Index

ABCD see asset-based community development (ABCD)
adjacency matrix, 204
amplified intelligence, 173
analogue decisions, 171
anticipatory experiences (AEs), 64
Architecture, Engineering and Construction (AEC)
 analogue decisions, 171
 big data, 167
 transformational potential, 165
 artificial intelligence, 172
asset-based community development (ABCD), 23–24
attitudes and beliefs, sustainability
 beliefs, values and attitudes, 338–339
 Christian view, 339–340
 ethical aspects, 336–337
 pistic aspects, 337–338
 second proposal, 341
automate the planning process, 168
BEQUEST see Building Environmental Quality Evaluation for Sustainability through Time (BEQUEST)
BIM see building information modelling (BIM)
Building Act 1984, 216
Building Architect by 2050, 112
Building Emission Rate (BER), 131, 145
Building Environmental Quality Evaluation for Sustainability through Time (BEQUEST)
 elements of, 255
 establishing network of, 70
 framework, 73
 PICABUE, 70–71
 sustainable development, 71–72
 Toolkit, 73–74
building information modelling (BIM), 50–51, 166
 in 2050, 115–116
 invisible 2050, 120–122
 role and impact, 119–120
 smart technologies, 111
Building Research Establishment, 131
buildings
 OC vs. EC, 128–129
 regulations, 145
 resilient cities
 interactive risk assessment, 159–160
 multi-agency collaboration, 158–159
 risk assessment process, 156–158
 theoretical framework, 156
 buildings in 2050, 115–117
 built environment, 2
Built Environment Information Modelling (BEIM), 121
CarbonBuzz, 132, 145, 170
carbon dioxide (CO₂) emissions
 buildings in 2050, 115
 mobility, 117
 predicted vs. actual performance, 170
carbon emissions
 barriers for, 146–147
 construction, 144, 148–149
 low carbon trajectory, 143
 managing drivers, 144–146
 methods, 136
 type of stages, 129–130
carbon hotspots
 defined, 137
 EC
 case study buildings, 138, 140

Future Challenges in Evaluating and Managing Sustainable Development in the Built Environment,
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
components, 138
office buildings, 138–139
heuristics-based rules, 137
carbon, sustainable development
construction, carbon emissions
barriers for, 146–147
drivers for, 144–146
EC estimating, 132–137
embodied carbon, construction, 126–129
focus shifting
dual currency approach, 141–143
low carbon trajectory, 143
zero carbon policy, 140–141
future trends, 149–150
hotspots of, 137–140
management of, 148–149
OC estimating, 131–132
system boundaries, 129–130
CIM see city information modelling (CIM)
cities
climate change role of, 57
competitiveness
clusters as catalysts, 25
creative milieu, 24
entrepreneur encouraging, 25
global infrastructure crisis, 25
knowledge village concept, 24–25
connectivity
big data, digital city, 32
intelligent cities, 31
smart development, 30–31
transit-oriented development, 32
exordium
city dilemma, 18
city planning futures thinking, 18–20
disquisition, 20–21
foresight sense of, 20
global context, 17–18
governance
city governance challenges, 33
city leadership, 35
doing more with less, 34–35
mayors, global parliament, 35–36
values and vision, 33–34
propositum, 36–39
quality of life
ABCD, 23–24
authenticity distinctiveness, 22–23
decent affordable housing, 23
exclusion culture, 22
social cohesion, 21–22
resilient cities, 58
sustainable cities
de-design urban planning, 28
integrate environmental thinking, 27
promote corporate urban responsibility, 29–30
rediscover the city, 26–27
redistribute urban decision-making, 27–28
sustainable development, 60–65
City Car Club Nottingham, 189
City Entrance Integrated Programme (PIEC), 232
city information modelling (CIM)
future city in 2050, 111
ICT, 118
smart technologies, 111
A City in History, 256
Climate Change Act 2008, 269
Code for Sustainable Homes (CSH), 81, 140, 269
competitiveness, city
clusters as catalysts, 25
creative milieu, 24
entrepreneur encouraging, 25
global infrastructure crisis, 25
knowledge village concept, 24–25
Comprehensive Assessment System for Built Environment Efficiency (CASBEE) City, 74
connectivity, city
big data, digital city, 32
intelligent cities, 31
smart development, 30–31
transit-oriented development, 32
construction contracts role, sustainability
contract conditions, 273–275
environmental considerations, 277
framework objectives, 276
future, 281–282
JCT
consultation, 271–273
standard form, 276
legally binding provisions, 278–281
provider’s supply chain, 276–277
construction industry
carbon estimating, 148–149
emissions from, 127
GHG, 126
Contract for Difference (CfD), 228
cost of construction, 147
creative cities, 24
decent affordable housing, 23
decision analysis (DA), 295, 300
Index

