accredited assays, 439–40
Acinetobacter, 2340, 388, 395
actin, 35, 70, 71, 214 (Table 9.3, 223, 224 (Fig. 9.13), 228, 423
active packaging, 254
Aerobic Plate Counts APC (enumeration of), 390–91 (Table 15.1), 392
Aeromonas, 106, 185, 244 (Table 10.2), 246, 247, 388, 395
determination of, 396
Aeromonas hydrophilla, 3, 65, 239, 248, 389
effect of irradiation on, 118 (Table 5.6), 120
Aeromonas salmonicida, 403
alkaline saline leaching (see leaching) amnesic shellfish poisoning (ASP), 3, 13, 362
ammonia, 371
amplified fragment length polymorphism by PCR (PCR-AFLP) (see PCR based techniques)
ananaerobic treatment, 269–70, 289
animal feed, 287 (Table 11.2), 291, 297
aquaculture
production, 350
energy consumption, 313
ATP, 2, 34
degradation of, 367, 373
changes during frozen storage, 41
determination in bacteria, 399
role in rigor mortis, 34–5
ATP-ase, 214 (Fig. 9.3), 217 (Fig. 9.5), 218, 221 (Fig. 9.3), 224, 225 (Figs. 9.14 and 9.15), 227 (Fig. 9.17), 293, 299 (Table 11.4)
authentication (definition of), 419
autolysis, 2, 4, 44, 389
Bacillus, 65, 105, 106, 183, 184, 185
Bacillus cereus, 65, 104, 186, 250, 389
effect of irradiation on, 109 (Table 5.5), 120
bacterial pathogens, 1, 3, 12, 389, 458
(bi) detection of, 397–9 (Fig. 15.1)
batch retort, 321
bidimensional electrophoresis (2DE) (see electrophoresis)
biodiesel, 292, 297 (Table 11.4), 312, 317 (Fig. 12.3)
biogas, 270, 280 (Table 11.2), 289
(bi) biological oxygen demand (BOD), 269 (Fig. 11.3), 280–6 (Table 11.2), 302 (Table 11.5), 321 (Fig. 12.4)
bioengineering, 266–9, 289 (Table 11.3)
bioxins, 3, 16, 25, 458 (Table 17.1), 460, 461 (Box 17.1)
blast freezer, 38 (Fig. 3.4), 48, 49, 337
brevetoxin, 12
brine salting (see salting)
Brochothrix thermosphacta, 2, 182, 239, 241 (Fig. 10.1), 243, 244 (Table 10.2), 245, 246, 248, 252, 253
determination of, 396, 403, 406 (Table 15.3), 408
Budu (Muslim sauce) (see fermented fish)
calpains, 36, 37 (Fig. 3.3)
canning
 energy requirements, 63, 265 (Table 11.1)
guidelines, 65
 sustainable operation, 319–22
 water usage, 321 (Fig. 12.4)
capacitance, 400
capillary electrophoresis (CE) (see electrophoresis)
carbon dioxide, 238
effect on microorganisms, 239, 241 (Fig. 10.1)
solubility, 239 (Table 10.1)
carbon footprint, 313–14, 339
carbon labelling, 314
carbon monoxide, 240, 242
caspases, 36, 37 (Fig. 3.3)
cathepsins, 36, 37 (Fig. 3.3)
cell alive system freezing (CAS), 50–51
certified reference material (CRM), 421
chemical oxygen demand (COD), 269, 282–3 (Table 11.2), 298 (Table 11.4), 302–4 (Table 11.5), 321 (Fig. 12.4)
chill-chain, 52
chilling, 5 (Table 1.1)
effect on fish quality, 34–7
ten energy consumption, 326
 methods of, 41–2
 sustainable operation, 324–7
chondrichthyes, 363
ciguatera (poisoning), 3, 362, 458 (Table 17.1), 459
cloning, 403, 404 (Table 15.3)
Clostridium botulinum, 3, 61, 353, 389
effect of irradiation on, 106, 114 (Table 5.5)
effect of MAP on, 250–251
effect of smoking on, 148, 151
 heat inactivation of, 65
cold marinating (see marinating)
cold smoking (see smoking)
collagenases, 36
