Index

NOTE: Page numbers in *italics* indicate figures and tables.

Acentech, 240	Bishop Henry Whipple Federal Building, Fort Snelling, Minnesota (GSA example), 73–76
Adobe Acrobat, 321	BlueBeam PDF Revu, 322
AEC, defined, 17	Brando & Johnston, 192
AEC CADduct, 321	Broaddus & Associates, 168
AEC CADpipe, 321	Brown Sardina, Inc., 240
AIM™ Maintenance Management, 321	building automation systems (BASs), 86, 87–88
AKF Engineers, 240	building information management (BIM) facilities management (FM) integration, 1–15
American Institute of Architects (AIA), 92, 93, 99–100, 102, 216, 303	addressing current problems and, 5–6, 6
American Standard Code for Information Interchange (ASCII), 120	current FM practice and, 2–4, 3, 4
application programming interface (API), 9–10	graphics and data needs for, 6–7, 7
apps, BIM-related, 38	interoperability for, 8, 8–10, 9, 10
Archibus Space Inventory, 321	main benefits of, 1–2, 2
Autodesk	owner benefits of, 10–15, 11, 12
AutoCAD, 321	building information modeling (BIM) technology applications for, 19–27, 21, 22, 23, 24, 25, 26 (See also building information management (BIM) facilities management (FM) integration)
Ecotect, 25	augmented reality (AR) and, 40, 40–41, 41, 42
FM Desktop, 322	BIM, defined, 17–19, 18
Navisworks, 24	BIM component data, 42–43
Navisworks Manage, 323	challenges of, for facilities management (FM), 29–31
Project Geppetto, 25	emerging technologies and, 36–40, 38
Research, 26	facility management (FM) applications, 19–27, 21, 22, 23, 24, 25, 26
Revit, 33–36, 34, 35, 233	Seek, 43
Seek, 43	Bentley Microstation, 321
BIM Execution Plan (BEP), 54, 55–56, 88	BIM FM integration. See building information management (BIM) facilities management (FM) integration
BIM FM integration	BIM Planning for Facility Owners, 81
BIM technology for FM, 17–45	325
building information modeling (BIM) technology (continued)
Healthcare BIM Consortium (HBC) and, 32, 32–36, 34, 35
sensor data and, 41–42
standards, 43–44
standards and data exchange, 27, 27–29, 29
See also case studies; Construction Operations Building information exchange (COBie); legal issues
buildingSMART alliance, 9, 27, 27–29, 29, 56. See also Specifiers’ Properties information exchange (SPie)

Camden Annex Lifecycle and NASA Projects (GSA example), 77–80
Campbell-McCabe, Inc., 240
case studies, 145–313
generally, 145, 146
MathWorks, 146, 147–163, 149, 151–152, 155, 158, 161
Texas A&M Health Science Center—A Case Study of BIM and COBie for Facility Management, 146, 164–184, 166, 167, 171, 173, 174, 175, 178
USC School of Cinematic Arts, 146, 185–232, 187, 188, 189, 194, 197, 199, 200, 201, 204, 206, 207, 208, 225
Wisconsin Bureau of Facilities Management, Division of State Facilities, Department of Administration, 146, 250–293, 255, 257, 259, 260, 261, 263, 269, 275, 276, 277, 281, 282, 283, 285, 290
Xavier University, BIM and FM Implementation, 146, 233–249, 235, 236, 237, 240, 242, 243
cloud computing, 36–37, 39–40
CMIC collaboration construction software, 322
component data, 42–43
computer-aided design (CAD), BIM vs., 17–18, 18
computerized maintenance management system (CMMS), BIM FM integration and, 2, 4, 8–11, 12
ConsensusDOCS, 91n, 93, 99–100
Construction Operations Building information exchange (COBie), 107–143
BIM FM integration, 8, 8–10
BIM technologies and, 22, 22, 28, 29
conclusions about, 140
defined, 107
delivery, 131–136
design of, 109–115
formats, 120–121
future developments, 141–142
General Services Administration (GSA), 61–62
implementation, 138–139
importance of, 107–109
information included in, 115–120, 116, 117, 119
legal issues and, 85–86, 94–95, 137–138
software, internal testing, 137
software support for, 136–137
spreadsheet format, 121–131, 124
Texas A&M Health Science Center—A Case Study of BIM and COBie for Facility Management (case study), 146, 164–184, 166, 167, 171, 173, 174, 175, 176, 178
see also case studies
contracts
generally, 88, 89–90, 90, 113–114
MathWorks (case study), 151
Texas A&M Health Science Center—A Case Study of BIM and COBie for Facility Management (case study), 168–170
University of Chicago Administration Building Renovation (case study), 297
USC School of Cinematic Arts (case study), 191–193, 194
Wisconsin Bureau of Facilities Management, Division of State Facilities, Department of Administration (case study), 261–262
Xavier University, BIM and FM Implementation (case study), 239
copyright, 93–94
Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry (NIST), 1, 4, 5, 6
CPMi, Inc., 261
Cranshaw Construction, 153
INDEX 327