decision support systems (DSS)
aplications, 294–295
decision analysis, 295–296
platforms of, 296–298
de-design urban planning, 28
Department of Energy and Climate Change, 2012, 145, 228
digital city, 32
digital communications technologies, 96
digital economy, 109
digital ecosystem
amplified intelligence, 173
data-driven model, 165
energy intensity, 174–175
future value propositions, 176–177
display energy certificate (DEC), 145–146, 226, 227
Dooyeweerd’s philosophy
diversity and aspects, 324–326
human and non-human, 323
sustainability
as harmony, 326–327
thinking, 328–329
understanding sustainability, 326
values, 327
world views, 333
eco-efficiency, 62
economic growth
carbon emissions, 144, 146
EU cities, 179
mobility, 117
United Nations-Economic Commission, 77
ecosystem services, 65
electric buses, Nottingham, 187–188
electric grid, 190
embodied carbon (EC) estimation
building life cycle, 127
case study buildings, 138, 140
energy data, 128
estimating tools, 133–135
ICE, 132
lack of statutory requirements, 147
measurements of, 136–137
vs. OC, 128–129
office buildings, 138–139
RICS, 133
standard method, 147
system boundaries, 129–130
embodied energy (EE), 128, 129, 150
empirical knowledge-based method, 203
energy action plan, 58
energy company obligation (ECO), 145, 226
energy efficient buildings, 116
energy performance certificate (EPC), 145–146
Energy Savings Opportunity Scheme (ESOS), 227
energy transition, 64–65
enhance iterative design, 168
environmental challenges, 111
environmental education, 255
environmental protection, 308
environmental sustainability, 165
EU see European Union (EU) cities
EU post carbon cities of tomorrow (POCACITO) project, 56
European Commission, 2011, 58
European Sustainable Development Network (ESDN), 78–79
European Union (EU) cities
economic growth, 179
gross domestic product, 179
replication of, 181–182
EU urban policies, 315
exordium, city
city dilemma, 18
city planning futures thinking, 18–20
disquisition, 20–21
foresight sense of, 20
global context, 17–18
feed-in tariffs (FIT), 218, 222–223
future city in 2050 see also urban planning, future in 2050
CIM, 112
human development changes, 113
ICT, 112
gas grid, 190
GDP see gross domestic product (GDP)
GHG see greenhouse gas (GHG)
globalisation, 33, 113, 117, 256–257
governance city
challenges of, 33
doing more with less, 34–35
leadership of, 35
mayors, global parliament, 35–36
values and vision, 33–34
Greater Manchester Combined Authority, 261
greenhouse gas (GHG) emissions
construction industry, 126
EU, 179
PCC, 58
Green's windmill, Sneinton, 183–184
gross domestic product (GDP)
 EU cities, 179
 UK economy, 271

Harvest Information Modelling (HIM), 121
Herman Dooyeweerd philosophy, 312–314
hinterland city
 Durban, 259, 260
 Florence, 259, 260
 Phoenix, 257, 259
 river severn catchment, 260–261
 UK urban task force, 257–258
housing estates
 families in, 245–246
 housing retention rate, 245, 247
 post-occupancy evaluation, 247
 sample size for, 236

Information Communication Technology (ICT), 112
 design and evaluation, 12
 integrated infrastructures, 189
 information exchange, 171, 203, 208, 298, 300
 integrated sustainable urban development (ISUD), 77
 intelligent cities, 31
Intelligent Transportation Systems (ITS)
 cities in 2050, 112
 mobility in, 117–118
 interactive risk assessment, 159–160
Intergovernmental Panel on Climate Change (IPCC), 40, 125–126
The International Union for Conservation of Nature, 60
Inventory of Carbon and Energy (ICE)
 estimating EC, 132
 estimating method, 136

JCT see Joint Contracts Tribunal (JCT)
Joint Contracts Tribunal (JCT)
 consultation, 271–273
 contracts, sustainability, 276
 sustainability objectives, 280
 sustainability provisions, 274

knowledge society (KS)
 globalised society, 256
 life city residents, 257
Kyoto protocol, 144