colour (measurement), 377
conductance, 400
contact freezing (see plate freezing)
continuous retort, 321
cook loss, 68, 69, 70, 71–3
cook value (C-value), 67
cook-chill, 64
cooked marinating (see marinating)
crustaceans, 2, 3, 143, 180, 368, 389, 392, 455
 approved irradiation absorbed dose, 84 (Table 5.2)
 handling of, 4
 microbiological parameters of, 390–391 (Table 15.1)
 packaging of, 252
 quality of irradiated, 89, 101, 102 (Table 5.4)
cryogenic freezing (see freezing-methods)
cryoprotectants, 211 (Fig. 9.2), 218, 222 (Fig. 9.11), 226–7, 293, 299 (Table 11.4), 328 (Fig. 12.5)
dark muscle, 219, 220 (Table 9.6), 329, 364, 365
dark-fleshed fatty fish, 216, 219, 220
 databases (DBs), 421–2
denaturation (of proteins during)
 drying, 167
 freezing, 40, 41 (Fig. 3.6), 223–8
 heating, 70–71, 74
salting, 137
 surimi production, 217 (Fig. 9.5)
denaturing gradient gel electrophoresis (DGGE) (see PCR based techniques)
depuration, 23–6
 facilities of, 25
 factors affecting, 24
 water disinfection, 25–6
descriptive test, 367
dewatering, 161, 211 (Fig. 9.2), 212, 218, 221, 222 (Fig. 9.11), 224
diarrhoeic shellfish poisoning (DSP), 3, 13, 362
dimethylamine (DMA), 41, 215, 216 (Table 9.5), 246, 367, 370, 371–2
dinoflagellate, 12, 13, 363
direct epifluorescence filter technique (DEFT), 401
discriminative test, 367
DNA analysis, 430–437
domoic acid, 13
dose response, 454, 456, 462, 464 (Fig. 17.2), 465, 468, 469
dry salting (see salting)
drying
changes in fish
colour, 168
lipids, 167
nutritional properties, 169
proteins, 167
texture, 167–8
volume, 168–9
kinetics, 162 (Eqs. 7.1 and 7.1)
drying rate, 162 (Eq. 7.2)
heat transfer, 162, 164
mass transfer, 162, 166
moisture content, 162, 168
moisture diffusivity, 162, 163
moisture ratio, 162 (Eq. 7.1)
methods:
freeze-drying, 165–6
heat pump drying, 164, 165 (Fig. 7.1)
solar drying, 164
sun drying, 163
osmotic dehydration, 166
drying rate (see drying)
ecolabelling, 314, 319
effluent control, 312
electronic nose, 376–7
Electrophoresis Gels in Denaturing/Thermic Gradient (D/TGGE) (see PCR based techniques)
electrophoresis, 423–8
Capillary Electrophoresis (CE), 427–8
Isoelectric focusing (IEF), 424–5
(Email 16.1)
Polyacrilamide Gel Electrophoresis with SDS (SDS-PAGE), 426–7
(Fig. 16.2)
Bidimensional Electrophoresis (2DE), 427
(Fig. 16.3)
Urea Isoelectric Focusing (Urea-IEF), 425–6
electrostatic smoking (see smoking)
energy consumption, 312
aquaculture, 313
canning, 63
fish processes, 302–3 (Table 11.5)
freezing/chilling processes, 326
high pressure processing, 63
on-board processing, 335
surimi production, 327–8
Enterobacteriaceae, 85, 103, 107 (Table 5.5), 244, 245 (Table 10.2), 246, 247, 253, 388, 392
determination of, 396, 397, 401
environmental quality objectives (EQOs), 263
environmental quality standards (EQSs), 263
enzymatic browning, 2, 5 (Table 1.1)
enzyme-linked immunosorbent assay (ELISA), 402 (see immunological Techniques)
extrusion cooking, 231
Escherichia coli
determination of, 397, 400, 405
(Table 15.3)
effect of depuration on, 23
