Brief Contents

Chapter 1 Introduction to CMOS Design 1
Chapter 2 The Well 31
Chapter 3 The Metal Layers 59
Chapter 4 The Active and Poly Layers 83
Chapter 5 Resistors, Capacitors, MOSFETs 107
Chapter 6 MOSFET Operation 135
Chapter 7 CMOS Fabrication by Jeff Jessing 165
Chapter 8 Electrical Noise: An Overview 221
Chapter 9 Models for Analog Design 277
Chapter 10 Models for Digital Design 327
Chapter 11 The Inverter 347
Chapter 12 Static Logic Gates 369
Chapter 13 Clocked Circuits 389
Chapter 14 Dynamic Logic Gates 411
Chapter 15 CMOS Layout Examples 425
Chapter 16 Memory Circuits 445
Chapter 17 Sensing Using ΔΣ Modulation 493
Chapter 18 Special Purpose CMOS Circuits 533
Chapter 19 Digital Phase-Locked Loops 561
Chapter 20 Current Mirrors 621
Chapter 21 Amplifiers 671
Chapter 22 Differential Amplifiers 735
Chapter 23 Voltage References 773
Chapter 24 Operational Amplifiers I 803
Chapter 25 Dynamic Analog Circuits 857
Chapter 26 Operational Amplifiers II 889
Chapter 27 Nonlinear Analog Circuits 933
Chapter 28 Data Converter Fundamentals by Harry Li 955
Chapter 29 Data Converter Architectures by Harry Li 987
Chapter 30 Implementing Data Converters 1043
Chapter 31 Feedback Amplifiers with Harry Li 1115
Chapter 32 Hysteretic Power Converters 1175
Contents

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxiii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction to CMOS Design

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The CMOS IC Design Process</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Fabrication</td>
<td>2</td>
</tr>
<tr>
<td>Layout and Cross-Sectional Views</td>
<td>5</td>
</tr>
<tr>
<td>1.2 CMOS Background</td>
<td>5</td>
</tr>
<tr>
<td>The CMOS Acronym</td>
<td>6</td>
</tr>
<tr>
<td>CMOS Inverter</td>
<td>6</td>
</tr>
<tr>
<td>The First CMOS Circuits</td>
<td>7</td>
</tr>
<tr>
<td>Analog Design in CMOS</td>
<td>7</td>
</tr>
<tr>
<td>1.3 An Introduction to SPICE</td>
<td>8</td>
</tr>
<tr>
<td>Generating a Netlist File</td>
<td>8</td>
</tr>
<tr>
<td>Operating Point</td>
<td>8</td>
</tr>
<tr>
<td>Transfer Function Analysis</td>
<td>10</td>
</tr>
<tr>
<td>The Voltage-Controlled Voltage Source</td>
<td>10</td>
</tr>
<tr>
<td>An Ideal Op-Amp</td>
<td>11</td>
</tr>
<tr>
<td>The Subcircuit</td>
<td>12</td>
</tr>
<tr>
<td>DC Analysis</td>
<td>13</td>
</tr>
<tr>
<td>Plotting IV Curves</td>
<td>13</td>
</tr>
<tr>
<td>Dual Loop DC Analysis</td>
<td>14</td>
</tr>
<tr>
<td>Transient Analysis</td>
<td>14</td>
</tr>
<tr>
<td>The SIN Source</td>
<td>15</td>
</tr>
<tr>
<td>An RC Circuit Example</td>
<td>16</td>
</tr>
<tr>
<td>Another RC Circuit Example</td>
<td>17</td>
</tr>
<tr>
<td>AC Analysis</td>
<td>18</td>
</tr>
<tr>
<td>Decades and Octaves</td>
<td>19</td>
</tr>
<tr>
<td>Decibels</td>
<td>19</td>
</tr>
<tr>
<td>Pulse Statement</td>
<td>20</td>
</tr>
<tr>
<td>Finite Pulse Rise time</td>
<td>20</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Step Response</td>
<td>21</td>
</tr>
<tr>
<td>Delay and Rise time in RC Circuits</td>
<td>21</td>
</tr>
<tr>
<td>Piece-Wise Linear (PWL) Source</td>
<td>22</td>
</tr>
<tr>
<td>Simulating Switches</td>
<td>22</td>
</tr>
<tr>
<td>Initial Conditions on a Capacitor</td>
<td>23</td>
</tr>
<tr>
<td>Initial Conditions in an Inductor</td>
<td>23</td>
</tr>
<tr>
<td>Q of an LC Tank</td>
<td>24</td>
</tr>
<tr>
<td>Frequency Response of an Ideal Integrator</td>
<td>24</td>
</tr>
<tr>
<td>Unity-Gain Frequency</td>
<td>26</td>
</tr>
<tr>
<td>Time-Domain Behavior of the Integrator</td>
<td>26</td>
</tr>
<tr>
<td>Convergence</td>
<td>26</td>
</tr>
<tr>
<td>Some Common Mistakes and Helpful Techniques</td>
<td>27</td>
</tr>
</tbody>
</table>