data
alternative paths for data transfers, 66, 67
BIM FM integration and owner benefits, 10–11, 11
BIM FM integration needs, 6–7, 7
BIM technologies, standards and data exchange, 27, 27–29, 29
component data, 42–43
sensor data, 41–42
See also case studies; Construction Operations Building information exchange (COBie)
design, ownership of, 92–93
document storage, 2–5, 3, 48
eBuilder Document Management, 322
EcoDomus
about, 9, 9, 80, 95
FM, 203–205, 322
PM, 203
TOKMO, 323
emergency management/security, BIM for, 23, 25
energy and sustainability, BIM for, 23, 25
Engineering Research and Development Center, U.S. Army Corps of Engineers, 28
Enterprise Building Integrator, 322
ESG Architects, Inc., 261
Facility Management Handover Model View Definition, 113. See also Construction Operations Building information exchange (COBie)
FAMIS (CMMS), 322
financial issues
of BIM software, 30–31
life cycle cost analysis, 4–5, 5
return on investment (ROI) and BIM
FM integration, 1, 13–15
See also case studies
FKP Architects, 168
“Floors,” defined (COBie), 117
FM Desktop, 322
FM:Interact, 155, 157, 157–158, 158, 322
FMS division, USC, 191–193
General Services Administration (GSA)
COBie submittals, 61–62
design, construction, and record BIMs, 58–61
elements, 69–72, 71, 73–76, 77–80
Guidelines, 49–57, 50
high-level modeling requirements, 57–58
model servers, 66–69, 67
technology overview, 64–66
technology requirements, 63–64
Gensler, 152–153
globally unique identifier (GUIDs), 52, 58
GoToMeeting, 322
Gregory P. Luther and Associates (GPLA), Inc., 192
Hanson Bridgelt Standard IPD Agreement liability waiver, 99–100
Hathaway Dinwiddle, 192
IBE Consulting Engineers, 192
IFMA Foundation, 1–2
industry foundation classes (IFCs), 27, 27–29, 29, 113, 121
information technology (IT)
cloud computing, 36–37, 39–40
mobile computing, 37–40, 38
Radio-frequency identification (RFID), 39
infrastructure as a service (IaaS), 36
insurance, 101–102
integrated project delivery (IPD)
defined, 48
legal issues, 99–101
intellectual property, 92–94
International Facilities Management Association
IFMA Foundation, 1–2
Maintenance Survey (2009), 4iPads, use of, 7, 7
Ken Saiki Design, 261
Kinect (Microsoft), 40, 40–41, 41, 42
KJWW Engineering Consultants, 261
Kleingers & Associates, 240
KPFF Consulting Engineers, 192
LACCD BIM Standards, 83
laser scanning, 26
Leadership in Energy and Environmental Design (LEED), 23, 86
legal issues, 85–106
COBie standards and, 85–86, 94–95, 137–138
contracts, 88, 89–90, 90, 113–114
generally, 85–87
insurance coverage, 101–102
legal issues (continued)
intellectual property, 92–94
liability, 96–98
liability and integrated project delivery (IPD) environment, 99–101
ownership of model, 91–92
requests, 87–89
sample BIM specification, 102–106
standards and operability, 94–95
liability, 96–98, 99–101
life cycle
BIM FM integration, cloud-based, 9–10
BIM FM integration and graphics/data needs, 6–7
cost analysis, 4–5
facility life-cycle management, 32, 32–36, 34, 35
legal issues, 86–87
See also case studies
LogMeln, 322