effect of irradiation on, 103, 120
levels in shellfish growing areas, 13–14
microbiological parameter, 390–391
(Table 15.1)
EU quality grading scheme (see sensory-methods)
exposure assessment, 460–462
extrusion cooking, 231
eye fluid refractive index, 374
F value, 67
faecal coliforms (levels in shellfish growing areas), 14–18
fermentation
definition, 178–9
lactic acid fermentation, 179–80
salt/fish fermentation, 180–181
sustainable operation, 332
fermented fish
Budu (Muslim sauce), 190
fish sauce, 190–192
in Africa, 183
in East Asia, 185
in Europe, 182–3
in South Asia, 183–4
in Southeast Asia, 185–7
in Thailand, 187–8
Kung-chom, 188 (Fig. 8.1), 189
Muslim sauce (see budu)
Pla-chom, 188 (Fig. 8.1)
Pla-ra, 188 (Fig. 8.1), 189
Pla-som, 187, 188 (Fig. 8.1)
Shrimp paste, 189 (Fig. 8.2)
Som-fak, 188 (Fig. 8.1)
with large amount of salt, 181–2
with salt and carbohydrate, 182
filleting, 3, 4, 45, 47 (Fig. 3.5), 135 (Fig. 6.2), 144 (Fig. 6.3), 147 (Fig. 6.4), 211 (Fig. 9.2), 212, 222 (Fig. 9.11), 320 (Table 12.1)
filtration, 17, 25, 265, 270–271, 282, 288 (Table 11.2), 289 (Table 11.3), 292, 297 (Table 11.4), 352
Fischtester (see Torrymeter)
fish chain
 fresh, 41–4 (Fig. 3.7)
 frozen, 46–7 (Fig. 3.8)
fish feed, 71, 272, 282 (Table 11.2), 364
fish fermentation (see fermentation)
fish meal
 process, 264, (Fig. 11.1), 330 (Fig. 12.6), 331 (Table 12.4)
 sustainable operation, 329–32
fish oil
 process, 264 (Fig. 11.1), 273 (Fig. 11.5), 330 (Fig. 12.6)
 sustainable operation, 329–32
fish protein hydrolysates, 276 (Table 11.2), 329
fish waste hydrolysates (FWH), 266, 267 (Fig. 11.2), 277 (Table 11.2)
fish sauce (see fermented fish)
fish waste (treatment methods)
 anaerobic treatment, 269–70
 bioremediation, 266–9
 filtration, 270–271
 hydrolysis, 265–6
 screening (see filtration)
fish
 nutritional composition of, 364–5
 vitamins of, 364–5
 minerals of, 365
 fat content of, 134, 363 (Table 14.1)
 categories of, 363
fisheries (production), 34 (Fig. 3.1), 350
Flavobacterium, 105, 106, 185, 388, 395
flexible retort packaging, 351, 353–4
flow cytometry, 401
fluorescent in situ hybridization (FISH), 401
food safety risk assessment, 457
Forensically Informative Nucleotide Sequencing (FINS), 435–7 (Fig. 16.7)
formaldehyde (FA)
freeze-drying (see drying methods)
freezers, 49, 324–5
freezing, 5 (Table 1.1)
 energy consumption, 326
 methods, 49–51
 cryogenic freezing, 49
 impingement freezing, 50
plate freezing, 49
pressure shift freezing, 50
process, 37–40
sustainable operation, 324–7
systems classification, 325 (Table 12.3)
freshness
 definition, 365–6
 indicators, 269
 quality, 366
fried marinating (see marinating)
frozen storage, 40–41
frozen surimi (see surimi)
gamma irradiation, 85, 116
gel strength, 211 (Table 9.1), 214, 219 (Fig. 9.6), 221 (Fig. 9.9), 222
 (Fig. 9.10), 228 (Fig. 9.18), 229 (Fig. 9.19 and Box 9.1), 230 (Box 9.2), 232
gel-forming ability, 219 (Fig. 9.6), 222
 (Fig. 9.10), 223 (Fig. 9.12)
glycolysis, 34, 364
H2S producing bacteria, 85, 103, 104, 107, 110 (Table 5.5)
determination of, 394 (Table 15.2), 396, 400