lack of reporting standards, 147
life cycle assessment (LCA), 126, 129, 130
light house city, 180–181
Local Governments for Sustainability in 1990, 58
London's population growth, 257–258
low carbon society, 59, 66
low energy retrofitting, 185–186
materials in 2050, 118–119
MILESECURE-2050, 59
mobility in 2050, 117–118
multi-agency collaboration, 158–159
multi-criteria decision analysis (MCDA), 290, 295
Multi-dimensional urban regeneration model, 180–181
Nottingham City Council (NCC)
 demonstrator site, 183
 head of smart cities, 190
 Remourban, 191
 wider city urban area, 182
Nottingham smart city
 added value, 190–191
 background, 179–180
 built environment innovations
 district energy network, 186–187
 low energy retrofitting, 185–186
 City Car Club Nottingham, 189
 city of, 182–183
 demonstrator site, 183–184
 EU cities, 181–182
 EV, 189
 integrated infrastructures, 189–190
 last mile delivery, 188–189
 mobility action, 187–188
 objective, 180–181
 passive house retrofitting, 187
 Remourban, 180
operational carbon (OC) estimation
 vs. EC, 128–129
 energy data, 128
 estimating of, 131–132
 system boundaries, 128–129
peoples in 2050, 110
PICABUE, 70, 76
POE see post-occupancy evaluation (POE)
population growth, 57, 110, 144, 146
positive development, 46, 80
post carbon city (PCC)
 climate change of
 built environment, 58
post carbon city (PCC) (cont’d)
role of, 57
societal processes, 59
GHS, 56
POCACITO project, 56
sustainable development
eco-efficiency, 62
model of, 61–62
social–ecological systems, 63
post-occupancy evaluation (POE), 169, 236, 247
Post-occupancy Review of Buildings and their Engineering (PROBE), 170
predicted vs. actual performance
CO₂ emissions, 170
cycle waves in, 171–172
non-domestic building, 170–171
POE, 169
private finance initiatives (PFIs), 26
Programa Integrado Entrada da Cidade (PIEC) development process, 237
evaluation of, 243–244
housing types, 237, 239, 240
logical framework overview, 243–244
physical progress, 242
Porto Alegre, 237–238
project delivery system, 241
research method, 235–236
project stakeholders, 199, 204–206, 233
Property Tectonics
consultancy services, 215–216
lifespan software, 220
RSL, 222
waste recycling, 219
public participation
sustainable development, 97
technology-enabled, 96–98
urban planning, 101–103
public private partnerships (PPPs), 26, 34, 113, 293
quality of life, city
ABCD, 23–24
authenticity
‘authenticity’, 22–23
decent affordable housing, 23
exclusion culture, 22
social cohesion, 21–22
rebound effect, 62
regenerative design, 48, 81, 264
regenerative development, 42–45, 51, 53
Remourban, 180, 181, 187–189
remourban innovations, 183
Renewable Heat Incentive (RHI), 145
Residential Social Landlord (RSL)
Property Tectonics, 222
social housing, 221–222
resilience, 1, 5, 21, 26, 34, 43, 44, 53, 55–66, 81, 113, 155, 157, 161, 218, 321, 327, 330
resilient cities
interactive risk assessment, 159–160
multi-agency collaboration, 158–159
risk assessment process, 156–158
theoretical framework, 156
re-use project data, 168
risk assessment process
multi-agency collaboration, 158–159
six-step, 156–157
Roadmap for moving to a competitive low-carbon economy in 2050, 58
Royal Institute of British Architects (RIBA), 12, 168, 170
Simplified Building Energy Model (SBEM), 131
small to medium sized enterprise (SME), 214
small urban consolidation centre (SUCC), 188
smart cities see Nottingham smart city
SNA see social network analysis (SNA)
Sneinton demonstration site, 183–184
snowball sampling, 203, 208
social–ecological systems, 42, 43, 45, 63
social housing, energy management
FIT, 222–223
Internet of Things, 224–225
projects in Brazil, 231–232
RSL, 221
social network analysis (SNA), 200–201
actionable stakeholder relationships, 203
general process of, 201
interrelationships vs. stakeholders, 204
mega projects, 206–207
network data analysis, 205–206
network density, 205
project stakeholders, 204–205
social networks, 203
stakeholder analysis, 207
interrelationships, 202
theory of, 200
VM methodology, 196
societal process, 59, 60
spatial and environmental planning, 309
stakeholder analysis, 206–207
stakeholder engagement see also sustainable development
 challenges of, 196
 definition of, 196–197
 methods, 197–198
 post-workshop stage, 202
 potential applications, 208–209
 pre-workshop stage, 201
 SNA, 200–201
 actionable stakeholder relationships, 203
 interrelationships vs. stakeholders, 204
 mega projects, 206–207
 network data analysis, 205–206
 project stakeholders, 204–205
 social networks, 203
 stakeholder interrelationships, 202
 stakeholder theory, 198–199
 three perspectives, 196–197
 value-oriented, 198
 VM, 199–200
 workshop stage, 202
 stakeholder management, 292–293
 stakeholder theory, 198–199

