Contents

List of Contributors XIII
Foreword XXIII
Preface XXV

Part I Bionanomaterials 1

1 Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties 3
Christian Pfeiffer, Wolfgang J. Parak, and Jose Maria Montenegro
1.1 Introduction 3
1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles 6
1.2.1 Optical Properties of Gold and Silver Nanoparticles 7
1.2.2 Electronic Properties of Gold and Silver Nanoparticles 8
1.3 Synthesis of Gold and Silver Core Nanoparticles 9
1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents 11
1.5 Some Applications of Gold and Silver Nanoparticles 13
Acknowledgments 16
References 16

2 Ceramic Smart Drug Delivery Nanomaterials 23
Alejandro Baeza and Maria Vallet-Regi
2.1 Introduction 23
2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles 24
2.3 Mesoporous Silica Nanoparticles 27
2.4 Calcium Phosphate Nanoparticles 32
2.5 Carbon Allotropes 33
2.6 Iron Oxide Nanoparticles 37
References 39
Polymersomes and their Biological Implications

Regina Bleul and Michael Maskos

3 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Self-Assembly of Amphiphiles</td>
<td>50</td>
</tr>
<tr>
<td>3.2 Polymersome – The Synthetic Analog of a Liposome</td>
<td>52</td>
</tr>
<tr>
<td>3.3 Polymersome Preparation Methods</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1 Batch Methods</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2 Continuous Flow Methods</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2 Characterization of Polymersomes</td>
<td>56</td>
</tr>
<tr>
<td>3.4 Polymersomes as Drug Delivery Devices</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1 Tuning Membrane Properties and Controlling the Release</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1.1 pH-Responsive Polymersomes</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1.2 Hydrolysis of Polymersomes Built from Biodegradable Polymers</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1.3 GSH-Responsive (Redox) Vesicles</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1.4 Temperature-Responsive Polymers</td>
<td>65</td>
</tr>
<tr>
<td>3.4.1.5 Magnetic Release</td>
<td>68</td>
</tr>
<tr>
<td>3.4.2 Surface Functionalization and Targeting Strategies</td>
<td>68</td>
</tr>
<tr>
<td>3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications</td>
<td>71</td>
</tr>
<tr>
<td>3.6 Conclusions and Outlook</td>
<td>74</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>74</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
</tr>
</tbody>
</table>

MOFs in Pharmaceutical Technology

C. Tamames-Tabar, A. García-Márquez, M. J. Blanco-Prieto, C. Serre, and P. Horcajada

4 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Metal-Organic Frameworks</td>
<td>84</td>
</tr>
<tr>
<td>4.2 Description</td>
<td>84</td>
</tr>
<tr>
<td>4.2.1 Synthesis, Formulation, and Functionalization/Shaping</td>
<td>85</td>
</tr>
<tr>
<td>4.2.2 Synthesis and Formulation/Shaping</td>
<td>85</td>
</tr>
<tr>
<td>4.2.2.1 Functionalization</td>
<td>86</td>
</tr>
<tr>
<td>4.2.3 Stability and Toxicity</td>
<td>87</td>
</tr>
<tr>
<td>4.3 MOFs for Therapeutics</td>
<td>90</td>
</tr>
<tr>
<td>4.3.1 BioMOFs</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2 Active Ingredient Adsorption and Release from MOFs</td>
<td>92</td>
</tr>
<tr>
<td>4.3.2.1 Drugs</td>
<td>93</td>
</tr>
<tr>
<td>4.3.2.2 Cosmetics</td>
<td>96</td>
</tr>
<tr>
<td>4.3.3 Understanding</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3.1 Encapsulation</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3.2 Release</td>
<td>98</td>
</tr>
<tr>
<td>4.3.4 Theranostics</td>
<td>99</td>
</tr>
</tbody>
</table>
5 Amorphous Coordination Polymer Particles for Biomedicine 113
Fernando Novio, Daniel Ruiz-Molina, and Julia Lorenzo
5.1 Introduction 113
5.2 Interaction of Nanoplatforms with the Biological Environment 114
5.3 CPPs as Realistic Alternative to Classical Nanosystems 117
5.3.1 Encapsulation Systems Based on CPPs 119
5.3.2 Active Metal-Organic Units 122
5.3.2.1 Active Metal Ions 123
5.3.2.2 Drugs as Bridging Ligands 123
5.3.2.3 Active Complexes 124
5.3.3 Smart Delivery Systems 126
5.3.4 Bioimaging 128
5.3.5 Biocompatibility of CPPs 130
5.4 Conclusion and Future Challenges 132
References 133

6 Magnetic Nanoparticles for Magnetic Hyperthermia
and Controlled Drug Delivery 139
Pablo Guardia, Andreas Riedinger, Hamilton Kakwere,
Florence Gazeau, and Teresa Pellegrino
6.1 Introduction 139
6.2 Principles of Magnetically Induced Heat Generation 141
6.3 Synthesis of MNPs and their Heat Performance 146
6.3.1 Coprecipitation Method 147
6.3.2 Thermal Decomposition Method 150
6.4 Local Heating and Induced Biological and Drug Release Effects 159
6.5 In Vivo Drug Release from Magnetic Hybrid Systems Under
Alternating Magnetic Field Exposure 163
References 166

