Contents

Preface xiii

Acknowledgments xv

1 Introduction to Vehicle Propulsion and Powertrain Technologies 1

1.1 History of Vehicle Development 1

1.2 Internal Combustion Engine Vehicles (ICEVs) 3

1.2.1 The Four-Stroke Gasoline Engine 5

1.2.2 The Four-Stroke Diesel Engine 6

1.2.3 ICE Performance Characteristics 8

1.2.4 ICE Vehicle Emissions 11

1.3 Vehicle Emission Control Technologies 16

1.3.1 Advanced Engine Design 16

1.3.2 Catalytic Converters 19

1.3.3 The Diesel Particulate Filter (DPF) 21

1.3.4 Exhaust Gas Recirculation (EGR) 22

1.3.5 Crankcase Emission Control System 24

1.4 Vehicles with Alternative Fuels 25

1.4.1 Natural Gas Vehicles (NGVs) 25

1.4.2 Liquefied Petroleum Gas Vehicles (LPGVs) 26

1.4.3 Biodiesel 27

1.4.4 Hydrogen 28

1.5 Powertrain Technologies 29

1.5.1 Rear-Wheel Drive Powertrains 29

1.5.2 Front-Wheel Drive (FWD) Powertrains 30

1.5.3 Multi-Wheel Drive Powertrains 31

1.6 Transmission Systems 32

1.6.1 Manual Transmission/Transaxle Systems 32

1.6.2 Automatic Transmission/Transaxle Systems 34

1.6.3 Automated Manual Transmissions (AMTs) 38

1.6.4 Continuous Variable Transmissions (CVTs) 38

1.7 Drivetrain and Differentials 41

1.7.1 Open Differentials 41

1.7.2 Limited Slip Differentials 42
2 Electric and Hybrid Powertrain Technologies

2.1 Introduction

2.2 Battery Electric Vehicles (BEVs)
 - 2.2.1 The BEV Powertrain Configuration
 - 2.2.2 Electric Traction Motors
 - 2.2.3 Energy Sources and Storages
 - 2.2.4 Power Electronic Converters
 - 2.2.5 Power Bus
 - 2.2.6 Regenerative Braking System

2.3 Fuel-Cell Electric Vehicles (FCEVs)
 - 2.3.1 Fuel-Cell Technologies

2.4 Hybrid Electric Vehicles
 - 2.4.1 Degree of Hybridization
 - 2.4.2 Parallel Hybrid Configuration
 - 2.4.3 Series Hybrid Configuration
 - 2.4.4 Power-Split Configuration
 - 2.4.5 Compound Hybrid Configuration

2.5 Plug-in Hybrid Electric Vehicles (PHEVs)

2.6 Hybrid Hydraulic Vehicles (HHVs)

2.7 Pneumatic Hybrid Vehicles (PHVs)

2.8 Power/Energy Management Systems

2.9 Summary

Problems

References

3 Body and Chassis Technologies and Design

3.1 Introduction

3.2 General Configuration of Automobiles

3.3 Body and Chassis Fundamentals
 - 3.3.1 General Packaging
 - 3.3.2 Design Criteria
 - 3.3.3 Design Loads

3.4 Different Types of Structural Systems
 - 3.4.1 Body-on-Frame Construction
 - 3.4.2 Backbone Construction
 - 3.4.3 Space Frame Construction
 - 3.4.4 Unibody Construction

3.5 Body and Chassis Materials
 - 3.5.1 Low Carbon Steel
 - 3.5.2 Advanced High Strength Steels
 - 3.5.3 Nonferrous Metals
Contents

5.3 Electric Motor Performance Characteristics 195
 5.3.1 Power and Torque Generation 195
 5.3.2 Efficiency 197
 5.3.3 DC Motors 200
 5.3.4 Induction AC Motors 203
 5.3.5 Steady-State Performance Analysis 204
 5.3.6 Permanent-Magnet AC Motors 210

5.4 Battery Performance Characteristics 214
 5.4.1 Battery Capacity 214
 5.4.2 Open Circuit and Terminal Voltages 215
 5.4.3 Charge/Discharge Rate 216
 5.4.4 State of Charge/Discharge 217
 5.4.5 Depth of Discharge 218
 5.4.6 Battery Energy Density and Specific Energy 220
 5.4.7 Battery Power Density and Specific Power 221
 5.4.8 Battery Efficiency 223

5.5 Transmission and Drivetrain Characteristics 223
 5.5.1 Gearboxes 223
 5.5.2 Planetary Gear Set 225
 5.5.3 V-Belt CVTs 231
 5.5.4 Driveline Losses 232

5.6 Regenerative Braking Characteristics 233

5.7 Driving Cycles 236
 5.7.1 EPA Driving Cycles 236
 5.7.2 The European NEDC 238
 5.7.3 The Japan 10–15 Mode 240

Problems 241

References 243

6 Modeling and Analysis of Electric and Hybrid Electric Vehicles’ Propulsion and Braking 245

6.1 Introduction 245

6.2 The Longitudinal Dynamics Equation of Motion 246

6.3 Vehicle Propulsion Modeling and Analysis 247
 6.3.1 Internal Combustion Engine Vehicles 247
 6.3.2 Electric Vehicles 259
 6.3.3 Hybrid Electric Vehicles 263

6.4 Vehicle Braking Modeling and Analysis 268

Problems 274

7 Handling Analysis of Electric and Hybrid Electric Vehicles 277

7.1 Introduction 277

7.2 Simplified Handling Models 277
 7.2.1 Single Track Linear Handling Model 278
 7.2.2 Analytical Handling Analysis 282
 7.2.3 Roll and Pitch Dynamics Models 293
7.3 Comprehensive Handling Model of EVs and HEVs
7.3.1 Vehicle Kinetics Model
7.3.2 The Tire Model
7.3.3 Powertrain and Wheel Dynamics Model
7.3.4 Simulation Study
Problems
References

8 Energy/Power Allocation and Management
8.1 Introduction
8.2 Power/Energy Management Controllers
8.3 Rule-Based Control Strategies
 8.3.1 Deterministic Rule-Based Control Strategies
 8.3.2 Fuzzy-Rule-Based Control Strategies
 8.3.3 Rule-Based Control Strategies for PHEVs
8.4 Optimization-Based Control Strategies
 8.4.1 Optimization Problem Formulation
 8.4.2 Global Energy/Power Management Optimization
 8.4.3 Real-Time Energy/Power Management Optimization
 8.4.4 Optimization Techniques
References

9 Control of Electric and Hybrid Electric Vehicle Dynamics
9.1 Introduction
9.2 Fundamentals of Vehicle Dynamic Control (VDC) Systems
 9.2.1 Driver, Vehicle, and Environment
 9.2.2 Working Principle of VDC systems
 9.2.3 VDC Systems Classification
9.3 VDC Implementation on Electric and Hybrid Vehicles
 9.3.1 Structure of the Control System
 9.3.2 Control System Design
 9.3.3 Simulation Study
Problems
References

Index