M. A. Mortenson Company, 297
Maintenance Survey (2009, IFMA), 4
managed asset inventory, 110–111, 118
MathWorks (case study), 146, 147–163
architect for buildings, 152
architect for interiors, 152–153
BIM consultant, 154, 155
BIM role for supporting FM requirements, 155–156
collaboration, 158–160
construction manager, 153
developer, 153–154
facility, 149
FM software, 155
general description, 148–149
lessons learned from, 162–163
management summary, 147–148
MEP engineer, 154
metrics, 160–162, 161
project contracts, 151
project team, 151, 151–152
project technology, 156–158
role of owner and FM staff in setting BIM and FM requirements, 150–151

Matt Construction, 192
Maximo Asset Management, 322
Meridian Enterprise, 322
Messer Construction Co., 240
Metasys®: Building Management System, 323
Michael Schuster Associates, 240
Micron Construction Co., Inc., 261
Microsoft, 40, 40–41, 41, 42
Miron Construction Co., Inc., 261
Mitchell & Morgan LLP, 168
mobile computing, 37–40, 38
model servers, 66–69, 67
multi-user access requirements, 64, 65–66

NASA, 61
National BIM Standard, 81–82
National Building Information Model Standard (NBIMS), 27, 27–29, 29
National Development, 153–154
National Institute of Building Sciences (NIBS), 56. See also Specifiers’ Properties information exchange (SPIe)
National Institute of Standards & Technology (NIST), 1, 4, 5, 6
Navisworks Manage, 323

Onuma System, 323
operations and maintenance (O&M) costs, 4–5
requirements, 111–112
owner guidelines, 47–83
BIM Planning for Facility Owners, 81
Bishop Henry Whipple Federal Building, Fort Snelling, Minnesota (example), 73–76
Camden Annex Lifecycle and NASA Projects (example), 77–80
COBie submittals, 61–62
design, construction, and record BIMs, 58–61
generally, 47–49
GSA Guidelines, 49–57, 50
high-level modeling requirements, 57–58
LACCD BIM Standards, 83
model servers, 66–69, 67
National BIM Standard, 81–82
Peter W. Rodino Federal Building Modernization, Newark, New Jersey (example), 69–72, 71
technology overview, 64–66
technology requirements, 63–64
Wisconsin (state) BIM Guidelines and Standards for Architects and Engineers, 82–83

owner/operators

BIM FM integration and owner benefits, 10–15, 11, 12

building information modeling (BIM) technologies for, 19

See also owner guidelines

Palanisami & Associates, Inc., 261

parametric capabilities, of BIM, 18–19

Peter W. Rodino Federal Building Modernization, Newark, New Jersey (GSA example), 69–72, 71

physical room/Space concept, COBie and, 115

project development, BIM templates for, 21, 21

quality control, 55–56

Radio-frequency identification (RFID), 39

real-time data display, BIM for, 24, 26

regularized project delivery, BIM for, 22, 22

Renschler Co., 261

return on investment (ROI), BIM FM integration and, 1, 13–15

Revit

Architecture, 323

MEP, 323

SEPS BIM Tool, 323

Structure, 323

ROCKEY Structures LLC, 297

Rolf Jensen & Associates, 240

Satterfield & Pontikes Construction, Inc., 168

SDS Architects, 261

sensor data, 41–42

SEPS Bim Tool, 33–36, 34, 35

server applications, BIM, 26–27

Shah Smith & Associates, 168

Shepley Bulfinch Richardson and Abbott, 240

software

COBie and, 136–137

list of brand names and associated projects, 321–323

software as a service (SaaS), 37

See also case studies; individual brand names

space management

BIM for, 22, 23

space concept and COBie, 115

Spagnolo, Gisness, and Associates, Inc. (SG&A), 152

Spearin doctrine, 97–98

Specifiers’ Properties information exchange (SPIe), 43–44, 56

spreadsheet format, of COBie, 121–131, 124

Standard for the Exchange of Product (STEP), 121

standards

COBie creation and, 113 (See also Construction Operations Building information exchange (COBie))

