Contents

About the Author xi
Preface xiii
Series Editor’s Foreword to the Second Edition xv

1 Introduction 1
References 5

2 OLED Devices 7
2.1 OLED Definition 7
2.1.1 History of OLED Research and Development 7
2.1.2 Luminescent Effects in Nature 8
2.1.3 Difference Between OLED, LED, and Inorganic ELs 11
2.1.3.1 Inorganic EL 11
2.1.3.2 LED 11
2.2 Basic Device Structure 12
2.3 Basic Light Emission Mechanism 14
2.3.1 Potential Energy of Molecules 14
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) 15
2.3.3 Configuration of Two Electrons 17
2.3.4 Spin Function 20
2.3.5 Singlet and Triplet Excitons 20
2.3.6 Charge Injection from Electrodes 24
2.3.6.1 Charge Injection by Schottky Thermionic Emission 25
2.3.6.2 Tunneling Injection 28
2.3.6.3 Vacuum-Level Shift 28
2.3.7 Charge Transfer and Recombination 29
2.3.7.1 Charge Transfer Behavior 29
2.3.7.2 Space-Charge-Limited Current 29
2.3.7.3 Poole–Frenkel conduction 32
2.3.7.4 Recombination and Generation of Excitons 33
3.3.2 Light Emission from the Bottom and Top of the OLED Device 80
3.3.3 Bottom Emission and perimeter sealing 81
3.3.4 Top Emission 82
3.3.5 Encapsulation Technologies and Measurement 83
3.3.5.1 Thin-Film Encapsulation 84
3.3.5.2 Face Sealing Encapsulation 87
3.3.5.3 Frit Encapsulation 88
3.3.5.4 WVTR Measurement 88
3.4 Problem Analysis 91
3.4.1 Ionization Potential Measurement 91
3.4.2 Electron Affinity Measurement 92
3.4.3 HPLC Analysis 93
3.4.4 Cyclic Voltammetry 94

References 96

4 OLED Display Module 99
4.1 Comparison Between OLED and LCD Modules 99
4.2 Basic Display Design and Related Characteristics 101
4.2.1 Luminous Intensity, Luminance, and Illuminance 101
4.2.1.1 Luminous Intensity 101
4.2.1.2 Luminance 102
4.2.1.3 Illuminance 103
4.2.1.4 Metrics Summary 104
4.2.1.5 Helmholtz–Kohlrausch Effect 106
4.2.2 OLED Current Efficiencies and Power Efficacies 106
4.2.3 Color Reproduction 109
4.2.4 Uniform Color Space 115
4.2.5 White Point Determination 116
4.2.6 Color Boost 119
4.2.7 Viewing Condition 120
4.3 Passive-Matrix OLED Display 121
4.3.1 Structure 121
4.3.2 Pixel Driving 122
4.4 Active-Matrix OLED Display 125
4.4.1 OLED Module Components 125
4.4.2 Two-Transistor One-Capacitor (2T1C) Driving Circuit 127
4.4.3 Ambient Performance 136
4.4.3.1 Living Room Contrast Ratio 136
4.4.3.2 Chroma Reduction Due to Ambient Light 137
4.4.4 Subpixel Rendering 138

References 139
5 **OLED Color Patterning Technologies** 143
5.1 Color-Patterning Technologies 143
5.1.1 Shadow Mask Patterning 143
5.1.1.1 Shadow Mask Process 143
5.1.1.2 Blue Common Layer 146
5.1.1.3 Polychromatic Pixel 147
5.1.2 White + Color Filter Patterning 148
5.1.3 Color Conversion Medium (CCM) Patterning 149
5.1.4 Laser-Induced Thermal Imaging (LITI) Method 149
5.1.5 Radiation-Induced Sublimation Transfer (RIST) Method 151
5.1.6 Dual-Plate OLED Display (DOD) Method 152
5.1.7 Other Methods 153
5.2 Solution-Processed Materials and Technologies 153
5.3 Next-Generation OLED Manufacturing Tools 158
5.3.1 Vapor Injection Source Technology (VIST) Deposition 158
5.3.2 Hot-Wall Method 163
5.3.3 Organic Vapor-Phase Deposition (OVPD) Method 164