halophillic bacteria
proteases of, 192
role in fish fermentation, 192–3
species involved in fish sauce fermentation, 193 (Table 8.2)
hazards
 in molluscan shellfish, 11
 in raw oysters, 351
 in seafood, 2–3
 in smoked fish, 151
Hazard Analysis Critical Control Point (HACCP), 20, 116, 453, 454
hazard characterization, 457, 462–4
hazard identification, 457, 458–60
heat pump drying (see drying methods)
heat resistance (of)
 bacterial spores, 65
 Clostridium botulinum, 65–6
 Listeria monocytogenes, 66
 Salmonella, 67
 V. parahaemolyticus, 66
heating, 5 (Table 1.1)
effect on
 colour, 71
 proteins, 71
texture, 70
water holding capacity (WHC), 70
energy requirements, 63
heat transfer, 50, 52, 62, 63, 65, 72, 162, 164, 320, 321, 325, 329, 331
hedonic test, 367
hepatitis A virus (HAV), 3, 12, 23, 24, 464
heterofermentative (see lactic acid fermentation)
High Performance Liquid Chromatography (HPLC), 428–9 (Fig. 16.4)
High Pressure Processing (HPP) energy consumption, 63
in oysters shucking, 21, 351
inactivation of vibrios in oysters, 22–3, 351
histamine, 183, 187
degradation in fermented fish, 195
(Fig. 8.4)
formation in fermented fish, 194–6
homofermentative (see lactic acid fermentation)
hot smoking (see smoking)
hurdles, 4, 249
hydrolysis
of lipids, 36, 138
of proteins, 186, 192, 196
as waste treatment method, 265–6, 267
(Fig. 11.2), 275–7 (Table 11.2), 289 (Table 11.3), 294, 295
(Fig. 11.6)
hydrostatic retort, 321
hygiene indicators, 397
ice crystals (formation of), 38–9 (Fig. 3.5)
immunological techniques, 402, 429–30
impedance, 400
impingement freezing (see freezing-methods)
injection salting (see salting)
intelligent packaging, 254
ionic strength, 216, 226 (Fig. 9.16), 228, 352
irradiation, 5 (Table 1.1)
absorbed dose, 5, 84
dose levels, 83
in oysters processing, 23
irradiated crustaceans, 89, 101
irradiated fish, 85–9
irradiated mollusks 89, 101
isoelectric focusing (IEF) (see electrophoresis)
kamaboko, 97 (Table 5.2), 105, 209, 213, 214
(Table 9.3), 221 (Fig. 9.9), 231
kung-chom (see fermented fish)
k-value, 373
lactic acid bacteria, 2, 64, 107 (Table 5.5), 179, 239, 240, 244 (Table 10.2), 389
determination of, 394 (Table 15.2), 389, 396
species involved in fish fermentation, 181
(Table 8.1)
lactic acid fermentation (see fermentation)
Lactobacillus, 106, 116, 119 (Table 5.6), 179, 180, 182, 183, 185, 186, 187, 195, 239, 245, 270, 271 (Fig. 11.4), 281
(Table 11.2), 403
leaching, 148, 211 (Fig. 9.2), 212–17
alkaline saline leaching, 218, 220, 222
(Fig. 9.10)
leak indicators, 255
Life Cycle Assessment (LCA) definition of, 315
phases of, 315–17 (Fig. 12.2)
Life cycle impact analysis, 316
Life cycle interpretation, 316–17
lipids
changes due to chilling, 37–8
drying, 167, 169
freezing, 40–41
salting, 137–8
smoking, 148
composition of fish, 134, 363–4
(Table 14.1)
freshness indicator, 367
oxidation of, 3
liquid smoking (see smoking methods)
Listeria monocytogenes case study in cooked crustaceans, 471–2
determination of, 389, 398, 399, 407
effect of MAP on, 249