generally, 43–44

legal issues, 94–95

state of Wisconsin. See Wisconsin Bureau of Facilities Management, Division of State Facilities, Department of Administration (case study)

Steven Schaefer Associates, Inc., 240

Submittal Exchange, 323

Sutter Health Agreement, 99–100

Taylor & Gaines, 192

Tekla Structures, 323

Telka BIMsight, 323

Texas A&M Health Science Center—A Case Study of BIM and COBie for Facility Management (case study), 146, 164–184

areas of improvement for, 181–183

collaboration and training, 179

contracts, 168–170

facility, 167

general description, 165–167

lessons learned from, 180–181

management summary, 164–165

master plan, 166

project team, 168

return on investment, 173–177, 174, 175, 176

Revit, 168

role of owner and FM staff in setting BIM and FM requirements, 170–173, 171, 173

technologies, 177–179, 178

Thelen Associates, Inc., 240

Thermal Tech Engineering, 240
University of Chicago Administration
Building Renovation (case study), 146, 294–313
BIM for FM, 310–311
BIM handover, 305–310, 306, 307, 308
contract structure, 297
documenting as-built conditions and
development of BIM, 301,
301–304, 302, 303, 304
facility, 295, 297
FM systems, 300, 300–301
future efforts, 312
introduction, 295–297
lessons learned and challenges,
311–312
management summary, 294–295
project team, 297–299, 298, 299
University of Wisconsin River Falls
(residential hall, case study), 257,
257–274, 259, 260, 261, 263,
269, 290
updates, managing, 65
Urban Design Group, 192
U.S. Army Corps of Engineers, 28, 61
U.S. Department of Defense, 33
U.S. Department of Veterans Affairs
(VA), 33
USC School of Cinematic Arts (case
study), 146, 185–232
AIA Document 202, Building
Information Modeling Protocol
Exhibit, 216–217
BIM FM implementation, 190–191
BIM FM integration, 217–220
challenges of, 231
collaboration, 193–194
contract structure, 193, 194
critical decisions for BIM FM,
226–227
data collection, 210–216
education and skills for BIM FM, 226
facility, 187, 188, 189
FM management portal creation,
220–226, 225
introduction, 186–190
lessons learned from, 227–231
management summary, 185–186
project team and contracts, 191–193
software used, 194–209, 197, 199,
200, 201, 204, 206, 207, 208
USC BIM guidelines, 209
Van Zelm Engineers, 154
Vela Mobile Systems, 323
Vela Systems, 39–40
Vico Software, 154, 155
View By View, 192
visualization, BIM for, 22–23, 24
WebTMA, 323
Weidt Group, Inc., 261
Wisconsin Bureau of Facilities
Management, Division of State
Facilities, Department of
Administration (case study), 146,
250–293
contracts, 261–262
findings, 290, 290–292
guidelines and standards, 252–254
introduction, 251
management summary, 250–251
owner guidelines and, 82–83
pilot projects, overview,
254–257, 255
project teams, 261–262
Residential Hall at University of
Wisconsin River Falls, 257,
257–274, 259, 260, 261, 263,
269
Wisconsin Energy Institute, 274–290,
275, 276, 277, 281, 282, 283, 285
Xavier University, BIM and FM
Implementation (case study), 146,
233–249
collaboration, 245–246
contracts, 239
design innovation and impact
on building life cycle, 240–244,
242, 243
facility, 235, 236, 237
general description, 234–238
lessons learned from, 246–248
management summary, 233–234
owner and FM staff, setting BIM and
FM requirements, 238
project team, 239, 240
technology used, 245