Chapter 2 The Well

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Substrate (The Unprocessed Wafer)</td>
<td>31</td>
</tr>
<tr>
<td>A Parasitic Diode</td>
<td>31</td>
</tr>
<tr>
<td>Using the N-well as a Resistor</td>
<td>32</td>
</tr>
<tr>
<td>2.1 Patterning</td>
<td>32</td>
</tr>
<tr>
<td>2.1.1 Patterning the N-well</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Laying Out the N-well</td>
<td>35</td>
</tr>
<tr>
<td>2.2.1 Design Rules for the N-well</td>
<td>36</td>
</tr>
<tr>
<td>2.3 Resistance Calculation</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 The N-well Resistor</td>
<td>38</td>
</tr>
<tr>
<td>2.4 The N-well/Substrate Diode</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1 A Brief Introduction to PN Junction Physics</td>
<td>39</td>
</tr>
<tr>
<td>Carrier Concentrations</td>
<td>40</td>
</tr>
<tr>
<td>Fermi Energy Level</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Depletion Layer Capacitance</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3 Storage or Diffusion Capacitance</td>
<td>45</td>
</tr>
<tr>
<td>2.4.4 SPICE Modeling</td>
<td>46</td>
</tr>
<tr>
<td>2.5 The RC Delay through the N-well</td>
<td>48</td>
</tr>
<tr>
<td>RC Circuit Review</td>
<td>48</td>
</tr>
<tr>
<td>Distributed RC Delay</td>
<td>50</td>
</tr>
<tr>
<td>Distributed RC Rise Time</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Twin Well Processes</td>
<td>51</td>
</tr>
<tr>
<td>Design Rules for the Well</td>
<td>52</td>
</tr>
<tr>
<td>SEM Views of Wells</td>
<td>54</td>
</tr>
</tbody>
</table>

Chapter 3 The Metal Layers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 The Bonding Pad</td>
<td>59</td>
</tr>
</tbody>
</table>
6.3 IV Characteristics of MOSFETs 144
 6.3.1 MOSFET Operation in the Triode Region 144
 6.3.2 The Saturation Region 146
 Cgs Calculation in the Saturation Region 148
6.4 SPICE Modeling of the MOSFET 149
 Model Parameters Related to V_{THN} 149
 Long-Channel MOSFET Models 149
 Model Parameters Related to the Drain Current 150
 SPICE Modeling of the Source and Drain Implants 150
 Summary 151
 6.4.1 Some SPICE Simulation Examples 151
 Threshold Voltage and Body Effect 151
 6.4.2 The Subthreshold Current 152
6.5 Short-Channel MOSFETs ... 154
 Hot Carriers 154
 Lightly Doped Drain (LDD) 155
6.5.1 MOSFET Scaling 155
 6.5.2 Short-Channel Effects 156
 Negative Bias Temperature Instability (NBTI) 156
 Oxide Breakdown 157
 Drain-Induced Barrier Lowering 157
 Gate-Induced Drain Leakage 157
 Gate Tunnel Current 157
6.5.3 SPICE Models for Our Short-Channel CMOS 157
 Process
 BSIM4 Model Listing (NMOS) 157
 BSIM4 Model Listing (PMOS) 159
 Simulation Results 160