effect of irradiation on, 101, 103, 104, 106, 109 (Table 5.5), 119 (Table 5.6), 120
heat inactivation of, 65, 66, 67 (Fig. 4.1), 74
(Fig. 4.2)
microbiological parameter, 390
(Table 15.1)
risk assessment of, 454, 455, 464, 470
marinating, 5 (Table 1.1), 143–6, 144
(Fig. 6.3)
factors affecting quality
marinating (continued)
 ingredients
 salt, 145
 sugar, 145
 vinegar, 145
 methods
 cold marinating, 143
 cooked marinating, 144
 fried marinating, 145
 product storage, 146
 marine toxins, 12
 elimination in shellfish, 24
 mass transfer, 70, 133, 137, 141, 162, 166, 330
 microbial food safety risk assessment
 (MFSRA) 455, 456, 457, 469
 microbiological parameters, 390–391
 (Table 15.1)
 micro-biota
 indigenous, 388
 contamination, 388
 spoilage, 388–9
 pathogenic, 389
 Micrococcus, 105, 184, 185, 195, 388, 395
 microsatellites, 438
 microwave heating, 62, 63
 minerals (see fish-nutritional composition of)
 Modified Atmosphere Packaging (MAP)
 application on
 fresh fish, 251
 fresh crustaceans, 252
 fresh mollusks, 252, 253 (Fig.10.2)
 smoked fish, 253
 definition of, 238
 effect on
 sensory attributes, 242
 oxidative rancidity, 242–3
 spoilage microbiota, 243–6, 244
 (Table 10.2)
 spoilage mechanism, 246–8
 Listeria monocytogenes, 249
 Clostridium botulinum, 250
 moisture content, 72, 162, 168, 218, 228, 276
 (Table 11.2), 293, 297
 (Table 11.4), 322, 330
 moisture diffusivity, 162, 163
 moisture ratio, 162 (Eq. 7.1)
 molecular markers, 420–421, 438
 molecular methods, 402–8
 molluscan (see shellfish)
 molluscs, 3, 11, 13–14, 313, 362, 458
 approved irradiation absorbed dose, 84
 (Table 5.2)
 microbiological parameters of, 390–391
 (Table 15.1)
 quality of irradiated, 89, 101, 102
 (Table 5.4)
 shelf life of irradiated, 106, 116, 117
 (Table 5.6)
 Moraxella, 185, 240, 388
 Most Probable Number (MPN), 14, 17, 18,
 390–391 (Table 15.1), 392, 397
 muslim sauce (see budu)
 muscle proteins (see actin and myosin)
 mussels (see shellfish)
 myofibrillar protein, 36, 37 (Fig. 3.3), 71, 213,
 216, 221 (Fig. 9.8), 224, 226
 (Fig. 226), 293, 299 (Table 11.4), 352
 myoglobin, 138, 168, 219, 240, 242, 251, 364
 myosin, 35, 69, 70, 71, 137, 213, 214
 (Table 9.3), 223–4, 228, 423
 neurotoxic shellfish poisoning (NSP), 3, 12,
 362
 nitrogen
 in MAP, 241
 liquid, 49, 50
 non-protein nitrogen (NPN), 2, 246, 364, 367
 norovirus, 12, 24, 464
 Nuclear Magnetic Resonance (NMR),
 378–9
 ohmic heating, 68, 231, 232
 okadaic acid, 13
 on-board processing, 42–5, 334–8
 advantages of, 334–5
 disadvantages of, 334–5
 management of, 335–6
 sustainability aspects of, 336
 organoleptic (see sensory)
 osmotic dehydration (see drying methods)
 osteichthyes, 363
 oxygen
 effect on
 fish muscle colour, 168, 251
 lipid oxidation, 167, 242
 microorganisms, 241
 in MAP, 239, 240
 oyster (see shellfish)
 ozone
 in shellfish depuration, 23, 26
packaging, 5 (Table 1.1), 151, 169
flexible retort packaging, 351, 353–4
functions of, 237
materials for, 253–4
of crustaceans, 352
of dried seafood, 169–70
of, mollusks, 252–3 (Fig. 10.2)
of smoked fish, 151