7 Photothermal Effect of Gold Nanostructures for Application
in Bioimaging and Therapy 173
Loredana Latterini and Luigi Tarpani
7.1 Introduction 173
7.2 Photophysical Characterization of Gold Nanostructures 174
7.2.1 Photophysical Behavior of Gold Nanostructures 174
7.2.2 Plasmonic Photothermal Effect 176
7.3 Tuning the Absorption Spectrum of Gold Nanostructures 177
7.3.1 Nanoparticles 177
7.3.2 Nanoshells 178
7.3.3 Nanorods 181
8 Nanomaterial-Based Bioimaging Probes 201
Christian Buchwalder, Katayoun Saatchi, and Urs O. Häfeli

8.1 Introduction 201
8.2 Nanoprobes 204
8.3 Imaging Probes 207
8.4 Targeting Strategies 211
8.4.1 Passive Targeting 212
8.4.2 Active Targeting 214
8.4.3 Limitations 216
8.5 Nanotheranostics 217
8.6 Design Considerations 219
8.7 Summary and Future Trends 223
References 223

9 Molecular Bases of Nanotoxicology 229
Angela Tino, Alfredo Ambrosone,
Valentina Marchesano, and Claudia Tortiglione
9.1 Introduction 229
9.2 Impact on Environment: Nanoecotoxicology 229
9.3 Impact on Health: Nanotoxicology 232
9.3.1 The Basis of Nanogenotoxicity: NPs Affect DNA Integrity and Stability 235
9.3.2 Hallmarks of gene Expression in Response to NPs 236
9.3.3 New Frontiers in Nanotoxicology: Nanomaterials Drive Epigenetic Changes 244
References 248

Part II Bioinspired Materials – Bioinspired Materials for Technological Application 255

10 Bioinspired Interfaces for Self-cleaning Technologies 257
Victoria Dutschk
10.1 The Concept of Bioinspiration in Materials Engineering 257
10.1.1 Terms 257
10.1.2 Bioinspiration and Nanotechnology 259
10.2 Basics of Wetting 260
10.2.1 Contact Angle and Contact Angle Hysteresis 260
10.2.2 Contact Angle on Rough Surfaces 261
10.3 Self-cleaning Technologies 264
10.3.1 Fluid Transport 265
10.3.2 Biofouling 267
10.3.3 Water, Oil, and Stain Repellency 268
10.4 Summary 273
References 273

11 Catechol-Based Biomimetic Functional Materials and their Applications 277
Félix Busqué, Josep Sedó, Daniel Ruiz-Molina, and Javier Saiz-Poseu
11.1 Introduction 277
11.2 Adhesives 278
11.2.1 General Purpose Adhesives 278
11.2.2 Adhesive Hydrogels for Biomedical Applications 280
11.3 Functionalizable Platforms (Primers) on Macroscopic Surfaces 282
11.3.1 Polydopamine 283
11.3.1.1 Bio- and Biomedical Applications 283
11.3.1.2 Hydrophobic/Hydrophilic Coatings 284
11.3.2 Other Catechol-Containing Polymers 285
11.3.2.1 Antifouling Coatings 286
11.3.2.2 Antibacterial Coatings 286
11.3.2.3 Anti-corrosion 287
11.3.2.4 Hydrophobic/Hydrophilic Coatings 287
11.4 Micro-/Nanoscopic Surface Functionalization 288
11.4.1 Catechol-Modified Ferric NPs 288
11.4.1.1 Therapeutic Uses and Imaging 288
11.4.1.2 Biosensors 289
11.4.2 Functionalization of Nano- and Microstructures Other than Fe₃O₄ NPs 290
11.5 Functional Scaffolds 290
11.5.1 Oriental Lacquers 290
11.5.2 Melanin 291
11.5.3 Polydopamine-Based Nanoparticles 293
11.6 Chelating Materials/Siderophore-Like Materials 293
11.6.1 Therapeutic Uses and Imaging 294
11.6.2 Heavy Metal Scavenging 295
11.7 Materials for Chemo-/Biosensing 296
11.8 Electronic Devices 297
11.8.1 Molecular Electronics 297
11.8.2 Dye-Sensitized Solar Cells 298
11.8.3 Miscellaneous Devices 301

References 301

12 Current Approaches to Designing Nanomaterials Inspired by Mussel Adhesive Proteins 309
Hao Meng, Joseph Gazella, and Bruce P. Lee