Chapter 7 CMOS Fabrication by Jeff Jessing 165

7.1 CMOS Unit Processes .. 165
 7.1.1 Wafer Manufacture 165
 Metallurgical Grade Silicon (MGS) 166
 Electronic Grade Silicon (EGS) 166
 Czochralski (CZ) Growth and Wafer Formation 166
 7.1.2 Thermal Oxidation 167
 7.1.3 Doping Processes 168
 Ion Implantation 169
Solid State Diffusion 170

7.1.4 Photolithography 170
 Resolution 172
 Depth of Focus 173
 Aligning Masks 173

7.1.5 Thin Film Removal 173
 Thin Film Etching 174
 Wet Etching 174
 Dry Etching 175
 Chemical Mechanical Polishing 176

7.1.6 Thin Film Deposition 177
 Physical Vapor Deposition (PVD) 178
 Chemical Vapor Deposition (CVD) 179

7.2 CMOS Process Integration 180
 FEOL 181
 BEOL 181
 CMOS Process Description 181

7.2.1 Frontend-of-the-Line Integration 182
 Starting Material 182
 Shallow Trench Isolation Module 184
 Twin Tub Module 188
 Gate Module 192
 Source/Drain Module 194

7.2.2 Backend-of-the-Line Integration 196
 Self-Aligned Silicide (Salicide) Module 197
 Pre-Metal Dielectric 199
 Contact Module 200
 Metallization 1 202
 Intra-Metal Dielectric 1 Deposition 204
 Via 1 Module 205
 Metallization 2 205
 Additional Metal/Dielectric Layers 206
 Final Passivation 209

7.3 Backend Processes .. 210
 Wafer Probe 210
 Die Separation 212
 Packaging 212
 Final Test and Burn-In 212

7.4 Advanced CMOS Process Integration 212
9.1.1 The Square-Law Equations 279
 PMOS Square-Law Equations 280
 Qualitative Discussion 280
 Threshold Voltage and Body Effect 283
 Qualitative Discussion 284
 The Triode Region 285
 The Cutoff and Subthreshold Regions 286
9.1.2 Small Signal Models 286
 Transconductance 287
 AC Analysis 292
 Transient Analysis 293
 Body Effect Transconductance, \(g_{mb}\) 294
 Output Resistance 295
 MOSFET Transition Frequency, \(f_T\) 297
 General Device Sizes for Analog Design 298
 Subthreshold \(g_m\) and \(V_{THN}\) 299
9.1.3 Temperature Effects 300
 Threshold Variation and Temperature 300
 Mobility Variation with Temperature 301
 Drain Current Change with Temperature 302
9.2 Short-Channel MOSFETs 302
 9.2.1 General Design (A Starting Point) 303
 Output Resistance 304
 Forward Transconductance 304
 Transition Frequency 305
 9.2.2 Specific Design (A Discussion) 306
9.3 MOSFET Noise Modeling 308
 Drain Current Noise Model 308

Chapter 10 Models for Digital Design 327
 Miller Capacitance 327
 10.1 The Digital MOSFET Model 328
 Effective Switching Resistance 328
 Short-Channel MOSFET Effective Switching Resistance 330
 10.1.1 Capacitive Effects 331
 10.1.2 Process Characteristic Time Constant 331
 10.1.3 Delay and Transition Times 333
 10.1.4 General Digital Design 326
 10.2 The MOSFET Pass Gate 326
Chapter 13 Clocked Circuits

13.1 The CMOS TG .. 389
 Series Connection of TGs 390
13.2 Applications of the Transmission Gate 391
 Path Selector 391
 Static Circuits 394
13.3 Latches and Flip-Flops .. 395
 Basic Latches 395
 An Arbiter 396
 Flip-Flops and Flow-through Latches 397
 An Edge-Triggered D-FF 399
 Flip-Flop Timing 400
13.4 Examples ... 402

