Contents

About the IFST Advances in Food Science Book Series xviii
List of Contributors xv
Preface xix

1 Introduction to Seafood Processing – Assuring Quality and Safety of Seafood 1
Ioannis S. Boziaris

1.1 Introduction 1
1.2 Seafood spoilage 2
1.3 Seafood hazards 2
1.4 Getting the optimum quality of the raw material 3
 1.4.1 Pre-mortem handling 3
 1.4.2 Post-mortem handling 4
1.5 Seafood processing 4
1.6 Quality, safety and authenticity assurance 6
1.7 Future trends 6
References 7

Part I Processing Technologies 9

2 Shellfish Handling and Primary Processing 11
Yi-Cheng Su and Chengchu Liu

2.1 Introduction 11
 2.1.1 Health hazards associated with molluscan shellfish 11
2.2 Shellfish harvesting 13
 2.2.1 Growing area 13
 2.2.2 Water quality 17
2.3 Bivalve shellfish handling 18
 2.3.1 Temperature control 18
 2.3.2 Transportation and storage 19
 2.3.3 Retail handling 20
2.4 Shellfish primary processing 21
 2.4.1 Shucking 21
3 Chilling and Freezing of Fish
Flemming Jessen, Jette Nielsen and Erling Larsen

3.1 Introduction 33
3.2 Post-mortem changes at chilled storage temperatures 34
 3.2.1 Rigor mortis 34
 3.2.2 Protein changes 36
 3.2.3 Lipid changes 36
 3.2.4 Microbial changes 37
3.3 Effect of freezing temperatures on quality-related processes 37
 3.3.1 The freezing process 37
 3.3.2 Frozen storage temperatures 40
3.4 Fresh fish chain 41
 3.4.1 Handling and processing on board fish vessels 42
 3.4.2 Landing, sorting and first sale 44
 3.4.3 Transport and wholesaler/central storage 45
 3.4.4 Super-chilling 46
3.5 Frozen fish chain 46
 3.5.1 Freezing systems 47
 3.5.2 Frozen storage 51
 3.5.3 Thawing 52
 3.5.4 Storage life 53
3.6 Legislation 54
3.7 Recommendations 54
References 55

4 Heat Processing of Fish
Dagbjørn Skipnes

4.1 Introduction 61
4.2 Basic principles 61
4.3 Best available technology for thermal processing of fish 62
4.4 Quality changes during heat treatment of fish 63
 4.4.1 Process design effects on product quality 68
 4.4.2 Biochemical changes during heating 69
 4.4.3 Cook loss 71
 4.4.4 Water holding capacity 73
 4.4.5 Texture and colour changes 74
Acknowledgement 75
References 75
CONTENTS

5 Irradiation of Fish and Seafood
Ioannis S. Arvanitoyannis and Persefoni Tserkezou

- **5.1 Introduction** 83
- **5.2 Quality of irradiated fish and fishery products and shelf life extension** 84
 - 5.2.1 Fish 84
 - 5.2.2 Shellfish, crustaceans and molluscs 89
- **5.3 Microflora of irradiated fish and fishery products** 101
 - 5.3.1 Fish 101
 - 5.3.2 Shellfish, crustaceans and molluscs 106
- **5.4 Conclusions** 120
- **References** 120

6 Preservation of Fish by Curing
Sigurjon Arason, Minh Van Nguyen, Kristin A. Thorarinsdottir and Gudjon Thorkelsson

- **6.1 Introduction** 129
- **6.2 Salting** 130
 - 6.2.1 Salting methods 130
 - 6.2.2 Processes for salted fish products 132
 - 6.2.3 Changes in fish muscle during salting 134
 - 6.2.4 Heavily salted fish products 138
- **6.3 Marinating** 143
 - 6.3.1 Introduction 143
 - 6.3.2 Marinating methods 143
 - 6.3.3 Ingredients used in marinating 145
 - 6.3.4 Factors affecting the quality of marinated products 145
 - 6.3.5 Changes in fish muscle during marinating 146
 - 6.3.6 Storage of marinated fish products 146
- **6.4 Smoking** 146
 - 6.4.1 Introduction 146
 - 6.4.2 Smoking method 147
 - 6.4.3 Changes in fish muscle during smoking 148
 - 6.4.4 Factors affecting the quality of smoked fish products 149
 - 6.4.5 Packaging and storage of smoked fish products 151
- **References** 151

