CONTENTS

Preface xiii
Acknowledgments xv
About the Authors xvii

1 Introduction 1

1.1 Definitions of Nanoscience and Nanotechnologies, 1
1.2 Uniqueness of the Nanoscale, 3
1.3 Nanoscience in Nature, 4
 1.3.1 Naturally Occurring Nanomaterials, 7
 1.3.2 Nanoscience in Action in Biological World, 8
1.4 Historical Perspective, 10
1.5 Nanomaterials, 13
 1.5.1 Nanoparticles, 16
 1.5.2 Nanowires and Nanotubes, 17
 1.5.3 Nanolayers/Nanocoatings, 17
 1.5.4 Nanoporous Materials, 17
1.6 Strategies for Synthesis of Nanomaterials, 18
1.7 Properties of Nanomaterials, 18
1.8 Significance of Nanoscience, 19
1.9 Commercial Applications, 20
 1.9.1 Food Industry, 22
 1.9.2 Cosmetics, 22
 1.9.3 Textile, 22
CONTENTS

1.9.4 Medicine, 22
1.9.5 Electrical and Electronic Goods, 23
1.10 Potential Health Hazards and Environmental Risks, 24
1.11 Futuristic Outlook, 25
Review Questions, 26
References, 27

2 Nanomaterials: General Synthetic Approaches

2.1 Introduction, 29
2.2 Top-Down Approach, 30
 2.2.1 Mechanical Milling, 31
 2.2.2 Mechanochemical Processing (MCP), 32
 2.2.3 Electro-Explosion, 33
 2.2.4 Sputtering, 34
 2.2.5 Etching, 34
 2.2.6 Laser Ablation, 36
 2.2.7 Lithography, 37
 2.2.8 Aerosol-Based Techniques, 43
 2.2.9 Electrospinning, 47
2.3 Bottom-Up Approaches, 49
 2.3.1 Chemical Vapor Deposition, 49
 2.3.2 Chemical Vapor Condensation (CVC), 54
 2.3.3 Plasma Arcing, 55
 2.3.4 Wet Chemical Methods, 55
 2.3.5 Hydrothermal/Solvothermal, 60
 2.3.6 Reverse Micelle Method, 60
 2.3.7 Sol–Gel Method, 61
 2.3.8 Sonochemical Method, 64
 2.3.9 Biomimetic Approaches, 66
 2.3.10 Molecular Self-Assembly, 70
 2.3.11 Langmuir–Blodgett (LB) Film Formation, 71
 2.3.12 Stabilization and Functionalization of Nanoparticles, 72
Review Questions, 73
References, 74

3 Characterization Tools for Nanomaterials

3.1 Introduction, 77
3.2 Imaging Through Electron Microscopy, 79
 3.2.1 Scanning Electron Microscope (SEM), 85
 3.2.2 Transmission Electron Microscope (TEM), 91
3.3 Scanning Probe Microscopy (SPM), 97
 3.3.1 Scanning Tunneling Microscope (STM), 97
 3.3.2 Atomic Force Microscope (AFM), 102
CONTENTS

3.4 Characterization Through Spectroscopy, 107
 3.4.1 UV–Visible Plasmon Absorption and Emission, 108
 3.4.2 Vibrational Spectroscopies: FTIR and Raman Spectroscopy, 109
 3.4.3 Raman Spectroscopy Based Imaging, 116
 3.4.4 X-Ray Photoelectron Spectroscopy (XPS), 119
 3.4.5 Auger Electron Spectroscopy, 126
 3.4.6 Secondary Ion Mass Spectrometry (SIMS), 130

3.5 Scattering Techniques, 133
 3.5.1 X-Ray Diffraction Methods, 134
 3.5.2 Dynamic Light Scattering (DLS), 140
 3.5.3 Zeta Potential Analysis, 142

Review Questions, 145
References, 146

4 Nanomaterials

4.1 Introduction, 149

4.2 Inorganic Nanomaterials, 150
 4.2.1 Metals and Alloys, 150
 4.2.2 Metal Oxides of Transition and Non-transition Elements, 156
 4.2.3 Non-oxide Inorganic Nanomaterials, 161

4.3 Organic Nanomaterials, 161
 4.3.1 Polymeric Nanoparticles, 161
 4.3.2 Polymeric Nanofilms, 162
 4.3.3 Nanocellulose, 162
 4.3.4 Biodegradable Polymer Nanoparticles, 165
 4.3.5 Dendrimers, 165

4.4 Biological Nanomaterials, 166
 4.4.1 Categories, 167
 4.4.2 Potential Applications, 169

4.5 Nanoporous Materials, 170

4.6 Quantum Dots, 173

4.7 Nanoclusters, 175

4.8 Nanomaterials in Different Configurations, 178
 4.8.1 Nanofibers, 179
 4.8.2 Nanowires, 179
 4.8.3 Nanotubes, 180
 4.8.4 Nanobelts, 183
 4.8.5 Nanorods, 184