Chapter 14 Dynamic Logic Gates

14.1 Fundamentals of Dynamic Logic 411
 14.1.1 Charge Leakage 411
 14.1.2 Simulating Dynamic Circuits 414
 14.1.3 Nonoverlapping Clock Generation 415
 14.1.4 CMOS TG in Dynamic Circuits 416
14.2 Clocked CMOS Logic 417
 Clocked CMOS Latch 417
 An Important Note 417
 PE Logic 418
 Domino Logic 419
 NP Logic (Zipper Logic) 420
 Pipelining 421

Chapter 15 CMOS Layout Examples

15.1 Chip Layout .. 426
 Regularity 426
 Standard Cell Examples 426
 Power and Ground Considerations 428
 An Adder Example 431
 A 4-to-1 MUX/DEMUX 433
15.2 Layout Steps by Dean Moriarty 434
 Planning and Stick Diagrams 434
 Device Placement 437
 Polish 437
 Standard Cells Versus Full-Custom Layout 437
Chapter 16 Memory Circuits

16.1 Array Architectures .. 446
 16.1.1 Sensing Basics .. 446
 NMOS Sense Amplifier (NSA) 447
 The Open Array Architecture 447
 PMOS Sense Amplifier (PSA) 450
 Refresh Operation 452
 16.1.2 The Folded Array 452
 Layout of the DRAM Memory Bit (Mbit) 453
 16.1.3 Chip Organization 458

16.2 Peripheral Circuits ... 458
 16.2.1 Sense Amplifier Design 458
 Kickback Noise and Clock Feedthrough 459
 Memory ... 461
 Current Draw 461
 Contention Current (Switching Current) 461
 Removing Sense Amplifier Memory 462
 Creating an Imbalance and Reducing Kickback Noise 462
 Increasing the Input Range 465
 Simulation Examples 466
 16.2.2 Row/Column Decoders 467
 Global and Local Decoders 468
 Reducing Decoder Layout Area 470
 16.2.3 Row Drivers ... 470

16.3 Memory Cells .. 471
 16.3.1 The SRAM Cell 473
 16.3.2 Read-Only Memory (ROM) 473
 16.3.3 Floating Gate Memory 473
 The Threshold Voltage 474
 Erasable Programmable Read-Only Memory 477
 Two Important Notes 478
 Flash Memory 479

Chapter 17 Sensing Using $\Delta \Sigma$ Modulation

17.1 Qualitative Discussion 494
 17.1.1 Examples of DSM 494
 The Counter ... 495
 Cup Size ... 496
 Another Example 496
 17.1.2 Using DSM for Sensing in Flash Memory 496
Chapter 18 Special Purpose CMOS Circuits

18.1 The Schmitt Trigger
- 18.1.1 Design of the Schmitt Trigger
- Switching Characteristics
- 18.1.2 Applications of the Schmitt Trigger

18.2 Multivibrator Circuits
- 18.2.1 The Monostable Multivibrator
- 18.2.2 The Astable Multivibrator

18.3 Input Buffers
- 18.3.1 Basic Circuits
- Skew in Logic Gates
- 18.3.2 Differential Circuits
- Transient Response
- 18.3.3 DC Reference
- 18.3.4 Reducing Buffer Input Resistance

18.4 Charge Pumps (Voltage Generators)
- Negative Voltages
- Using MOSFETs for the Capacitors
- 18.4.1 Increasing the Output Voltage
- 18.4.2 Generating Higher Voltages: The Dickson Charge Pump
- Clock Driver with a Pumped Output Voltage
- NMOS Clock Driver
- 18.4.3 Example
Chapter 19 Digital Phase-Locked Loops

