Table of Contents

Preface ix
Acronyms xi
Matlab Codes xiii
Chapter 1 INTRODUCTION 1
 1.1 Electromagnetic Problems and Classification 1
 1.2 Maxwell Equations 3
 1.3 Guided Waves and Transverse/Longitudinal Decomposition 4
 1.4 Two Dimensional Helmholtz’s Equation 5
 1.5 Validation, Verification, and Calibration Procedure 6
 1.6 Fourier Transform, DFT and FFT 7

Chapter 2 WAVE PROPAGATION OVER FLAT EARTH 15
 2.1 Flat Earth and GO Two-Ray Model 15
 2.2 Single Knife Edge Problem and Four-Ray Model 16
 2.3 Vertical Linear Refractivity Profile and Mode Summation 19

Chapter 3 PARABOLIC EQUATION MODELING 23
 3.1 Introduction 23
 3.2 Parabolic Wave Equation Form 24
 3.3 Dirichlet, Neumann, and Cauchy Boundary Conditions 27
TABLE OF CONTENTS

3.4 Antenna/Source Injection 28
3.5 Split-Step Parabolic Equation (SSPE) Model 29
3.5.1 Narrow-Angle and Wide-Angle SSPE 30
3.5.2 A MATLAB-Based Simple SSPE Code 30
3.6 FEM-Based Parabolic Equation Model 32
3.7 Atmospheric Refractivity Effects 40

Chapter 4 WAVE PROPAGATION AT SHORT RANGES 43

4.1 Introduction 43
4.2 Accurate Source Modeling 44
4.3 Wave Propagators in Two Dimensions 47
4.3.1 Flat Earth and Two-Ray Model 47
4.3.2 FEM-Based PE Wave Propagator 49
4.3.3 SSPE-Based PE Wave Propagator 49
4.3.4 Method of Moments Modeling 49
4.4 Knife Edge and Four Ray Model 49
4.5 Canonical Tests and Calibration 50

Chapter 5 PE AND TERRAIN MODELING 53

5.1 Irregular PEC Terrain 53
5.2 PE and Impedance Boundary Modeling 54
5.2.1 Discrete Mixed Fourier Transform (DMFT) 56
5.3 Numerical Results and Comparison 57

Chapter 6 ANALYTICAL EXACT AND APPROXIMATE MODELS 65

6.1 Wave Propagation in a Parallel Plate Waveguide 65
6.2 Green’s Function in Terms of Mode Summation 68
6.3 Mode Summation for a Tilted Gaussian Source 70
6.4 A Hybrid Ray + Image Method 71
6.5 Numerical Models 73
6.5.1 Parabolic Equation Models: SSPE and FEMPE 73
6.5.2 Method of Moments 75

Chapter 7 WAVE PROPAGATION INSIDE THREE-DIMENSIONAL RECTANGULAR WAVEGUIDE 79

7.1 Introduction 79
7.2 Three-Dimensional Rectangular Waveguide Model 80
7.3 Three-Dimensional Parabolic Equation Models 81
7.3.1 SSPE Model 81
7.3.2 FEMPE Model 82
7.3.3 ADIPE Model 82
7.4 Tests and Calibration 83
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>TWO WAY PE MODELS</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Formulation of Two Way FEMPE Method</td>
<td>89</td>
</tr>
<tr>
<td>8.2</td>
<td>Formulation of Two Way SSPE Method</td>
<td>91</td>
</tr>
<tr>
<td>8.3</td>
<td>Flat Earth with Infinite Wall</td>
<td>91</td>
</tr>
<tr>
<td>8.4</td>
<td>Flat Earth with Single and Double Knife Edges</td>
<td>91</td>
</tr>
<tr>
<td>8.5</td>
<td>Two Way Propagation Modeling in Waveguides</td>
<td>96</td>
</tr>
<tr>
<td>8.6</td>
<td>Three-Dimensional Split-Step- and Finite-Element-Based Parabolic Equation Models</td>
<td>96</td>
</tr>
<tr>
<td>8.7</td>
<td>Tests and Calibration</td>
<td>97</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>PETOOL VIRTUAL PROPAGATION PACKAGE</td>
<td>101</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>9.2</td>
<td>PETOOL Software</td>
<td>103</td>
</tr>
<tr>
<td>9.3</td>
<td>Characteristic Examples</td>
<td>107</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>FEMIX VIRTUAL PROPAGATION PACKAGE</td>
<td>113</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>10.2</td>
<td>Analytical Surface-Wave Model</td>
<td>115</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Path Loss</td>
<td>115</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Norton’s Model</td>
<td>115</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Wait’s Model</td>
<td>116</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Millington’s Curve Fitting Approach</td>
<td>117</td>
</tr>
<tr>
<td>10.3</td>
<td>Numerical Surface-Wave Model</td>
<td>118</td>
</tr>
<tr>
<td>10.4</td>
<td>FEMIX Package</td>
<td>119</td>
</tr>
<tr>
<td>10.5</td>
<td>Characteristic Examples</td>
<td>122</td>
</tr>
</tbody>
</table>

References | 127 |
Index | 135 |