References 165

6 **TFT and Driving for Active-Matrix Display** 167
6.1 TFT Structure 167
6.2 TFT Process 169
6.2.1 Low-Temperature Polysilicon Process Overview 169
6.2.2 Thin-Film Formation 172
6.2.3 Patterning Technique 173
6.2.4 Excimer Laser Crystallization 177
6.3 MOSFET Basics 180
6.4 LTPS-TFT-Driven OLED Display Design 183
6.4.1 OFF Current 183
6.4.2 Driver TFT Size Restriction 184
6.4.3 Restriction Due to Voltage Drop 185
6.4.4 LTPS-TFT Pixel Compensation Circuit 190
6.4.4.1 Voltage Programming 190
6.4.4.2 Current Programming 192
6.4.4.3 External Compensation Method 193
6.4.4.4 Digital Driving 194
6.4.5 Circuit Integration by LTPS-TFT 197
6.5 TFT Technologies for OLED Displays 200
6.5.1 Selective Annealing Method 200
6.5.1.1 Sequential Lateral Solidification (SLS) Method 200
6.5.1.2 Selective Annealing by Microlens Array 200
6.5.2 Microcrystalline and Superamorphous Silicon 202
6.5.3 Solid-Phase Crystallization 205
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3.1</td>
<td>MIC and MILC Methods</td>
<td>205</td>
</tr>
<tr>
<td>6.5.3.2</td>
<td>AMFC Method</td>
<td>205</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Oxide Semiconductors</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>OLED Television Applications</td>
<td>215</td>
</tr>
<tr>
<td>7.1</td>
<td>Performance Target</td>
<td>215</td>
</tr>
<tr>
<td>7.2</td>
<td>Scalability Concept</td>
<td>217</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Relationship between Defect Density and Production Yield</td>
<td>217</td>
</tr>
<tr>
<td>7.2.1.1</td>
<td>Purpose of Yield Simulation</td>
<td>217</td>
</tr>
<tr>
<td>7.2.1.2</td>
<td>Defective Pixel Number Estimation Using the Poisson Equation</td>
<td>217</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Scalable Technology</td>
<td>217</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Scalability</td>
<td>218</td>
</tr>
<tr>
<td>7.3</td>
<td>Murdoch's Algorithm to Achieve Low Power and Wide Color Gamut</td>
<td>219</td>
</tr>
<tr>
<td>7.3.1</td>
<td>A Method for Achieving Both Low Power and Wide Color Gamut</td>
<td>219</td>
</tr>
<tr>
<td>7.3.2</td>
<td>RGBW Driving Algorithm</td>
<td>221</td>
</tr>
<tr>
<td>7.4</td>
<td>An Approach to Achieve 100% NTSC Color Gamut With Low Power Consumption Using White + Color Filter</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Consideration of Performance Difference between W-RGB and W-RGBW Method</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1.1</td>
<td>Issues of White + Color Filter Method for Large Displays</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1.2</td>
<td>Analysis of W-RGBW Approach to Circumvent Its Trade-off Situation</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1.3</td>
<td>Design of a Prototype to Demonstrate That Low Power Consumption Can Be Achieved with Large Color Gamut</td>
<td>229</td>
</tr>
<tr>
<td>7.4.1.4</td>
<td>Product-Level Performance Demonstration by the Combination of Scalable Technologies</td>
<td>230</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>8</td>
<td>New OLED Applications</td>
<td>235</td>
</tr>
<tr>
<td>8.1</td>
<td>Flexible Display/Wearable Displays</td>
<td>235</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Flexible Display Applications</td>
<td>235</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Flexible Display Substrates</td>
<td>235</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Laser Lift off Process</td>
<td>236</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Barrier Technology for Flexible Displays</td>
<td>240</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Organic TFTs for Flexible Displays</td>
<td>241</td>
</tr>
<tr>
<td>8.1.5.1</td>
<td>Organic Semiconductor Materials</td>
<td>242</td>
</tr>
<tr>
<td>8.1.5.2</td>
<td>Organic TFT Device Structure and Processing</td>
<td>243</td>
</tr>
<tr>
<td>8.1.5.3</td>
<td>Organic TFT Characteristics</td>
<td>245</td>
</tr>
<tr>
<td>8.2</td>
<td>Transparent Displays</td>
<td>245</td>
</tr>
</tbody>
</table>