Strategic Management: A Stakeholder Approach, 198

sustainability changing ways
 changing self, 48–50
 changing views
 about building, 48
 context rules, 47
 development rethinking, 46
 embraced, 45–46
 impact, 47–48
 negative to positive shift, 45
 regenerative development, 41–44
 transforming practice
 collaboration to co-creation, 50–51
 practitioner, 51–52
 regenerative built environment, 52

sustainable built environment development
 context of, 94–96
 public participation
 technology-enabled, 96–98
 urban planning, 101–103
 VR potential
 3D visualisation technologies, 101, 102
 Urban Circus, 102, 103

sustainable cities
 de-design urban planning, 28
 integrate environmental thinking, 27
 promote corporate urban responsibility, 29–30

rediscover the city, 26–27
redistribute urban decision-making, 27–28
sustainable data-driven design futures
 big data, 167–168
 concepts, challenges and trends, 165–167
 new focus/metrics, 168–169
 predicted vs. actual performance, 169–172
 role of, 165

sustainable development see also stakeholder engagement
 challenges of, 196
 definition of, 195
 engaging with practice, 12
 environmental considerations, 277
 in future
 applications, 340–341
 attitudes and beliefs, 336–341
 built environment, 320
 challenge, 321
 longer view
 first proposal, 335–336
 humanity mandate, reality, 335
 time and progress, 333–334
 philosophical thinking, 321–322
 problems with, philosophy, 322–323
 ict design, evaluation, 12
 stakeholder engagement, 198, 209
 urban projects, 199
 world view, 11–12

Sustainable Energy Action Plan (SEAP), 182

sustainable renewal see urban transport infrastructure

sustainable urban development (SUD)
 BEQUEST
 establishing network of, 70
 legacy of, 73–75
 PICABUE, 70–72
 defined, 75–76
 diffusion of, 77–78
 economic conditions, 61
 Egan wheel, 263–264
 elaborating, not extending, 81–83
 expansion/dilution of, 80–81
 five-generation decision-making, 83–84
 framing and tools, 78–80, 84
 globalisation, 256–257
 governance structures, 261–263
 hinterland city, 257–261
 model of, 61–62
 PICABUE, 70, 76
 pillar of, 254–256
sustainable urban development (SUD) (cont’d)
realisation, 252–253
rebound effect, 62
research, 84–86
skills gap, 263–266
social–ecological systems, 63
time, 308
dimensions and horizons, 306
fundamental characteristics, human
experience, 307
gestalten, 310
glove of time, 314–316
grid mapping temporal diversity, 310
grounding concepts, urban planning, 307
linking factor, 312, 313
planing with, 308, 309
patterns, 310
trade-offs, 60
UDIA, 79–80
urban resilience, 63
virtualisation, 256–257
Sustainable Urban Development Network
(SUD-Net), 77
Target Emission Rate (TER), 131, 145
temporal modal order, 314
3D visualisation, 101, 102
track occupant behaviour, 168
transit-oriented development (TOD), 32
Tutzing Time Ecology Project, 310
UK Building Regulations, 2013, 145
United Kingdom (UK) sustainability
compliance, warranties, 226–229
ECO, 226
economics, investment and finance,
217–218
lifespan software, 220–221
method, 215
national grid pressures, 218
property tectonics, 215–216
reflective analysis, 215
social housing energy management,
221–225
waste recycling, 219
United Nations-Economic Commission for
Europe, 77
United Nations World Commission on Environment
and Development (WCED), 185
Urban Circus, 102, 103
Urban Development Institute of Australia (UDIA),
79–80
urban planning
digital communications technologies, 96
future in 2050
BIM, 120–122
BIM role, impact, 119–120
buildings, 115–117
CIM smart technologies, 111
constraints to vision, 122–123
environmental challenges, 111
future city in 2050, 112–115
materials, 118–119
mobility, 117–118
model of, 109–110
people, 110
present and future, 111
smart technologies, BIM, 111
worst case scenario, 108–109
public participation, 101–103
urban redevelopment projects
Cronbach’s Alpha test, 236
discussion, 248–250
Kano’s model, 234
management of, 232–233
Monroe’s model, 234
perceived value, 243–248
PIEC’s development process, 237–241
project delivery system, 241–243
research method, 235–236
social housing projects, 231–232
value generation, 233–235
urban resilience, 63, 65
urban transport infrastructure
aim, objectives, methods, 287–288
communication, decision-making,
291–292
decision support, 294–298
renewal of, 289–290
research on, 288–289
stakeholder management, 292–293
studies of, 298–300
sustainability assessment of, 290–291
urban renewal, 290
value methodology (VM)
conceptual framework, 208
pre-workshop stage, 201
techniques of, 199–200
workshop stage, 202
virtual reality (VR)
crowdsourcing, 98
game engine, 100
potential of, 98–101
urban planning, 101–103
VM see value methodology (VM)
VR see virtual reality (VR)
waste recycling, 214, 216, 219
World Commission on Environment and Development, 1987, 94, 195, 229
World Urban Campaign, 77
zero carbon buildings, 141–143, 150
zero carbon policy, 140–141, 150