7 Drying of Fish
Minh Van Nguyen, Sigurjon Arason and Trygve Magne Eikevik

- **7.1 Introduction** 161
- **7.2 Principles of drying** 161
 - 7.2.1 Mass and heat transfer during drying 161
 - 7.2.2 Drying kinetics 162
 - 7.2.3 Water activity 163
- **7.3 Drying methods** 163
 - 7.3.1 Sun drying 163
 - 7.3.2 Solar drying 164
 - 7.3.3 Heat pump drying 164
 - 7.3.4 Freeze-drying 165
 - 7.3.5 Osmotic dehydration 166
7.4 Changes in fish muscle during drying 166
 7.4.1 Changes in chemical properties of fish muscle 166
 7.4.2 Changes in physical properties of fish muscle 167
 7.4.3 Effect of drying on the nutritional properties of fish 169
7.5 Packing and storage of dried fish products 169
 References 170

8 Fish Fermentation 177
 Somboon Tanasupawat and Wonnop Visessanguan
7.4 Changes in fish muscle during drying 166
 7.4.1 Changes in chemical properties of fish muscle 166
 7.4.2 Changes in physical properties of fish muscle 167
 7.4.3 Effect of drying on the nutritional properties of fish 169
8.1 Definition of the term fermentation in food technology 177
8.2 Fermented foods worldwide 178
8.3 Lactic acid fermentation 179
8.4 Traditional salt/fish fermentation 180
 8.4.1 Classification of fermented fish 181
7.4 Changes in fish muscle during drying 166
 7.4.1 Changes in chemical properties of fish muscle 166
 7.4.2 Changes in physical properties of fish muscle 167
 7.4.3 Effect of drying on the nutritional properties of fish 169
8.4.2 World fermented fish products 182
8.5 Future trends in fish fermentation technology 197
 References 199

9 Frozen Surimi and Surimi-based Products 209
 Emiko Okazaki and Ikuo Kimura
9.1 Fish material for frozen surimi 209
9.2 Principles and process of frozen surimi production 209
 9.2.1 Fish material 210
 9.2.2 Washing and scaling of fish 210
 9.2.3 Sorting of fish 212
 9.2.4 Filleting of fish 212
 9.2.5 Mechanical separation of fish 212
 9.2.6 Leaching 212
 9.2.7 Refining 217
 9.2.8 Dewatering 218
 9.2.9 Blending of cryoprotectants 218
 9.2.10 Freezing 218
 9.2.11 Frozen storage and transport 218
9.3 Characteristics of fish material and manufacturing technology 219
 9.3.1 Surimi from dark-fleshed fatty fish species 219
7.4 Changes in fish muscle during drying 166
 7.4.1 Changes in chemical properties of fish muscle 166
 7.4.2 Changes in physical properties of fish muscle 167
 7.4.3 Effect of drying on the nutritional properties of fish 169
 9.3.2 Surimi production from fish species with high protease activity in the muscle 222
9.4 Denaturation of fish protein by freezing and its prevention 223
 9.4.1 Stability of fish protein 224
 9.4.2 Substances promoting protein denaturation during frozen storage 224
 9.4.3 Cryoprotectants and their mechanism of action 226
 9.4.4 Effects of polyphosphates 228
9.5 Evaluation of surimi quality 228
9.6 Surimi-based products 231
 9.6.1 The production of surimi-based products in the world 231
 9.6.2 General processing techniques of surimi-based products 231
 9.6.3 Recent technological changes in the production of surimi-based products 231
9.7 Future prospective 232
 References 233
10 Packaging of Fish and Fishery Products 237
Bert Nosedą, An Vermeulen, Peter Ragaert and Frank Devlieghere

10.1 Introduction 237
10.2 MAP principles and importance for packaging fresh fish 238
10.2.1 Principles of MAP 238
10.2.2 Importance of MAP 240
10.3 Non-microbial effects of MAP 242
10.3.1 Effect on sensorial quality 242
10.3.2 Effect on oxidative rancidity 242
10.4 Effects of MAP on fish spoilage 243
10.4.1 Effect of MAP on the spoilage microbiota 243
10.4.2 Effect of MAP on the spoilage mechanism 246
10.5 Effects of MAP on the microbial safety of fish products 248
10.5.1 Listeria monocytogenes 249
10.5.2 Clostridium botulinum 249
10.6 Application of MAP on fish and fishery products 250
10.6.1 Fresh fish 251
10.6.2 Fresh crustaceans 252
10.6.3 Fresh molluscs 252
10.6.4 Smoked fish products 253
10.7 Packaging materials and future developments 253
10.7.1 Barrier materials 254
10.7.2 Active and intelligent packaging 254
10.7.3 New resources for packaging materials 255
References 255

