring Anaerobic Routes 496
16.5.8 Biosynthesis of Value-Added Isoprene Derivatives 497
Acknowledgments 498
References 498

17 Succinic Acid 505
Jung Ho Ahn, Yu-Sin Jang, and Sang Yup Lee
17.1 Introduction 505
17.2 Development of Succinic Acid Producers and Fermentation Strategies 506
17.2.1 Actinobacillus succinogenes 507
17.2.2 Anaerobiospirillum succiniciproducens 510
17.2.3 Corynebacterium glutamicum 512
17.2.4 Escherichia coli 515
17.2.5 Mannheimia succiniciproducens 526
17.2.6 Saccharomyces cerevisiae 530
17.3 Succinic Acid Recovery and Purification 533
17.3.1 Precipitation 533
17.3.2 Electrodialysis 534
17.3.3 Reactive Extraction 535
17.3.4 Adsorption 536
17.4 Summary 536
Acknowledgments 537
References 537

Part VII Biorenewable Fuels 545

18 Ethanol: A Model Biorenewable Fuel 547
Tao Jin, Jieni Lian, and Laura R. Jarboe
18.1 Introduction 547
18.2 Metabolic Engineering: Design, Build, Test, Learn 549
18.2.1 Design: Metabolic Pathway Engineering 550
18.2.1.1 Introduction of a Foreign Pathway to Enable Non-native Substrate Utilization 550
18.2.1.2 Introduction of a Foreign Pathway to Enable Homoethanol Production 552
18.2.1.3 Selection of Metabolic Pathways for Modification 554
18.2.1.4 Metabolic Engineering to Enable Mixed-Substrate Utilization 554
18.2.1.5 Selection of Pathway Components for Tuning 555
18.2.2 Design: Membrane Engineering for Improved Tolerance 555
18.2.3 Build: Targeted Genetic Manipulation Techniques 556
18.2.3.1 One-Step Chromosomal Editing of E. coli 556
18.2.3.2 Shuttle Vectors for S. cerevisiae Engineering 556
18.2.3.3 CRISPR/Cas 557
18.2.4 Build: Evolutionary Strain Improvement 557
18.2.4.1 Genome-Wide Evolution for Improved Tolerance and Production 557
18.2.4.2 Enzyme Evolution to Enable Nonrecombinant Homoethanol Production 558
18.2.5 Test: Screening of Expression Libraries 559
18.2.5.1 Expression Libraries Containing Sequence Variants of a Preselected Gene 559
18.2.5.2 Expression Libraries that Alter Gene Abundance 560
18.2.5.3 Expression Libraries that Vary Genomic Integration Site 560
18.2.6 Learn: Identifying Strategies and Targets for the Next Design Stage 561
18.2.6.1 Reverse Engineering of Improved Strains 561
18.2.6.2 Learn: Identification of Metabolic Burdens During Production 562
18.3 Biomass Deconstruction 563
18.4 Closing Remarks 564
Acknowledgments 564
References 564
19 Microbial Production of Butanols 573
 Sio Si Wong, Luo Mi, and James C. Liao
19.1 Introduction 573
19.2 A Historical Perspective of \(n\)-Butanol Production 574
19.3 ABE Fermentation 575
19.3.1 The Biochemistry of ABE Fermentation 575
19.3.2 Developing Genetics Tools in Clostridium acetobutylicum 577
19.3.3 Metabolic Engineering of Clostridium acetobutylicum for Butanol Fermentation 578
19.4 \(n\)-Butanol Production in Non-native Producers 580
19.4.1 Rationale for Using Non-native Producers 580
19.4.2 Pathways for \(n\)-Butanol Biosynthesis 580
19.4.3 Improved \(n\)-Butanol Production with Driving Forces 582
19.5 Isobutanol Production 583
19.5.1 The Biochemistry of Isobutanol Production 583
19.5.2 Isobutanol Production from Sugar 584
19.5.3 Isobutanol Production from Cellulose 586
19.5.4 Isobutanol Production from \(\text{CO}_2\) 586
19.5.5 Isobutanol Production from Waste Protein 587
19.5.6 Isobutanol Tolerance of \(E.\ coli\) 588
19.5.7 Other Products from the Keto-Acid Pathway 588
19.6 Summary and Outlook 589
 Acknowledgments 589
 References 589

Index 597