under modified atmospheres (see MAP)
paralytic shellfish poisoning (PSP), 3
pasteurization,
of fish, 62–3
of shellfish, 22
PCR (Polymerase Chain Reaction), 431
PCR based techniques
amplified fragment length polymorphism by
PCR (PCR-AFLP), 438
denaturing gradient gel electrophoresis
(DGGE), 403–6 (Table 15.3), 439
thermal gradient gel electrophoresis
(TGGE), 403–6 (Table 15.3), 439
qPCR, 404–6 (Table 15.3), 432–5
(Fig. 16.6)
random amplification of polymorphic
DNA (RAPD), 438
restriction fragment length polymorphism
(RFLP), 431–2 (Fig. 16.5)
single-strand conformation polymorphism
amplified by PCR
(PCR-SSCP), 438
terminal restriction fragment length
polymorphism (T-RFLP), 403–6
(Table 15.3)
pH (measurement), 374
pH shift process, 352
Photobacterium phosphoreum, 2, 6, 52, 64,
239, 241 (Fig. 10.1), 241, 243, 244
(Table 10.2), 245, 247, 248, 252,
253, 389
determination of, 393 (Table 15.2), 395,
396, 400, 403, 406 (Table 15.3), 408
Psychrobacter, 388, 403
Psychrotrophic Plate Counts, PPC
 enumeration, 392–3
(Table 15.1)
Psychrotrophs, 388, 392
qPCR or RT PCR (see PCR based
techniques)
qualitative risk assessment, 466–7
quality index method (QIM) (see
sensory-methods)
quality indicators, 255
quantitative risk assessment (QRA), 454, 468
radio frequency heating, 68
Random Amplification of Polymorphic DNA
(RAPD) (see PCR based
techniques)
radiant methods, 399–402
Real Time PCR or qPCR (see PCR based
techniques)
reality check, 468
recrystallization, 39, 40, 46
reference material (RM), 421
refining (surimi production), 211, (Fig. 9.2),
217–18, 328
refrigerated seawater (RSW), 44, 46
rehydration, 133–4, 141, 165, 379
respiratory activity, 400
retort, 21, 63
 batch, 321
 continuous, 321
 hydrostatic, 321
retort heating, 231
retort packaging, 7, 351, 353
rigor mortis
 effect on quality, 3–4
 mechanism of, 34–5 (Fig. 3.2)
risk
 analysis, 454, 455, 457
 characterization, 465–6
 communication, 455
 definition of, 454, 456
 management, 455, 459, 465, 469, 470
Salmonella
 determination of, 389, 398, 399, 406
 (Table 15.3), 407
 effect of irradiation on, 103, 104, 106, 109
 (Table 5.5), 116, 117 (Table 5.6), 120
 heat inactivation of, 67
 microbiological parameter, 390, 391
 (Table 15.1)
salt/fish fermentation (see fermentation)
salted fish
 classification, 138
 heavily salted
 processing, 132, 133 (Fig. 6.1)
 rehydration, 133–4
 storage, 132
 transport, 132
 light salted, 134, 135 (Fig. 6.2)
 quality criteria, 139 (Table 6.2)
salting, 5 (Table 1.1)
 changes in
 lipids, 138
 pH, 135, texture, 135–6
 proteins, 137
 salt, 137
 water activity, 134–5
 water content, 137
 water holding capacity (WHC), 136
 factors affecting quality
 raw materials, 141
 salt, 141, 142 (Table 6.3)
 methods
 brine salting, 131
 dry salting, 130, 136, 137
 heavy salting, 133 (Fig. 6.1)
 injection salting, 131–2
 light salting, 135 (Fig. 6.2)
 pickle salting, 131, 137
sanitizers (in shellfish depuration), 26
sarcoplasmic protein, 71, 212, 327 (Fig. 12.5), 423
saxitoxin, 12, 461 (Box 17.1)
scale, 183, 210, 211 (Fig. 9.2), 302