19.1 The Phase Detector .. 563
 19.1.1 The XOR Phase Detector 563
 19.1.2 The Phase Frequency Detector 567
19.2 The Voltage-Controlled Oscillator 570
 19.2.1 The Current-Starved VCO 570
 Linearizing the VCO's Gain 573
 19.2.2 Source-Coupled VCOs 574
19.3 The Loop Filter ... 576
 19.3.1 XOR DPLL 577
 Active-PI Loop Filter 581
 19.3.2 PFD DPLL 583
 Tri-State Output 583
 Implementing the PFD in CMOS 584
 PFD with a Charge Pump Output 587
 Practical Implementation of the Charge Pump 588
 Discussion 589
19.4 System Concerns ... 590
 19.4.1 Clock Recovery from NRZ Data 593
 The Hogge Phase Detector 596
 Jitter 598
19.5 Delay-Locked Loops .. 600
 Delay Elements 602
 Practical VCO and VCDL Design 602
19.6 Some Examples .. 603
 19.6.1 A 2 GHz DLL 603
 19.6.2 A 1 Gbit/s Clock-Recovery Circuit 609

Chapter 20 Current Mirrors

20.1 The Basic Current Mirror 621
 20.1.1 Long-Channel Design 622
 20.1.2 Matching Currents in the Mirror 624
 Threshold Voltage Mismatch 624
 Transconductance Parameter Mismatch 624
 Drain-to-Source Voltage and Lambda 625
 Layout Techniques to Improve Matching 625
 Layout of the Mirror with Different Widths 627
 20.1.3 Biasing the Current Mirror 628
 Using a MOSFET-Only Reference Circuit 629
 Supply Independent Biasing 631
Small-Signal Gain 686
Open Circuit Gain 686
High-Impedance and Low-Impedance Nodes 687
Frequency Response 687
Pole Splitting 689
Pole Splitting Summary 692
Canceling the RHP Zero 697
Noise Performance of the CS Amplifier with Current Source Load 698

21.2.2 The Cascode Amplifier 698
Frequency Response 699
Class A Operation 700
Noise Performance of the Cascode Amplifier 700
Operation as a Transimpedance Amplifier 701

21.2.3 The Common-Gate Amplifier 702
21.2.4 The Source Follower (Common-Drain Amplifier) 702
Body Effect and Gain 703
Level Shifting 704
Input Capacitance 705
Noise Performance of the SF Amplifier 706
Frequency Behavior 706
SF as an Output Buffer 708
A Class AB Output Buffer Using SFs 709

21.3 The Push-Pull Amplifier 710
21.3.1 DC Operation and Biasing 711
Power Conversion Efficiency 711
21.3.2 Small-Signal Analysis 714
21.3.3 Distortion 716
Modeling Distortion with SPICE 717