Review Questions, 185
References, 186
5 Carbon-Based Nanomaterials

5.1 General Introduction, 189
 5.1.1 Carbon Nanomaterials: Synthetic Carbon Allotropes (SCAs), 190
5.2 Fullerene, 192
 5.2.1 Properties of Fullerene, 193
 5.2.2 Application Potentials of Fullerene, 195
5.3 Carbon Nanotubes (CNTs), 196
 5.3.1 Classification of CNTs, 196
 5.3.2 Synthesis of CNTs, 198
 5.3.3 Functionalization of CNTs, 203
 5.3.4 Purification of CNTs, 205
 5.3.5 Special Properties of Carbon Nanotubes, 207
 5.3.6 Applications, 208
5.4 Graphene, 208
 5.4.1 Electronic Structure of Graphene, 210
 5.4.2 Unique Properties of Graphene, 211
 5.4.3 Synthesis, 212
 5.4.4 Characterization of Graphene, 219
 5.4.5 Applications, 221
5.5 Carbon Nano-Onions, 222
5.6 Carbon Nanofibers, 224
5.7 Carbon Black, 225
 5.7.1 Crystallinity, 227
 5.7.2 Homogeneity and Uniformity, 227
5.8 Nanodiamond, 227
 5.8.1 Synthesis of Nanodiamond, 228
 5.8.2 Properties, 230
 5.8.3 Applications, 232
5.9 Review Questions, 233
5.10 References, 234

6 Self-Assembled and Supramolecular Nanomaterials

6.1 Introduction: Self-Assembly, 237
 6.1.1 Supramolecular Chemistry, 238
6.2 Historical Perspective of Supramolecular and Self-Assembled Structures, 239
6.3 Fundamental Aspects of Supramolecular Chemistry, 240
 6.3.1 Molecular Self-Assembly, 241
 6.3.2 Molecular Recognition and Complexation, 242
 6.3.3 Mechanically Interlocked Molecular Architectures, 242
 6.3.4 Supramolecular Organic Frameworks (SOFs), 242
 6.3.5 Biomimetic, 243
6.4 Review Questions, 244
6.5 References, 245
CONTENTS

6.3.6 Imprinting, 243
6.3.7 Molecular Machines, 243
6.4 Self-Assembly Via Non-Covalent Interaction, 244
6.4.1 Long-Range Forces in Self-Assembly, 244
6.4.2 Short-Range Forces in Self-Assembly, 247
6.4.3 Self-Assembly in Soft Materials, 250
6.4.4 Advantages of Self-Assembly, 251
6.4.5 Challenges in Self-Assembly, 252
6.5 Synthetic Strategies for Molecular Self-Assembly, 252
6.5.1 Physiosorption (Patterned Organic Monolayers), 253
6.5.2 Chemisorption, 254
6.5.3 Metal Ion–Ligand Interactions, 254
6.6 Biological Self-Assembly, 255
6.7 Templated (Non-Molecular) Self-Assembly, 256
6.7.1 Self-Assembly Through Capillary Interactions, 257
6.7.2 Self Assembly Through Lego Chemistry, 258
6.8 Self-Assembled Supramolecular Nanostructures, 260
6.8.1 Inorganic Colloidal Systems, 261
6.8.2 Liquid-Crystalline Structures, 262
6.8.3 Self-Assembled Structured Nano-Objects in Unusual Shapes, 263
6.9 Self-Folding Nanostructures, 263
6.10 Applications, 264
6.10.1 Supramolecular Chemistry, 264
6.10.2 Self-Assembled Nanomaterials, 265
6.10.3 Nanomotors, 266
Review Questions, 267
References, 268

7 Nanocomposites

7.1 Introduction, 271
7.1.1 Man-Made Ancient Composites, 272
7.1.2 Modern Examples of Composites, 273
7.1.3 Nanocomposites, 273
7.1.4 Structure and Composition of Nanocomposites, 274
7.1.5 Properties of Composite Materials, 276
7.1.6 Classification of Nanocomposites, 277
7.2 Ceramic–Matrix Nanocomposites, 279
7.2.1 Structural Ceramic Nanocomposites, 279
7.2.2 Functional Ceramic Nanocomposites, 283
7.3 Metal–Matrix Nanocomposites, 284
7.3.1 Metal–Ceramic Nanocomposites, 285
7.3.2 Carbon Nanotubes–Metal Matrix Composites, 286
CONTENTS

7.4 Polymer–Matrix Nanocomposites, 289
 7.4.1 Polymer–Inorganic Nanocomposites (PINCs), 291
 7.4.2 Polymer–Clay Nanocomposites (PCNs), 299
 7.4.3 Polymer–Carbon Nanocomposites, 306
 7.4.4 Polymer–Polysaccharide Nanocomposites, 310