 (Table 11.5), 320 (Table 12.1)
seafood authentication (see authentication)
 semi-quantitative risk assessment, 466
 sensory assessment, 6, 367, 368–70
 sensory methods
 EU scheme, 368, 369 (Table 14.2)
 Quality Index Method (QIM), 368–70
 Torry scheme, 368
shelf life
 definition of, 366
 of dried fish, 170
 of frozen fish, 53 (Table 3.1)
 of high pressure processed oysters, 23
 of irradiated seafood, 85–101
 of seafood under MAP, 241
 of smoked seafood, 151
 of super-chilled fish
shellfish
 growing areas
 classification, 13–17
 water quality, 17–18
 handling
 labelling, 27
 retail, 20
 storage, 19–20
 temperature control, 18–19 (Tables 2.1 and 2.2)
 transport, 19–20
 hazards associated with, 12
 microbiological parameters, 390–391
 (Table 15.1)
 modified atmosphere packaging of, 252–3
 processing
 depuration, 23–4
 high pressure processing (HPP), 22–3
 packing, 22
 shucking, 21–2
 quality of irradiated, 89, 101
 risk management, 470–1
Shewanella, 2, 6, 52, 64, 183, 239, 241
 (Fig. 10.1), 243, 244 (Table 10.2), 245, 246, 247, 388, 389
INDEX 487

determination of, 395, 396, 403, 404
(Table 15.3)
shrimp paste (see fermented fish)
shucking, 21–2
Single-Strand Conformation Polymorphism
amplified by PCR (PCR-SSCP)
(see PCR based techniques)
smoked fish
 packaging, 151
 storage, 151
smoking, 5 (Table 1.1), 147 (Fig. 6.4)
 changes in fish muscle, 148–9
 factors affecting quality
drying methods, 150
 raw material, 149
 salting methods, 150
 smoke composition, 150–151
 methods
cold smoking, 148
electrostatic smoking, 148
hot smoking, 147
liquid smoking, 148
 sustainable operation, 322–4
solar drying (see drying methods)
solid waste (in fish processes), 302–3
(Table 11.5)
som-fak (see fermented fish)
sorting (of fish), 44–5, 211 (Table 9.1), 212
sous-vide, 62, 64
species identification (definition), 419
specific spoilage organisms (SSO), 2, 37, 243, 388
spoilage mechanism (see spoilage)
spoilage microorganisms (or microbiota), 2, 388–9, 393–7 (Table 15.2)
 enumeration, 396 (Table 15.2)
 identification, 395
 MAP effect on, 243–9
spoilage
 autolytic, 2
 chemical, 2
 enzymatic, 2
 mechanism, 2, 37, 243
 microbial, 2, 388
Staphylococcus aureus
 determination of, 397
 effect of irradiation on, 103, 104, 105
 microbiological parameter, 390
 (Table 15.1)
sterilization, 61, 63, 64, 65
stunning, 4
subjective test, 367
sun drying (see drying methods)
super-chilling, 46
super-freezing, 50
supply chain, 334, 339
surimi
 definition of, 209
 energy consumption, 328
 process operation, 211 (Fig. 9.2), 327
 (Fig. 12.5)
 sustainable operation, 327–9
 water consumption, 328–9
sustainability
criteria of, 312
definition of, 311–12
suwari, 213, 214 (Table 9.3), 226, 228
 (Fig. 9.18), 229 (Box 9.1), 232
 (Fig. 9.20)
terminal restriction fragment length
 polymorphism (T-RFLP) (see PCR based techniques)
texture (measurement), 367, 378
thawing, 47 (Fig. 3.8), 52
thaw-rigor, 41
thermal conductivity (of fish), 52, 68
thermal gradient gel electrophoresis (TGGE)
 (see PCR based techniques)
thermal processing (see heating)