Chapter 22 Differential Amplifiers 735
22.1 The Source-Coupled Pair 735
22.1.1 DC Operation 735
Maximum and Minimum Differential Input Voltage 736
Maximum and Minimum Common-Mode Input Voltage 737
Current Mirror Load 739
Biasing from the Current Mirror Load 740
Minimum Power Supply Voltage 741
22.1.2 AC Operation 741
Low-Frequency, Open Loop Gain, A_{OLDC} 804
Input Common-Mode Range 804
Power Dissipation 805
Output Swing and Current Source/Sinking Capability 805
Offsets 805
Compensating the Op-Amp 806
Gain and Phase Margins 810
Removing the Zero 811
Compensation for High-Speed Operation 812
Slew-Rate Limitations 816
Common-Mode Rejection Ratio (CMRR) 818
Power Supply Rejection Ratio (PSRR) 819
Increasing the Input Common-Mode Voltage Range 820
Estimating Bandwidth in Op-Amps Circuits 821
24.2 An Op-Amp with Output Buffer 822
Compensating the Op-Amp 822
24.3 The Operational Transconductance Amplifier (OTA) 824
Unity-Gain Frequency, f_{un} 825
Increasing the OTA Output Resistance 826
An Important Note 827
OTA with an Output Buffer (An Op-Amp) 828
The Folded-Cascode OTA and Op-Amp 830
24.4 Gain-Enhancement 835
Bandwidth of the Added GE Amplifiers 837
Compensating the Added GE Amplifiers 838
24.5 Some Examples and Discussions 839
A Voltage Regulator 839
Bad Output Stage Design 844
Three-Stage Op-Amp Design 846
Chapter 25 Dynamic Analog Circuits 857
25.1 The MOSFET Switch 857
Charge Injection 858
Capacitive Feedthrough 859
Reduction of Charge Injection and Clock Feedthrough 860
kT/C Noise 861
25.1.1 Sample-and-Hold Circuits 861
25.2 Fully-Differential Circuits 864
Gain 864
Common-Mode Feedback 864
Coupled Noise Rejection 865
Other Benefits of Fully-Differential Op-Amps 865
25.2.1 A Fully-Differential Sample-and-Hold 866
Connecting the Inputs to the Bottom (Poly1) Plate 867
Bottom Plate Sampling 868
SPICE Simulation 868
25.3 Switched-Capacitor Circuits 869
25.3.1 Switched-Capacitor Integrator 871
Parasitic Insensitive 872
Other Integrator Configurations 872
Exact Frequency Response of a Switched-Capacitor Integrator 876
Capacitor Layout 877
Op-Amp Settling Time 878
25.4 Circuits ... 879
Reducing Offset Voltage of an Op-Amp 879
Dynamic Comparator 880
Dynamic Current Mirrors 882
Dynamic Amplifiers 884
Chapter 26 Operational Amplifiers II 889
26.1 Biasing for Power and Speed 889
26.1.1 Device Characteristics 890
26.1.2 Biasing Circuit 891
Layout of Differential Op-Amps 891
Self-Biased Reference 891
26.2 Basic Concepts .. 892
Modeling Offset 892
A Diff-Amp 893
A Single Bias Input Diff-Amp 894
The Diff-Amp's Tail Current Source 895
Using a CMFB Amplifier 895
Compensating the CMFB Loop 896
Extending the CMFB Amplifier Input Range 898
Dynamic CMFB 899
26.3 Basic Op-Amp Design 900
The Differential Amplifier 902
Adding a Second Stage (Making an Op-Amp) 903
Step Response 904
Adding CMFB 905
CMFB Amplifier
The Two-Stage Op-Amp with CMFB
Origin of the Problem
Simulation Results
Using MOSFETs Operating in the Triode Region
Start-up Problems
Lowering Input Capacitance
Making the Op-Amp More Practical
Increasing the Op-Amp’s Open-Loop Gain
Offsets
Op-Amp Offset Effects on Outputs
Single-Ended to Differential Conversion
CMFB Settling Time
CMFB in the Output Buffer (Fig. 26.43) or the Diff-Amp (Fig. 26.40)?
26.4 Op-Amp Design Using Switched-Capacitor CMFB
Clock Signals
Switched-Capacitor CMFB
The Op-Amp’s First Stage
The Output Buffer
An Application of the Op-Amp
Simulation Results
A Final Note Concerning Biasing

27.1 Basic CMOS Comparator Design
Preamplification
Decision Circuit
Output Buffer

27.1.1 Characterizing the Comparator
Comparator DC Performance
Transient Response
Propagation Delay
Minimum Input Slew Rate

27.1.2 Clocked Comparators
27.1.3 Input Buffers Revisited

27.2 Adaptive Biasing

27.3 Analog Multipliers

27.3.1 The Multiplying Quad
Simulating the Operation of the Multiplier
Chapter 28 Data Converter Fundamentals by Harry Li

28.1 Analog Versus Discrete Time Signals 955
28.2 Converting Analog Signals to Digital Signals 956
28.3 Sample-and-Hold (S/H) Characteristics 959
 - Sample Mode 959
 - Hold Mode 960
 - Aperture Error 960
28.4 Digital-to-Analog Converter (DAC) Specifications 961
 - Differential Nonlinearity 964
 - Integral Nonlinearity 966
 - Offset 968
 - Gain Error 969
 - Latency 969
 - Signal-to-Noise Ratio (SNR) 969
 - Dynamic Range 969
28.5 Analog-to-Digital Converter (ADC) Specifications 970
 - Quantization Error 971
 - Differential Nonlinearity 972
 - Missing Codes 974
 - Integral Nonlinearity 974
 - Offset and Gain Error 975
 - Aliasing 976
 - Signal-to-Noise Ratio 978
 - Aperture Error 979
28.6 Mixed-Signal Layout Issues ... 979
 - Floorplanning 980
 - Power Supply and Ground Issues 980
 - Fully Differential Design 982
 - Guard Rings 982
 - Shielding 983
 - Other Interconnect Considerations 984