7.5 Nanocoatings, 313
 7.5.1 Functional Nanocoating, 314
 7.5.2 Smart (Responsive) Nanocoatings, 321

Review Questions, 322
References, 323

8 Unique Properties 326

8.1 Introduction, 326
8.2 Size Effects, 327
 8.2.1 Quantum Confinement, 328
 8.2.2 The Density of States (DOS), 330
 8.2.3 High Surface Area, 332
8.3 Physical Properties, 334
 8.3.1 Thermal Properties, 335
 8.3.2 Optical Properties, 336
 8.3.3 Electronic Properties, 341
 8.3.4 Electrical Properties, 342
 8.3.5 Magnetic Properties, 346
 8.3.6 Mechanical Properties, 352
8.4 Chemical Properties at Nanoscale, 353
 8.4.1 Bonding, 353
 8.4.2 Surface Properties, 354
 8.4.3 Catalysis, 354
 8.4.4 Detection, 355
8.5 The Concept of Pseudo-Atoms, 356

Review Questions, 356
References, 358

9 Applications of Nanotechnology 361

9.1 Introduction, 361
9.2 Medicine and Healthcare, 363
 9.2.1 Diagnosis, 363
9.3 Drug Development and Drug Delivery System, 368
 9.3.1 Drug Design and Screening, 368
 9.3.2 Advanced Drug Delivery Systems, 369
 9.3.3 Targeted Drug Delivery, 371
 9.3.4 Remotely Triggered Delivery Systems, 372
 9.3.5 Therapy, 372
 9.3.6 Tissue and Biomaterial Engineering, 373
9.4 Information and Computer Technologies, 374
 9.4.1 Integrated Circuits, 375
 9.4.2 Data Storage, 376
 9.4.3 Displays, 378
9.5 Nanoelectromechanical Systems (NEMS), 380
9.6 Nanotechnologies in Tags, 381
9.7 Nanotechnology for Environmental Issues, 382
 9.7.1 Water Purification and Remediation, 383
 9.7.2 Nanotechnology for Air Pollution Control, 384
9.8 Energy, 385
 9.8.1 Photovoltaic Technologies for Solar-Energy Harvesting, 386
 9.8.2 Artificial Photosynthesis: Production of Solar Fuel, 391
 9.8.3 Thermoelectric Energy, 392
 9.8.4 Piezoelectric Nanomaterials, 394
 9.8.5 Hydrogen Generation and Storage, 394
 9.8.6 Batteries, 397
9.9 Nanotechnology in Enhancing the Fuel Efficiency, 401
9.10 Chemical and Biosensors Using Nanomaterials (NMs), 401
 9.10.1 Artificial Nose as Chemical/Biosensor, 402
9.11 Nanotechnology in Agro Forestry, 403
 9.11.1 Precision Farming, 403
 9.11.2 Smart Delivery Systems, 404
9.12 Defense Applications, 404
 9.12.1 Light Military Platforms, 405
 9.12.2 Nanotechnology for Camouflage/Stealth, 405
 9.12.3 Affordable Energy, 407
 9.12.4 Deadly Weapons, 407
9.13 Nanotechnology in Space, 408
 9.13.1 Space Flight and Nanotechnology: Applications Under Development, 408
9.14 Consumer Goods, 409
 9.14.1 Nanotextiles, 409
 9.14.2 Self-Cleaning, 410
 9.14.3 Antimicrobial Coatings on Textiles and Other Products, 411
 9.14.4 Cosmetics, 412
9.15 Sport Goods, 413
 Review Questions, 416
 References, 417

10 Toxicity and Environmental Issues 419
10.1 Introduction, 419
 10.1.1 Toxicity of Nanoparticles, 421
10.2 Sources of Nanoparticles and Their Health Effects, 422
10.2.1 Natural Sources of Nanoparticles, 422
10.2.2 Anthropogenic Nanomaterials, 426

10.3 Toxicology of Engineered Nanoparticles, 431
10.3.1 Respiratory Tract Uptake and Clearance, 431
10.3.2 Cellular Interaction with Nanoparticles, 434
10.3.3 Nervous System Uptake of Nanoparticles, 437
10.3.4 Nanoparticles Translocation to the Lymphatic Systems, 438
10.3.5 Nanoparticles Translocation to the Circulatory System, 438
10.3.6 Liver, Spleen, Kidneys Uptake of Nanoparticles, 441
10.3.7 Gastrointestinal Tract Uptake and Clearance of Nanoparticles, 441
10.3.8 Dermal Uptake of Nanoparticles, 443
10.3.9 Nanoparticles Uptake via Injection, 444
10.3.10 Nanoparticles Generation by Implants, 444

10.4 Positive Health Effects of Nanoparticles, 445
10.4.1 Nanoparticles as Antioxidants, 445
10.4.2 Antimicrobial Activity, 445

10.5 Environmental Sustainability, 445

10.6 Safe Working with Nanomaterials, 447
10.6.1 Safe Laboratory Practices in Handling Nanomaterials, 448
10.6.2 Exposure Monitoring, 449

10.7 Nanomaterial Waste Management, 449

10.8 Gaps in Knowledge about Health Effects of Engineered Nanoparticles, 451

10.9 Government Standards and Materials Safety Data Sheets, 452
10.9.1 Control Banding, 453
10.9.2 Hierarchy of Controls, 453
10.9.3 Engineering Controls, 453
10.9.4 Administrative Controls, 454
10.9.5 Personal Protective Equipment, 455

10.10 Risk Management, 455

Review Questions, 458
References, 458

Index 463