temperature indicators, 254
Tissue Bank (TB), 421
Torry scheme (see sensory-methods)
Torrymeter, 375
Total Viable Counts TVC (enumeration of), 392–5
Total Volatile Basic Nitrogen (TVB-N), 6, 367, 370–371
toxin (see marine toxin)
transglutaminase (TGase), 210, 214
 (Fig. 9.3), 215, 232
Trimethylamine Oxide (TMAO), 41, 372
Trimethylamine-Nitrogen (TMA-N), 6
Trimethylamine-Oxide aldolase (TMAOase), 41
Trimethylamine (TMA), 372
Ultraviolet light
 in shellfish depuration (water disinf), 25
Urea Isoelectric Focusing (Urea-IEF) (see electrophoresis)
vacuum packaging. 5 (Table 1.1), 64, 151, 170, 238, 246, 403
value-added seafood
advantages of, 343–4
development of, 344–5
health-driven, 348–9
market-driven, 345–6
resource-driven, 349–50
technology-driven, 351
value-driven, 346–7

Vibrio cholerae
determination of, 398–9, 400, 405
 (Table 15.3)
effect of depuration on, 23
microbiological parameter, 391
 (Table 15.1)
risk assessment, 461 (Fig. 17.1), 463
 (Table 17.2), 467 (Table 17.3)

Vibrio parahaemolyticus
case study in raw oysters, 470–472
determination of, 398–9, 405 (Table 15.3),
 407
effect of depuration on, 23–4
effect of high pressure on, 22–3
effect of irradiation on, 23, 101, 104,
 109 (Table 5.5), 116, 117
 (Table 5.6)
effect of ozone on, 26
effect of pasteurization on, 22
effect of sanitizers on, 26
effect of temperature control on, 18
 (Table 2.1)
effect of UV on, 25
heat resistance of, 66
occurrence in shellfish, 12, 18, 19,
 21
microbiological parameter, 391
 (Table 15.1)
risk assessment, 454, 455, 457, 464

Vibrio vulnificus
determination of, 398–9, 400, 405
 (Table 15.3), 407
effect of depuration on, 23–4
effect of irradiation on, 116, 118
 (Table 5.6)
effect of ozone on, 26
effect of pasteurization on, 22
effect of sanitizers on, 26
effect of temperature control on, 19
 (Table 2.2)
occurrence in shellfish, 12, 18, 19
risk assessment, 454, 470

Virus
determination of, 398–9, 405
 (Table 15.3), 407
effect of depuration on, 23–4
effect of irradiation on, 23, 101, 104,
 109 (Table 5.5), 116, 117
 (Table 5.6)
effect of ozone on, 26
effect of pasteurization on, 22
effect of sanitizers on, 26
heat resistance of, 66
occurrence in shellfish, 12, 18, 19,
 21
microbiological parameter, 391
 (Table 15.1)
risk assessment, 454, 455, 457, 464

Vitamin (see fish, nutritional composition of)

VIR/NIR spectroscopy

waste treatment (see fish waste)
wastewater (in fish processes), 302–3
 (Table 11.5)
water activity \((a_w)\), (definition), 163
water consumption, 312
 in canning, 321
 in cleaner production, 333
 in surimi production, 328–9
water disinfection, 25–6
 methods
 filtration, 25
 ozone, 26
 sanitizers, 26
 ultra-violet light, 25
water holding capacity (WHC)
changes due to
 freezing, 40
 heating, 70, 74 (Fig. 4.2)
 marinating, 146
modified atmosphere packaging
 (MAP), 242
salting, 136
smoking, 149
surimi production, 216, 217 (Fig. 9.4),
 226 (Fig. 9.16)
water soluble proteins (WSP), 75, 212, 352
x-rays (see irradiation)

Yeasts
 103, 161, 179, 184, 253, 389
determination of, 394 (Table 10.2), 396