Chapter 29 Data Converter Architectures by Harry Li

29.1 DAC Architectures .. 987
 29.1.1 Digital Input Code .. 987
 29.1.2 Resistor String ... 987
 - Mismatch Errors Related to the Resistor-String DAC 990
 - Integral Nonlinearity of the Resistor-String DAC 991
Differential Nonlinearity of the Worst-Case Resistor-String DAC

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1.3 R-2R Ladder Networks</td>
<td>992</td>
</tr>
<tr>
<td>29.1.4 Current Steering</td>
<td>995</td>
</tr>
<tr>
<td>Mismatch Errors Related to Current-Steering DACs</td>
<td>997</td>
</tr>
<tr>
<td>29.1.5 Charge-Scaling DACs</td>
<td>999</td>
</tr>
<tr>
<td>Layout Considerations for a Binary-Weighted Capacitor Array</td>
<td>1001</td>
</tr>
<tr>
<td>The Split Array</td>
<td>1002</td>
</tr>
<tr>
<td>29.1.6 Cyclic DAC</td>
<td>1003</td>
</tr>
<tr>
<td>29.1.7 Pipeline DAC</td>
<td>1005</td>
</tr>
</tbody>
</table>

Layout Considerations for a Binary-Weighted Capacitor Array

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.2 ADC Architectures</td>
<td>1006</td>
</tr>
<tr>
<td>29.2.1 Flash</td>
<td>1006</td>
</tr>
<tr>
<td>Accuracy Issues for the Flash ADC</td>
<td>1007</td>
</tr>
<tr>
<td>29.2.2 The Two-Step Flash ADC</td>
<td>1010</td>
</tr>
<tr>
<td>Accuracy Issues Related to the Two-Step Flash Converter</td>
<td>1012</td>
</tr>
<tr>
<td>Accuracy Issues Related to Operational Amplifiers</td>
<td>1013</td>
</tr>
<tr>
<td>29.2.3 The Pipeline ADC</td>
<td>1014</td>
</tr>
<tr>
<td>Accuracy Issues Related to the Pipeline Converter</td>
<td>1016</td>
</tr>
<tr>
<td>29.2.4 Integrating ADCs</td>
<td>1018</td>
</tr>
<tr>
<td>Single-Slope Architecture</td>
<td>1018</td>
</tr>
<tr>
<td>Accuracy Issues Related to the Single-Slope ADC</td>
<td>1020</td>
</tr>
<tr>
<td>Dual-Slope Architecture</td>
<td>1020</td>
</tr>
<tr>
<td>Accuracy Issues Related to the Dual-Slope ADC</td>
<td>1022</td>
</tr>
<tr>
<td>29.2.5 The Successive Approximation ADC</td>
<td>1022</td>
</tr>
<tr>
<td>The Charge-Redistribution Successive Approximation ADC</td>
<td>1025</td>
</tr>
<tr>
<td>Accuracy Issues Related to the Charge-Redistribution, Successive-Apoximation ADC</td>
<td>1026</td>
</tr>
<tr>
<td>29.2.6 The Oversampling ADC</td>
<td>1027</td>
</tr>
<tr>
<td>Differences in Nyquist Rate and Oversampled ADCs</td>
<td>1027</td>
</tr>
<tr>
<td>The First-Order ΣΔ Modulator</td>
<td>1029</td>
</tr>
<tr>
<td>The Higher Order ΣΔ Modulators</td>
<td>1033</td>
</tr>
</tbody>
</table>