12.1 Introduction 309
12.2 Mussel Adhesive Proteins and DOPA 310
12.2.1 Catechol Side Chain Chemistry 310
12.2.1.1 Reversible Physical Interactions 310
12.2.1.2 Oxidation-Mediated Crosslinking 312
12.3 Nanoparticle Stabilization 313
12.3.1 Grafting Catechol–Polymer Conjugate 314
12.3.2 Surface-Initiated Polymerization 315
12.3.3 Chemical Modification of Catechol Side Chain 316
12.4 Nanocomposite Materials 317
12.4.1 Nanocomposite Hydrogel 317
12.4.2 LbL Nanocomposite Films 318
12.4.3 Nanocomposite Fiber 319
12.4.4 Nanocomposite Rubber 320
12.5 Gecko and Mussel Dual Mimetic Adhesive 321
12.6 Polydopamine as a Multifunctional Anchor 322
12.6.1 Polydopamine-Mediated Hierarchical Surface Modification 322
12.6.2 Polydopamine-Coated Nanoparticles for Therapeutic Applications 323
12.7 Summary and Future Outlook 323
Acknowledgment 325
References 325

Part III Bioinspired Materials – Bioinspired Materials for Biomedical Applications 335

13 Functional Gradients in Biological Composites 337
André R. Studart, Rafael Libanori, and Randall M. Erb

13.1 Introduction 337
13.2 Chemical Gradient 340
13.3 Hydration Gradient 346
13.4 Mineral Gradient 349
13.5 Texture Gradient 353
13.6 Porosity Gradient 359
13.7 Conclusions 363
References 364
14 Novel Bioinspired Phospholipid Polymer Biomaterials for Nanobioengineering 369
Kazuhiko Ishihara

14.1 Introduction 369
14.2 Molecular Design of an Artificial Cell Membrane Surface 370
14.3 Polymer Nanoparticles System with an Artificial Cell Membrane Structure 372
14.3.1 Preparation of Polymer Nanoparticles with an Artificial Cell Membrane Structure 372
14.3.2 Functionality of Biomolecules Immobilized on an Artificial Cell Membrane Surface 373
14.3.3 Multiple Functions of the Artificial Cell Membrane Structure 376
14.4 Nanomaterials Entrapped in the Polymeric Nanoparticles with an Artificial Cell Membrane 379
14.4.1 Surface Modification of Quantum Dots (QDs) with Phospholipid Polymers 379
14.4.2 Encapsulation of QDs in the Polymeric Nanoparticles Covered with Artificial Cell Membrane 381
14.4.3 In-Cell Performance of Polymeric Nanoparticles Covered with Artificial Cell Membrane 382
14.5 Future Perspectives 386
List of Abbreviations 386
References 387

15 Bioinspired Functionalized Nanoparticles as Tools for Detection, Quantification and Targeting of Biomolecules 391
Carlos Lodeiro, Elisabete Oliveira, Cristina Núñez, Hugo M. Santos, Javier Fernández-Lodeiro, and Jose Luis Capelo

15.1 Introduction 391
15.2 Bioinspired Functionalized Nanoparticles 394
15.2.1 Bioinspired Probes and Nanoparticle Functionalization 394
15.3 Biomedical Applications 396
15.3.1 In Vitro Diagnostics Using Nanoparticles 396
15.3.1.1 Detection of Biomolecules 396
15.3.1.2 Detection of Tumor Cells: Bioimaging 397
15.3.1.3 Separation and Purification of Biological Molecules and Cells 398
15.3.1.4 Biodetection of Pathogens 398
15.4 Therapeutics Applications of Nanoparticles 398
15.4.1 Drug Delivery (DS) and Gene Delivery (GD) 398
15.4.2 Tumor Destruction via Heating and Radiation 399
15.4.3 Tissue Engineering 401
15.4.4 Bacterial Inactivation 402
15.5 Mass Spectrometry and Nanomaterials for Biomolecule Identification 402
15.5.1 Gold Nanoparticles (AuNPs) 403
15.5.2 Magnetic, Silica, and Diamond Nanoparticles 408
15.6 Clinical Proteomics and Biomarker Detection 412
15.7 Concluding Remarks 414
Acknowledgments 414
References 414

16 Engineering Protein Based Nanoparticles for Applications in Tissue Engineering 425
Witold I. Tatkievicz, Joaquin Seras-Franzoso, Cesar Díez-Gil,
Elena García Fruitós, Esther Vázquez, Imma Ratera, Antoni Villaverde,
and Jaume Veciana
16.1 Introduction 425
16.2 Inclusion Bodies; Protein-Based Nanoparticles as Novel Bionanomaterials 426
16.3 Physicochemical and Nanoscale Properties of Inclusion Bodies 427
16.3.1 Hydrophilicity of Inclusion Bodies 427
16.3.2 Nanomechanical Properties of IBs Determined by AFM 428
16.3.3 Stiffness Mapping of the IBs by AFM 430
16.3.4 Supramolecular Organization of Protein Nanoparticles (IBs) 432
16.4 Cell Proliferation Assisted by Protein-Based Nanoparticles 433
16.4.1 IB-Stimulation of Cell Proliferation 433
16.4.2 Properties of IBs are Sensed by Cells 435
16.5 Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance 436
16.6 Conclusions and Perspectives 441
References 442

Index 447