11 Fish Waste Management 263
Ioannis S. Arvanitoyannis and Persefoni Tserkezou

11.1 Introduction 263
11.2 Treatment methods 265
11.2.1 Hydrolysis 265
11.2.2 Bioremediation 266
11.2.3 Anaerobic treatment 269
11.2.4 Filtration/screening 270
11.2.5 Miscellaneous/multifunctional methods 272
11.3 Uses of fish waste 291
11.3.1 Animal feed 291
11.3.2 Biodiesel/biogas 292
11.3.3 Natural pigments 292
11.3.4 Food industry/cosmetics 293
11.3.5 Waste management 294
11.3.6 Miscellaneous uses 296
11.4 Inputs and outputs in fisheries 296
References 304
Electronic Sources 309

12 Fish Processing Installations: Sustainable Operation 311
George M. Hall and Sevim Köse

12.1 Introduction 311
12.1.1 Defining sustainability 311
12.1.2 Sustainability criteria 312
12.1.3 Climate change 312
12.2 Assessment tools 313
12.2.1 Carbon footprinting 313
12.2.2 Life cycle assessment 314
12.2.3 Supply chain 318
12.3 Process operations 319
12.3.1 Introduction 319
12.3.2 Pre-processing 319
12.3.3 Canning 319
12.3.4 Smoking 322
12.3.5 Freezing and chilling 324
12.3.6 Surimi production 327
12.3.7 Fish meal and fish oil 329
12.3.8 Fermented products 332
12.4 Production efficiency 333
12.4.1 Introduction 333
12.4.2 Cleaner production 333
12.4.3 Management approaches 334
12.5 On-board processing 334
12.5.1 Introduction 334
12.5.2 Advantages and disadvantages 334
12.5.3 Sustainability aspects 336
12.5.4 Plant design 337
12.6 Conclusions 338
References 339

13 Value-added Seafood
Michael Morrissey and Christina DeWitt

13.1 Introduction 343
13.2 Value-added product development 344
13.3 Market-driven 345
13.4 Values-driven 347
13.5 Health-driven 348
13.6 Resource-driven 350
13.7 Technology-driven 350
13.8 Conclusions 354
References 354

Part II Quality and Safety Issues

14 Seafood Quality Assessment
Jörg Oehlenschläger

14.1 Why is quality assessment of aquatic animals multifarious and complex? 361
14.2 Fish composition 362
14.2.1 Introduction 362
14.2.2 Categories of fish species 363
14.2.3 Fish muscle 364
14.2.4 Nutritional composition 364
14.3 Fish freshness

14.3.1 What is fish freshness and how can it be defined? 365
14.3.2 Freshness and quality relationship 366
14.3.3 Some indicators for the freshness determination of fish 366

14.4 Sensory methods

14.4.1 EU quality grading scheme 368
14.4.2 The Torry scheme for cooked fillets 368
14.4.3 Quality Index Method 368

14.5 Chemical methods

14.5.1 Traditional methods as TVB-N, TMAO, TMA, DMA 370
14.5.2 Biogenic amines 372
14.5.3 K-value 373

14.6 Physical methods

14.6.1 pH 374
14.6.2 Eye fluid refractive index 374

14.7 Instrumental methods and automation

14.7.1 Fischtester and Torrymeter 375
14.7.2 VIS/NIR spectroscopy 375
14.7.3 Electronic nose 376
14.7.4 Colour measurement 377
14.7.5 Texture measurement 378
14.7.6 NMR (Nuclear Magnetic Resonance) 378

14.8 Imaging technologies and machine vision

380

14.9 Conclusion 380

References 381

15 Microbiological Examination of Seafood

Ioannis S. Boziaris and Foteini F. Parlapani

15.1 Introduction 387

15.2 Seafood microbiology

15.2.1 Indigenous microbiota 388
15.2.2 Contamination (exogenous) microbiota 388
15.2.3 Spoilage microbiota 388
15.2.4 Pathogenic microorganisms 389

15.3 Microbiological parameters of seafood analysis 389

15.4 Microbiological analysis using conventional culture techniques

15.4.1 Enumeration of total viable counts 392
15.4.2 Determination of spoilage microorganisms 395
15.4.3 Hygienic indicators 396
15.4.4 Pathogen detection 397

15.5 Microbiological examination using indirect rapid methods

15.5.1 Determination of bacterial ATP 399
15.5.2 Electrical methods 400
15.5.3 Other indirect methods 400

15.6 Microscopy based rapid methods

15.6.1 Direct Epifluorescence Filter Technique (DEFT) 401
15.6.2 Fluorescent In Situ Hybridization (FISH) 401
15.6.3 Flow cytometry 401

15.7 Immuno-based techniques 402

15.8 Molecular methods for microbial determination

15.8.1 Exploration of fish and seafood microbiota 402