Chapter 30 Implementing Data Converters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1 R-2R Topologies for DACs</td>
<td>1043</td>
</tr>
<tr>
<td>30.1.1 The Current-Mode R-2R DAC</td>
<td>1044</td>
</tr>
<tr>
<td>30.1.2 The Voltage-Mode R-2R DAC</td>
<td>1045</td>
</tr>
<tr>
<td>30.1.3 A Wide-Swing Current-Mode R-2R DAC</td>
<td>1047</td>
</tr>
<tr>
<td>DNL Analysis</td>
<td>1048</td>
</tr>
</tbody>
</table>
31.2.2 Bandwidth Extension 1117
31.2.3 Reduction in Nonlinear Distortion 1118
31.2.4 Input and Output Impedance Control 1120
31.3 Recognizing Feedback Topologies 1120
 31.3.1 Input Mixing 1121
 31.3.2 Output Sampling 1121
 31.3.3 The Feedback Network 1122
 An Important Assumption 1123
 Counting Inversions Around the Loop 1124
 Examples of Recognizing Feedback Topologies 1124
 31.3.4 Calculating Open-Loop Parameters 1125
 31.3.5 Calculating Closed-Loop Parameters 1127
31.4 The Voltage Amp (Series-Shunt Feedback) 1128
31.5 The Transimpedance Amp (Shunt-Shunt Feedback) 1134
 31.5.1 Simple Feedback Using a Gate-Drain Resistor 1140
31.6 The Transconductance Amp (Series-Series Feedback) 1142
31.7 The Current Amplifier (Shunt-Series Feedback) 1146
31.8 Stability .. 1148
 31.8.1 The Return Ratio 1151
31.9 Design Examples 1154
 31.9.1 Voltage Amplifiers 1154
 Amplifiers with Gain 1156
 31.9.2 A Transimpedance Amplifier 1158

Chapter 32 Hysteretic Power Converters 1175
32.1 A Review of Power and Energy Basics 1176
 An Analogy 1177
 32.1.1 Energy Storage in Inductors and Capacitors 1177
 Energy Storage in an Inductor 1178
 Energy Storage in a Capacitor 1178
32.1.2 Energy Use in Transmitting Data 1180
32.1.3 Selection and use of Switches 1181
 Using an NMOS Pull-Up 1183
 Effective Digital Resistance, A Comment 1184
 Driver Optimization 1184
 Higher Voltage Switches 1184
32.2 Switching Power Supplies: Some Examples 1189
 32.2.1 The Buck SPS 1189
 Selecting the Inductor 1191
 Selecting the Capacitor 1191
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Efficiency</td>
<td>1195</td>
</tr>
<tr>
<td>32.2.2 The Boost SPS</td>
<td>1196</td>
</tr>
<tr>
<td>Selecting the Inductor</td>
<td>1197</td>
</tr>
<tr>
<td>Selecting the Capacitor</td>
<td>1197</td>
</tr>
<tr>
<td>32.2.3 The Flyback SPS</td>
<td>1200</td>
</tr>
<tr>
<td>Quick Review of Transformers</td>
<td>1200</td>
</tr>
<tr>
<td>Operation of the Flyback SPS</td>
<td>1201</td>
</tr>
<tr>
<td>32.2.4 Pulse Width Modulation: A Control Loop Example</td>
<td>1204</td>
</tr>
<tr>
<td>Buck SPS Control Loop</td>
<td>1206</td>
</tr>
<tr>
<td>Boost SPS Control Loop</td>
<td>1207</td>
</tr>
<tr>
<td>Flyback SPS Control Loop</td>
<td>1208</td>
</tr>
<tr>
<td>Effective Series Resistance</td>
<td>1209</td>
</tr>
<tr>
<td>Some Comments</td>
<td>1210</td>
</tr>
<tr>
<td>32.3 Hysteretic Control</td>
<td>1210</td>
</tr>
<tr>
<td>32.3.1 Topologies</td>
<td>1211</td>
</tr>
<tr>
<td>32.3.2 Examples</td>
<td>1212</td>
</tr>
<tr>
<td>Buck HPS Control Loop</td>
<td>1212</td>
</tr>
<tr>
<td>Boost HPS Control Loop</td>
<td>1213</td>
</tr>
<tr>
<td>Flyback HPS Control Loop</td>
<td>1214</td>
</tr>
<tr>
<td>Some Final Comments</td>
<td>1216</td>
</tr>
<tr>
<td>Index</td>
<td>1219</td>
</tr>
<tr>
<td>About the Author</td>
<td>1235</td>
</tr>
</tbody>
</table>